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1 Introduction

It has been well established that scaling the size (i.e., parameter count) of models is necessary for
state of the art prediction power [1, 2], but naively scaling the model size is infeasible due to hardware
constraints and computational costs. Mixture of Experts (MoE) layers in a model allow one to
achieve this goal, while mitigating the increased computational costs for training and inference that
accompany a naively larger model. These have been successfully deployed in practice, in a variety of
contexts such as language [3] and vision [4], and MoE layers are considered critical to achieve state
of the art performance in today’s models [5].

Figure 1: Our Algorithm 1 selects a special-
ized subset of the experts to utilize for inference.
Given any proportion of n (the total number of
experts) to select, its performance uniformly im-
proves with larger n.

The archetypical MoE layer is the Sparse MoE [6].
Here, each token is only given to a subset of experts,
and a router is trained to discretely match a token to
its expert subset. Since a single (large) expert can
represent complex functions, the traditional viewpoint
is that one should partition the large expert into multiple
(small) experts, so that the total parameter count of all
experts is unchanged. The hope is that the model’s
representation power is similar since the total parameter
count is the same and since experts can specialize to
the tokens they see (rather than all tokens) [7]. Yet,
training and inference are faster, because any single
token activates only a subset of experts rather than all
of them.

While the Sparse MoE allows scaling of model size,
its discrete routing causes optimization issues and load
balancing difficulties during training. To tackle these
issues, many variants of Sparse MoE have been intro-
duced, such as routing a token to only a single expert [3], incorporating linear programs to ensure load
balancing [8] or having the experts select tokens (instead of tokens selecting experts) [9]. However,
all these approaches remain discrete in nature, and thus suffer from at least some degree of training
instability.

To alleviate these issues, the recently introduced Soft MoE [10] eschews discrete matching in favor of
a smoother approach. It computes for each expert a convex combination of the input tokens, and the
expert only sees this convex combination. The final output of the model is then a convex combination
of each expert’s output. This approach is fully differentiable, and hence is more stable than the
Sparse MoE. This novel Soft MoE architecture has been shown to outperform all other baselines on
challenging large scale vision tasks, and can scale to thousands of experts [10]. Moreover, recent
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results show that the Soft MoE is a promising avenue towards providing empirical scaling laws for
deep reinforcement learning [11].

Thus, while the Sparse MoE constructs a discrete mapping between tokens and experts, the Soft
MoE computes convex combinations of tokens that are fed to experts, and then computes convex
combinations of the expert outputs, which together promote stabler and faster training.

The majority of prior work on MoE focuses on computational issues, such as efficient and stable
training. In our paper, we adopt an orthogonal perspective. In particular, it remains unclear whether
Soft MoE’s specific manner of combining tokens and experts creates any unexpected implicit
architectural biases. Indeed, it is not even clear that its soft gating mechanism preserves the traditional
MoE dogma that many small experts have similar representation power to a single large expert with
the same total parameter count. It is also unclear whether combining tokens and experts completely
destroys the possibility (or discoverability) of expert specialization, which is what one traditionally
desires from an MoE (especially in the regime of many experts) [12, 13]. Thus, we investigate for the
existence of such biases, through the lens of varying the number of experts. In this paper, we make
progress along this line of investigation by making the following contributions:

• We prove that the Soft MoE with a single neural network expert, even with arbitrarily many
parameters, cannot represent simple convex functions (while empirically we show that
multiple experts can). Thus, in contrast to the traditional viewpoint, having multiple experts
is actually necessary to have non-trivial representation power in Soft MoE.

• We introduce a notion of specialization for Soft MoE. While discovering specialized experts
generally seems intractable, we empirically demonstrate that as we increase the number of
experts, even while fixing the total parameter count, the architecture is implicitly biased in a
manner that allows us to efficiently approximate the specialized expert set (see Figure 1).

• Our method for discovering specialized experts can be easily implemented for reducing
computation at inference.

These contributions thus show there are benefits to using a large number of small experts relative to a
small number of large experts, and notably, these benefits are often non-computational.

2 Problem Formulation

2.1 Preliminaries

We begin by briefly discussing the Soft MoE architecture [10]. Throughout our paper, we assume
there is a single slot per expert, since this is the most performant setting in practice. Let X ∈ Rm×d

denote the tokenized input, so that there are m tokens each in Rd. The MoE layer is equipped with
n experts {fj : Rd → Rd}nj=1, each of which is typically implemented as a feedforward network.
The router is parameterized by Φ ∈ Rd×n. Given an input X , the parameters Φ are used to compute
matrices D(X), C(X) ∈ Rm×n which are defined elementwise as

D(X)ij =
exp

(
(XΦ)ij

)
∑m

i′=1 exp
(
(XΦ)i′j

) and C(X)ij =
exp

(
(XΦ)ij

)
∑n

j′=1 exp
(
(XΦ)ij′

) . (1)

Note that each column of D(X) and each row of C(X) sums to one. With this notation in hand, we
formally define the Soft MoE layer below.

Definition 1 The Soft MoE is a function sMoEΦ
{fj}n

j=1
: Rm×d → Rm×d defined as

sMoEΦ
{fj}n

j=1
(X) = C(X)Ỹ (X) where Ỹ (X) =

f1
(
(D(X)TX)1

)
...

fn
(
(D(X)TX)n

)
 .

The Soft MoE thus computes n different convex combinations of the tokens in X , where the weights
of the jth convex combination are given by the jth column of D(X). It then applies expert fj
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to the jth convex combination, for each j = 1, 2 . . . n. Finally, it computes m different convex
combinations of these expert outputs, where the weights of the ith convex combination are given
by the ith row of C(X). Note that each expert processes a single vector in Rd, and that sMoE is
differentiable whenever the experts are. This results in more stable training relative to Sparse MoE,
where each expert is given a subset of the m tokens via a discrete matching algorithm. The Soft MoE
has shown significant empirical success in vision [10] and reinforcement learning [11].

2.2 Our Investigation

At a high level, the Sparse MoE is designed with the following principle. Say we desire a model
with b total parameters, because we believe that b allows for sufficiently large representation power.
Instead of using a single large network (n = 1) with b parameters, we use n > 1 smaller experts
each with b/n parameters. The hope is that we have similar representation power to the n = 1 case
since the total parameter count is the same, but we have faster computation because each token only
activates a small subset of experts [6, 3]. Moreover, one also hopes that each expert can specialize to
the specific type of tokens it sees [7, 12, 13].

The Soft MoE is motivated in a similar fashion. It also splits a single large model with b parameters
into n ≥ 1 smaller experts each with b/n parameters, hoping that representation power is unchanged.
However, Soft MoE differs significantly from Sparse MoE in how it uses these experts. While Sparse
MoE discretely assigns tokens to experts, Soft MoE computes convex combinations of tokens and
expert outputs. Due to this significant difference, it is unclear how the original motivations for Sparse
MoE apply to Soft MoE.

As one example of how Soft MoE might deviate from the original motivations for Sparse MoE,
consider the extreme case when n = 1. Here, Sparse MoE’s router trivially routes all tokens
to the expert, and so classical results show that Sparse MoE can represent arbitrary continuous
functions [14, 15]. But in Soft MoE, the gating function is non-trivial even in n = 1, and so it is
possible that Soft MoE has poor representation power even when the expert is very powerful. If
this were true, then it would challenge the conventional wisdom that Soft MoE’s empirical success
with n > 1 smaller experts (each with b/n parameters) is simply because they mimic (albeit
computationally efficiently) the representation power of a single large expert (with b parameters).
Instead, it would suggest that Soft MoE has some implicit bias that enables its practical success. To
this end, we ask the following question.

Q1: Can a large single expert in Soft MoE represent simple functions?

Our motivation for this question has thus far primarily been scientific. Nevertheless, we believe
this question is also practically relevant, since there are empirical results in reinforcement learning
(RL) which show that Soft MoE with a single expert can outperform traditional neural network
architectures [11]. Indeed, a negative answer to Q1 would imply that there are implicit biases in Soft
MoE that assist in its improved empirical performance.

As a second example of how Soft MoE might deviate from the original motivations for Sparse MoE,
consider the following. Since Soft MoE combines all tokens before feeding them to an expert, and
since it combines all experts to produce its final output, it is natural to wonder whether this prohibits
expert specialization. Indeed, this limitation is acknowledged in the seminal work [10]. We thus ask
the following question.

Q2: Is there a notion of expert specialization in Soft MoE, and if so, can it be efficiently discovered?

The remainder of this paper is devoted to answering Q1 (in Section 3) and Q2 (in Section 4).

3 Representation Failure of a Single Expert

In this section, we answer Q1 from Section 2.2. We first recall the definition of Lipschitz functions.

Definition 2 A function h : Rk1 → Rk2 is L-Lipschitz if ∥h(x) − h(y)∥2 ≤ L∥x − y∥2 for all
x, y ∈ Rk1 .

Recall that any neural network is Lipschitz [16]. Our main result shows that Soft MoE with a single
Lipschitz expert f is incapable of representing simple target functions. This result holds even when
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this expert f is arbitrarily powerful (and possibly non-parametric). It also holds when the output of
the Soft MoE layer is passed to an arbitrarily powerful Lipschitz function g (as would be the case in a
practical implementation, since the MoE would be a layer that prepends a powerful neural network
function, rather than a standalone layer). Below we formally state our result.

Theorem 1 Fix any m ≥ 2, d ≥ 1 and n = 1. Define the target function t : Rm×d → R as
t(X) = ∥X∥2. Assume the existence of Φ ∈ Rd×1, f : Rd → Rd and g : Rm×d → R such that∣∣t(X)− g

(
sMoEΦ

f (X)
)∣∣ ≤ max {1, t(X)/20} for all X ∈ Rm×d.

Then there are no Lf , Lg ≥ 0 such that f is Lf -Lipschitz and g is Lg-Lipschitz.

The proof is deferred to Appendix B. Let us discuss this result.

Notion of Approximation. The theorem says that we cannot approximate t over X ∈ Rm×d, up to
an error that scales as max{1, t(X)/20}. We believe that this approximation error is large, since we
allow it to scale with t(X). Indeed, it is trivial that the constant function zero can approximate t over
X ∈ Rm×d up to an error of t(X). Our notion of error is only slightly smaller than this.

Residual Connections. In a practical implementation, one would use residual connections so that the
function g would typically receive both X and sMoEΦ

f (X) as input instead of just sMoEΦ
f (X). In

such a setting, our result would of course not apply, since one could use g alone to approximate t(X),
while completely ignoring sMoEΦ

f (X). Nevertheless, we believe it is worth studying the setting
without residual connections, because if g did not leverage sMoEΦ

f (X), then there would be no point
of using a Soft MoE layer at all.

Benign Target. The target function t is extremely benign. Indeed, it is convex and 1-Lipschitz. So it
a priori seems intuitive to try and approximate it with a Lipschitz expert f and subsequent Lipschitz
architecture g. Yet, we cannot approximate t even when f, g have arbitrarily large Lipschitz constants.
This is in stark contrast to the classical neural network approximation literature, where relatively
simple feedforward networks can represent arbitrary continuous functions [14, 15].

Permutation Invariant Target. Let σ : Rm×d → Rm×d be any function that permutes the rows
of its input. It is easily shown that σ commutes with sMoEΦ

{fj}n
j=1

. This implies that one cannot
represent target functions that vary based on permutations of their input’s rows. A result which
relied on this property would not be very satisfying, since in practice this issue is handled by adding
positional encoding to the input [17]. However, our target function t satisfies t(σ(X)) = t(X) for
any permutation function σ. Indeed, an examination of the proof in Appendix B shows that the result
hinges on the particular manner in which tokens are combined before being passed to the expert.

Normalizing Input. In practice, one may normalize the input X before passing it to the Soft MoE,
and in this case Theorem 1 is trivially inapplicable. Nevertheless, since the performance with or
without normalization is typically very comparable [10], we believe the result remains interesting.

Multiple Experts. We are unable to prove a theorem for the ability of multiple experts to represent t.
In Appendix C, however, we show empirically that increasing the number of experts leads to mono-
tonic performance improvement for representing t, even when the total expert parameter count is fixed.

Theorem 1 (and the experiment in Appendix C) thus provides a negative answer to Q1 raised in
Section 2.2. It therefore challenges the conventional wisdom that Soft MoE’s empirical success with
n > 1 smaller experts (each with b/n parameters) is simply because they mimic the representation
power of a single large expert (with b parameters). Instead, it suggests that Soft MoE has implicit
biases that assist in its improved performance. A precise characterization of these biases and their
role in this improvement is beyond our paper’s scope. Nevertheless, we view our result as a stepping
stone towards understanding and potentially furthering the true power of Soft MoE. Indeed, recent
results show that Soft MoE with even a single expert can outperform traditional architectures [11].
Our Theorem 1 shows that this improvement cannot be because of improved representation power.

4 Specialization of Experts

In this section, we tackle Q2 from Section 2.2.
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4.1 What Does Specialization Mean?

We begin by noting that since the Soft MoE combines tokens before feeding them to experts, it seems
a priori unlikely that experts specialize, as acknowledged in the seminal work [10]. Indeed, it is
unclear what it even means for an expert to specialize; for instance it seems difficult to consider
specialization of an expert to a subset of tokens.

Instead, our notion of specialization is whether there exists, for any input X ∈ Rm×d, an X-dependent
(relatively small) subset of experts that are sufficient to accurately predict the label for that input X .
Recall from Definition 1 that the output of the Soft MoE layer is C(X)Ỹ (X), where Ỹ (X) ∈ Rn×d

stores the output of expert i in row i. Hence, zeroing out a row i of Ỹ (X) means that expert i does not
contribute anything to the final prediction. If we can zero out many rows of Ỹ (X) without affecting
the final prediction, then the remaining experts can be understood to have specialized to the input
X , since this means that only these remaining experts were actually required to make an accurate
prediction, and these experts did not require contributions from the other zeroed out experts. By
contrast, if zeroing out rows of Ỹ (X) changes the prediction, then this indicates a lack of expert
specialization, since the knowledge required to predict correctly on X was non-trivially spread out
across each of the n experts.

4.2 Does Specialization Exist?

To test whether specialization occurs, we consider the following small experiment. For n ∈ {4, 8, 16}
we train a simple neural network that comprises of a Soft MoE layer with n experts, followed by
a linear prediction head, on the MNIST dataset [18]. The experts in the MoE are each (identical
architecture) MLP with one hidden layer and ReLU activation, and we denote the number of
parameters in a single expert to be dE,n. As we increase n, we decrease the width of each expert (i.e.
the number of units in the hidden layer), so that the total (i.e., summed over all experts) number of
parameters ndE,n is constant for all values of n. By holding the total number of expert parameters
constant, we keep the total expressivity constant, and thus ensure that we do not bias the results for
larger numbers of experts. See Appendix E.1 for further details of this experimental setup.

We train each network, and for the sake of a fair comparison across n, we select for each n a model
that has ≈ 97.5% test accuracy. We emphasize that our aim is to investigate the impact of n on expert
specialization, thus we need to first ensure that each setting of n achieves the same test performance.
Then, for each of the n models and each test datapoint X we do the following: (a) we use an
exhaustive search to identify whether there exists an expert subset of size k = n/4 that predicts
the label for X correctly (b) we randomly zero out 3n/4 rows of Ỹ (X), so we are only predicting
using a random set of k = n/4 experts, and check whether it predicts the label for X correctly. For
both settings, we compute the average prediction accuracy over all 10, 000 test points. Note for both
settings that the number of expert parameters involved in prediction is invariant to the number of
experts n.

The first row of Table 1 shows that expert specialization occurs, especially for larger n (even though
each of the experts for larger n are smaller in parameter count). Figure 5 in Appendix E.1 shows that
the best k-subsets identified are diverse, indicating the expert subsets are indeed specialized to the
input. However, the exhaustive search used to generate this result is generally intractable for larger
models. It is also not useful for prediction in the wild, since this procedure requires knowledge of the
label of each test point X . Moreover, the second row of Table 1 shows that we cannot hope to find
the best subset simply via random selection.

n = 4 n = 8 n = 16

Best k-Subset Accuracy (%) 94.69 99.90 100.00
Random k-Subset Accuracy (%) 46.57± 0.44 51.95± 0.46 58.94± 0.34

Table 1: Results for experiment in Section 4.2, where a subset of the experts of size k = n/4 was used to predict
the labels. For the Random subset results, we report the mean and standard deviation over 10 random seeds.
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(a) MNIST (b) CIFAR10 (c) ImageNet-1k

Figure 2: Results for MNIST, CIFAR10 and ImageNet-1k experiments in Section 4.4. We depict the test
accuracy as a function of n, for Algorithm 1 and Random selection, and for various choices of k. For the
Random selection results, we report the mean over 10 random seeds. For CIFAR10, we only reported results
with k = 1 and k = 2. This is because k > 2 had accuracies that were nearly identical to using all experts. We
hypothesize this is because CIFAR10 is relatively easy for the powerful Astroformer architecture.

4.3 An Algorithm For Best Expert Selection

The results of the experiment in Section 4.2 demonstrate the existence of expert specialization,
albeit in a small experiment. However, the same results show that identifying the best subset of
experts cannot be done as simply as via random selection. Since identifying the true best subset of
k experts ostensibly has Ω

((
n
k

))
computational complexity, it is of interest to discover an efficient

algorithm which can rapidly approximate the best subset, especially before moving on to larger
experiments. Beyond our current motivations of checking for the existence of expert specialization,
such an algorithm could also be useful at inference time to reduce computational expense without
loss in accuracy (see Section 4.5).

To this end, we recall from Definition 1 that given an input X , the final output of the Soft MoE is
C(X)Ỹ (X), i.e. row i of the final output is a convex combination of the rows of Ỹ (X) where the
combination weights are given by row i of C(X). So a natural attempt to identify the most important
experts are those given the most weight by C(X). Algorithm 1 formalizes this intuition.

Algorithm 1 Best Expert Subset Selection

Require: number of experts k to use for prediction, Soft MoE sMoEΦ
{fj}n

j=1
, input X ∈ Rm×d

1: Compute C(X) ∈ Rm×n as in Equation 1.
2: Define Csum ∈ Rn entrywise as Csum,j =

∑m
i=1 C(X)ij for j = 1, 2 . . . n.

3: Define Sk ⊆ {1, 2 . . . n} to be the indices corresponding to the k largest entries of Csum.
4: Define Ŷ (X) ∈ Rn×d entrywise as

Ŷ (X)ij =

{(
fi
(
(D(X)TX)i

))
j

if i ∈ Sk

0 if i /∈ Sk

,

for each i = 1, 2 . . . n and j = 1, 2 . . . d.
5: return Ŷ (X).

Note that Algorithm 1 is computationally efficient, requires no separate training, and can be imple-
mented in just a few lines of code. We also note that it can be easily adapted to handle a batched
input in a vectorized fashion (see Appendix D). Its output Ŷ (X) ∈ Rn×d equals Ỹ (X) on k rows,
and is zero in the other n− k rows. Thus, Algorithm 1 can be used to identify a performant subset
of experts at inference time, and then construct the final Soft MoE output by only doing a forward
pass through k experts instead of all n experts. In the regime of many large experts, this can yield
computational advantages at inference time, and we explore this further in Section 4.5.
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Figure 3: Results for CIFAR100 ex-
periments from Section 4.4.

n

2 8 16 64 128

k = n/2 6.23 6.73 1.89 3.47 2.49
k = n/4 - 7.31 6.34 4.56 4.50
k = n/8 - 21.22 28.20 13.96 5.74

Table 2: Each cell is the number of standard deviations that the test
accuracy of Algorithm 1 is above the mean test accuracy of Random
selection, on the CIFAR100 dataset. For the Random selection, we
used 10 random seeds to obtain its mean and standard deviation.

4.4 Empirical Performance of Algorithm 1

In line with the experimental setup assumed by the seminal work [10], we demonstrate the efficacy
of Algorithm 1 on a suite of image classification tasks. We provide results across a wide range of
model scales and architectures, including architectures beyond the ViT model class that was used to
introduce Soft MoE.

4.4.1 Experimental Setup

We experiment on 4 datasets: MNIST, CIFAR10, CIFAR100 [19] and ImageNet-1k [20]. For MNIST,
we use the same experimental setup as in Section 4.2. Recall that the network used is very simple,
and consists entirely of a Soft MoE layer and a prediction head. This small network has merely
318K total parameters, of which 307K are expert parameters. As a more practical setting, we use the
Astroformer-1 architecture [21] for CIFAR10 and CIFAR100. This hybrid transformer-convolutional
architecture achieves excellent performance on these datasets without leveraging extra training data.
We modify Astroformer-1 by replacing the MLPs in the transformer blocks with Soft MoE layers,
analogous to the standard practice that is followed in ViTs [10]. This model is larger, and has 180M
total parameters, of which 150M are expert parameters. Finally, we adopt the same Soft MoE variant
of the ViT architecture [22] used by the seminal work [10] on the ImageNet-1k dataset. Specifically,
it replaces the MLPs in the latter half of the encoder blocks of the ViT Base model with Soft MoE
layers. This is the largest architecture we consider, and it has 513M total parameters, of which 454M
are expert parameters. Due to compute constraints, scaling up our experimental protocol further
(either with external pretraining data or larger model sizes) is infeasible. Nevertheless, our setup
spans a range of model architecture types and scales, as well as several canonical datasets. We defer
further details of the various architectures and their modifications to Appendix E.2.

For each dataset and associated network architecture, we do the following. We train a suite of models
where each model has a different n (total number of experts) in each Soft MoE layer. Each model
is trained from scratch without utilizing any external data. As discussed in Section 4.2, when we
increase n we correspondingly decrease the number of parameters in each expert, to ensure the
total expert expressivity is (roughly) constant. After training each network, we select for each n a
model that has the same test accuracy (as discussed in Section 4.2, this is important because we are
investigating the impact of varying n on Algorithm 1’s test performance, and so we must ensure the
original networks have similar test performance). For each of these trained networks and various
values of k, we then evaluate Algorithm 1’s performance on the test set. Concretely, we compute
the test accuracy of using the k experts found by Algorithm 1 for each datapoint in the test set, and
compare this to the test accuracy of randomly selecting k experts for each datapoint in the test set.

4.4.2 Experimental Results

In Figures 2 and 3 we depict, for each dataset and various choices of k, the performance of Algorithm 1
relative to the random selection scheme. We make two main observations.

The first observation is that Algorithm 1’s accuracy may deteriorate (relative to using all experts)
when k < n and n is small. But if n is big, then Algorithm 1’s accuracy is often very close to that of
using all the experts, even when k ≪ n. For instance, on MNIST, using the k = n/2 experts selected
by Algorithm 1 gives nearly the same performance as using all experts when n ≥ 64, but has poor
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k = n k = 3n/4 k = n/2 k = n/4

batch = 1 21.50± 0.20 19.46± 0.23 14.75± 0.35 9.96± 0.19
batch = 100 99.03± 0.28 78.26± 0.51 78.86± 0.36 51.69± 0.79

Table 3: Wall clock time of performing a single forward pass (of random data) through the 6 Soft MoE layers
using Algorithm 1, with either a single datapoint or a batch of 100 datapoints. The unit of all values are
milliseconds. For each batch size, we report the mean and standard deviation over 100 trials.

performance when n ≤ 8. This shows that as n increases, Algorithm 1 is better poised to discover
specialized experts, even though the number of expert parameters is invariant to n. While we do
not have a formal explanation for why this phenomenon occurs, we believe it is an instance of the
implicit bias that exists in Soft MoE. Concretely, the experts found by Algorithm 1 for input X are
those which are assigned the highest weight by C(X). Our result thus shows that as n increases, the
Soft MoE trains in a manner such that the C(X) matrix is more informative for which experts are
useful in correctly predicting the label of X , even though such a property is not explicitly enforced
during training! Since the role of C(X) is ultimately just to adaptively combine expert outputs, this
implicit bias is very benign. A different view of the same results in Figure 2a is provided in Figure 1.

The second observation is that Algorithm 1’s test performance dominates that of random selection.
And often, Algorithm 1 is far better than random selection, as is particularly evident in CIFAR10 and
ImageNet-1k, where random selection is very poor (see Figure 2). There are instances where random
selection has decent accuracy, such as in CIFAR100 (see Figure 3). So to further validate our result,
we use the following statistic to measure how much better Algorithm 1 is relative to random selection.
We first compute the standard deviation of the random selection test accuracies (which were obtained
by averaging over 10 random seeds). Our statistic is then the number of standard deviations by which
Algorithm 1 exceeds the mean random selection accuracy. When this statistic is large, it means that
Algorithm 1 found an expert subset whose performance is statistically significantly larger than that
of the typical random expert subset. The results are shown in Table 2 where we observe very large
values for this statistic. This shows that our Algorithm 1 significantly outperforms random selection
for CIFAR100, even though random selection has decent performance on this dataset. Analogous
tables for the other datasets are provided in Appendix E.3.

4.5 Faster Inference via Algorithm 1

In practice, one typically trains a very large model (with many Soft MoE layers, each with many
experts) a single time, then the model is deployed and repeatedly utilized for inference. It is thus of
great interest to speed up computation through Soft MoE modules, since this leads to faster inference.
Algorithm 1 is well suited for this purpose. The preceding sections show that when the number of
experts n is large, then Algorithm 1 can rapidly and cheaply find a small subset of experts that can
predict any datapoint with minimal expected accuracy loss. So it can potentially be used for faster
inference through the Soft MoE.

A full examination of the usefulness of Algorithm 1 for faster inference is beyond the scope of
our paper. A proper analysis would require massive industry-scale models, and would also be very
application specific because it would depend on the type and number of devices used for inference,
as well as the extent of distributed computing and per-device parallelization. We lack the compute
capacity to do such a thorough study. Nevertheless, it is immediate that in the regime of many
large experts, where a forward pass through an expert has non-trivial cost, Algorithm 1 should save
computation since its overhead is relatively negligible. As a simple example to show the potential of
Algorithm 1 for faster inference, we consider the same ViT architecture from Section 4.4 with 8 total
experts, but with each expert being much larger, such that the whole model has 2.32B parameters, of
which 2.27B parameters are in the experts. We measure the total wall clock time elapsed during a
forward pass through the 6 Soft MoE layers, where each layer will only utilize k experts as prescribed
by Algorithm 1. The results are presented in Table 3, and show that smaller values of k yield
significant speedups. See Appendix E.4 for further details on this experiment.

8



5 Discussion

Limitations. Our work has a number of limitations. While our Theorem 1 is a negative result for
a single expert’s representation power, we are unable to prove a corresponding positive result for
multiple experts (although in Appendix C we provide empirical evidence for increased representation
power as the number of experts increases). A different limitation is that we are unable to provide a
thorough analysis of the extent to which Algorithm 1 can reduce computation at inference (due to a
lack of compute capacity). We believe both limitations provide exciting directions for future work.

Conclusion. In this paper, we studied the Soft Mixture of Experts architecture. We eschewed the
traditional viewpoint of scaling expert parameter count in a manner that allows efficient training and
inference. Instead, we adopted an orthogonal perspective, and studied implicit biases that arise from
Soft MoE’s particular manner of combining token and expert outputs. We showed that even with an
arbitrarily powerful single expert, Soft MoE cannot represent simple convex functions, thus showing
that good representation power is predicated on having multiple experts. We also introduced a notion
of expert specialization for Soft MoE, and provided an algorithm that efficiently discovers specialized
experts when the number of experts is large. Overall, our analysis (both theoretical and empirical)
highlights non-traditional reasons for why using many smaller experts is preferable to using fewer
larger experts, even when the total expert parameter count remains fixed.
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A Related Work

Mixture of Experts. Our work falls squarely in the literature on MoEs, which originated several
decades ago [23, 24] and has been revived as the Sparse MoE [6]. Nevertheless, there is a significant
difference between our investigation and the majority of past work. The majority of past work in MoE
focuses primarily on computational considerations, such as (in the context of Sparse MoE) routing a
token to only a single expert for efficiency [3], and ensuring load balancing by incorporating linear
programs [8] or having the experts select tokens [9] or re-routing dropped tokens [25]. Indeed, the
Soft MoE [10] was recently introduced to address the various training instabilities suffered by Sparse
MoE, and performs very well in applications like vision [10], RL [11] and audio processing [26]. By
contrast, our investigation begins with a more fundamental question – what are the implicit biases
that occur as a result of Soft MoE’s particular manner of combining tokens and expert outputs?
While analogous fundamental investigations of the gating function do exist in the context of Sparse
MoEs [7, 27] and some of its variants [28, 29], to the best of our knowledge this line of investigation
is novel in Soft MoE.

Expert Specialization. The use of MoE layers in a network is often motivated by the desire for expert
specialization, since this implies a more efficient use of the network parameters. To our knowledge,
all prior work on expert specialization has been conducted in the context of Sparse MoE. While some
studies demonstrate that expert specialization may occur for Sparse MoE [7, 27], others show that
specialization is often limited and requires architectural innovations [12, 13, 30]. These innovations
are different than Soft MoE, where it is not even a priori clear what expert specialization means.
Indeed, the seminal work acknowledges this limitation [10]. In our paper, we offer a notion of expert
specialization in Soft MoE, and show not only that it occurs but can be efficiently detected.

Sparse Activation & Pruning. Our work is also related to the literature on sparsely activating or
pruning a network, since our Algorithm 1 can be viewed as a form of pruning at inference. For
instance, there is work on using RL to conditionally activate only certain units in a generic network for
faster training and inference [31], pruning CNN kernels for efficient inference [32], and developing
adaptive computation modules for transformers [33]. While a complete survey of this vast area is
beyond the current scope [34], we emphasize that our form of pruning is entirely specific to Soft
MoE, since it relies on the C(X) matrix. It can be used with or without many other types of pruning.

B Proof of Theorem 1

Here, we formally prove Theorem 1. Assume for the sake of contradiction that there exist Φ ∈ Rd×1,
f : Rd → Rd and g : Rm×d → R such that∣∣t(X)− g

(
sMoEΦ

f (X)
)∣∣ ≤ max {1, t(X)/20} for all X ∈ Rm×d, (2)

where f is Lf -Lipschitz and g is Lg-Lipschitz. Via the Lg-Lipschitz property and via Definition 1,
we know for any A,B ∈ Rm×d that∣∣g (sMoEΦ

f (B)
)
− g

(
sMoEΦ

f (A)
)∣∣ ≤ Lg

∣∣sMoEΦ
f (B)− sMoEΦ

f (A)
∣∣

= Lg

∥∥∥C(B)Ỹ (B)− C(A)Ỹ (A)
∥∥∥
2

= Lg

∥∥∥∥∥∥∥∥

1
1
...
1

(
Ỹ (B)− Ỹ (A)

)∥∥∥∥∥∥∥∥
2

= Lg

√
m

∥∥∥Ỹ (B)− Ỹ (A)
∥∥∥
2
.

Now again using Definition 1 and applying the Lf -Lipschitz property, we obtain from the above
inequality that∣∣g (sMoEΦ

f (B)
)
− g

(
sMoEΦ

f (A)
)∣∣ ≤ Lg

√
m

∥∥∥Ỹ (B)− Ỹ (A)
∥∥∥
2

= Lg

√
m

∥∥f (
D(B)TB

)
− f

(
D(A)TA

)∥∥
2

≤ LgLf

√
m

∥∥D(B)TB −D(A)TA
∥∥
2
.

(3)
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We now breakup the remainder of the proof into disjoint and exhaustive cases based on the sign of
the first entry of Φ, and in each case we show a contradiction.

We begin with the case where Φ1 > 0. Define A ∈ Rm×d to be the matrix which is all zeros, except
A11 = a and A21 = −a for a value of a > 0 that is yet to be specified. Then AΦ ∈ Rm×1 is a vector
of all zeros except that its first entry is aΦ1 > 0 and its second entry is −aΦ1 < 0. By the definition
of the matrix D in Section 2.1, this implies for large a > 0 that

D(A)i =

{
1− Ω (m exp(−a)) if i = 1

O (exp(−a)) if i > 1
.

Now define B ∈ Rm×d to be the matrix which is all zeros, except B11 = a for the aforementioned
value of a > 0 that is yet to be specified. Then BΦ ∈ Rm×1 is a vector of all zeros except that its
first entry is aΦ1 > 0. By the definition of the matrix D in Section 2.1, this implies for large a > 0
that

D(B)i =

{
1− Ω (m exp(−a)) if i = 1

O (exp(−a)) if i > 1
.

Let A1, B1 denote the first column of A,B. Leveraging continuity of the absolute value, we thus
obtain that

lim
a→∞

∥∥D(B)TB −D(A)TA
∥∥
2
= lim

a→∞

∣∣D(B)TB1 −D(A)TA1

∣∣
=

∣∣∣ lim
a→∞

(
D(B)TB1 −D(A)TA1

)∣∣∣
= 0.

(4)

Note via definition of t that t(A)− t(B) = (
√
2− 1)a. Now recalling Eq. (2) and Eq. (3), we know

for large a > 0 that

(
√
2− 1)a = t(A)− t(B)

≤
∣∣g (sMoEΦ

f (B)
)
− g

(
sMoEΦ

f (A)
)∣∣+max {1, t(B)/20}+max {1, t(A)/20}

≤ LgLf

√
m

∥∥D(B)TB −D(A)TA
∥∥
2
+ a/5.

This implies that

a/10 ≤ LgLf

√
m

∥∥D(B)TB −D(A)TA
∥∥
2
.

Taking the limit as a → ∞ on either side of the above equation, and using Eq. (4), yields a
contradiction.

We now consider the case where Φ1 < 0. The proof for this case is completely symmetric to the
proof for the case of Φ1 > 0, and so it is omitted.

We now consider the final case of Φ1 = 0. Define B ∈ Rm×d to be the matrix of all zeros, except
B11 = a for a value of a > 0 that is yet to be specified. Define A ∈ Rm×d to be the matrix of all
zeros, except A11 = A21 = a/2 for the aforementioned value of a > 0. Then since AΦ = BΦ = 0,
we have

D(A) = D(B) =


1/m
1/m

...
1/m

 .

Let A1, B1 denote the first column of A,B. The above equality implies that∥∥D(B)TB −D(A)TA
∥∥
2
=

∣∣D(B)TB1 −D(A)TA1

∣∣ = a

m
−

( a

2m
+

a

2m

)
= 0.
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Note via definition of t that t(B) − t(A) = (1 − 1/
√
2)a. Now recalling Eq. (2) and Eq. (3), we

know for large a > 0 that

(1− 1/
√
2)a = t(B)− t(A)

≤ g
(
sMoEΦ

f (B)
)
− g

(
sMoEΦ

f (A)
)
+max {1, t(B)/20}+max {1, t(A)/20}

≤ LgLf

√
m

∥∥D(B)TB −D(A)TA
∥∥
2
+ a/10

= a/10.

Thus we have arrived at a contradiction in each of the three cases. This completes the proof. ■

C Can Soft MoE with Multiple Experts Represent ∥ · ∥2?

Our Theorem 1 shows that Soft MoE with a single expert cannot represent the function t defined as
t(X) = ∥X∥2, even when the expert is arbitrarily powerful. However, it leaves open the possibility
that Soft MoE with multiple experts could represent this function t. In this section, we provide a
simple experiment to empirically check this. We consider the same problem of learning the function
t, and we train a suite of Soft MoE models, each with a different number of experts, n, where
n ∈ {1, 2, 5, 10}. As always (and as subsequently discussed), we fix the total expert parameter count.

We consider the input X ∈ R10, where X ∼ N (0, 5I). For an input vector X , the label y was set to
∥X∥2. Each batch of data is newly generated from this data distribution. We do two experiments with
two different tokenization strategies. Concretely, the input was tokenized into either X ∈ R5×2 or
X ∈ R2×5, i.e. 5 tokens each with dimension 2, or 2 tokens each with dimension 5, by partitioning
the 10 elements of an input vector in order of their dimension index.

In the spirit of Theorem 1, the Soft MoE models considered consisted only of a Soft MoE layer, and
a non-trainable summation prediction head. Therefore, given an input matrix X ∈ Rm×d (i.e., m
tokens each with dimension d), it is passed directly to the Soft MoE layer. Each expert was a two
layer MLP that had input and output of dimension d and a single hidden layer with dimension 10d/n.
Thus, the number of expert parameters in each model was always constant at 20d2, regardless of the
number of experts n in the model. The output from the Soft MoE layer was then summed to produce
the final scalar prediction from the model. Each model was trained with a batch size of 10, 000, with
the Adam optimizer using default hyperparameters and learning rate of 1e-3 over 500 epochs.

Figure 4 shows the loss curves from the 2 settings of token dimensions considered. We note that
because each training batch is newly generated from the data distribution, the loss curves represent
both the train and test loss. The blue curve with n = 1 shows that having 1 large expert is unable to
lower the loss and learn the L2 norm function, and thus provides empirical support for Theorem 1.

Figure 4: Loss curves in training Soft MoE models to learn the L2 norm function

Notably, however, using more than one expert significantly reduces the loss, even though the number
of expert parameters in each model was held constant. Indeed, we see in Figure 4 that increasing the
number of experts seems to monotonically improve performance, even though the expert parameter
count is fixed. This result therefore challenges the conventional wisdom that Soft MoE’s empirical

14



success with n > 1 smaller experts (each with b/n parameters) is simply because they mimic the
representation power of a single large expert (with b parameters). Instead, it suggests that the Soft
MoE has implicit biases, that assist in its improved performance.

D Additional Algorithm Details

We provide an example implementation of a batched version of Algorithm 1 where we assume we
are given an input batch of size b. In describing each step, we will use PyTorch[35] APIs, but we
note that analogous functionalities to efficiently handle batch computation are readily available in
other packages, such as NumPy[36], TensorFlow[37], or JAX[38].

Algorithm 2 Best Expert Subset Selection for Batch of Inputs

Require: number of experts k to use for prediction, Soft MoE sMoEΦ
{fj}n

j=1
, input X ∈ Rb×m×d

1: Compute batched C(X) ∈ Rb×m×n.
C_X = torch.softmax(torch.matmul(X, Phi), dim=2)

2: Compute batched Csum ∈ Rb×n.
C_sum = torch.sum(C_X, dim=1)

3: Compute batched Sk ∈ [n]b×k.
S_k = torch.argsort(C_sum, dim=1)[:, :k]

4: Define a placeholder for batched Ŷ (X) ∈ Rb×n×d.
hat_Y_X = torch.zeros(b, n, d)

5: For each expert j ∈ [n], process the subbatch of X that had selected expert j according to Csum.
for j in range(n):

subbatch_idxs = (S_k == j).any(dim=1)
subbatch = D_X[subbatch_idxs].transpose(1, 2) @ X[subbatch_idxs]
expert_output = f_i(subbatch)
hat_Y_X[subbatch_idxs] = expert_output

6: return Ŷ (X).

E Details of Empirical Experiments

E.1 Details of Experiments in Section 4.2

For this experiment on MNIST, the models used consisted of a single Soft MoE layer followed by
a linear prediction head. Tables 4 and 5 provide a summary of the model and training procedure.
To elaborate further, each model is trained with the Adam optimizer [39] using default optimizer
parameters for 15 epochs. We trained with the standard train set of 60, 000 datapoints and used the
test set of 10, 000 datapoints for evaluation. Each setting of n (number of experts) reached ≈ 97.5%
test accuracy after 15 epochs. During a forward pass of the model, each input image is tokenized
into 4 patches, each of dimension 1× 14× 14. Thus the input is X ∈ R4×196, i.e. 4 tokens, each of
dimension 196. For a network with n experts, a single expert is an MLP with one hidden layer and
ReLU activation, where the input and output are each 196 dimensional, and the number of hidden
units is 196× 4/n. While we trained a suite of 9 models with n ∈ {21, 22, 23, 24, 25, 26, 27, 28, 29},
the experiment in Section 4.2 uses 3 of these models with n ∈ {22, 23, 24}.

Note that the results in Table 1 show that for n = 8 and n = 16 the best n/4 expert subset actually
predicts slightly better than just using the original network, i.e. utilizing all the experts. This
is not too surprising, given that MNIST is relatively simple and our Soft MoE network is very
overparameterized, and so exhaustively searching over many subnetworks can easily yield improved
performance.

In Figure 5, we display the number of unique subsets of the experts that were used to produce the
best k-subset accuracies in Table 1. Since there are 10, 000 datapoints in the test set and

(
n
k

)
total

number of unique subsets, each bar is capped at min{10, 000,
(
n
k

)
}.

As there are few combinations of expert subsets of size k = n/4 with low n, all subset combinations
are required to produce the best accruacies when n is low, but they still do not achieve perfect
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Model Feature Used Value

Raw Input Size 1× 28× 28
Input Resizing None

Soft MoE Input Size 1× 28× 28
Patch Size 1× 14× 14

Total Model Parameters 318K
Total Expert Parameters 307K

Number of Soft MoE Layers 1
Parameters per Expert 307K /n

Models Trained n ∈ {21, 22, 23, 24, 25, 26, 27, 28, 29}
Table 4: Model details for MNIST experiments in Sections 4.2 and 4.4.

Hyperparameter Used Value

Batch Size 256
Epochs 15

Optimizer Adam
LR 1e-3

LR Scheduling None: Constant LR
Epochs 15

Table 5: Key hyperparameter settings for MNIST experiments in Sections 4.2 and 4.4.

accuracies, as indicated in the first row of Table 1. The number of unique subsets grows with n,
which indicates an increase in the diversity of experts used per datapoint, and thus more degree of
specialization of the experts to each input X (following our notion of specialization from Section 4.1).

E.2 Details of Experiments in Section 4.4

The MNIST experiment in this section re-used the models that were trained from Section 4.2. In this
set of experiments, we used all 9 models, each with a different number of experts.

For the CIFAR10 experiment, we trained a suite of Soft MoE models with different numbers of
experts n by taking the Astroformer-1 model as backbone and replacing the MLPs of the transformer
blocks with a Soft MoE layer. The Astroformer model assumes the “C-C-C-T” architecture, where “C”
stands for convolution and “T” stands for transformer. The transformer stage consists of 2 transformer
blocks, each of which has a feedforward network. We replace this feedforward network with a Soft
MoE layer. An input image of size 3 × 96 × 96 (channel × height × width) is processed by the
“C” stages into a tensor of size 768× 3× 3 when it reaches the first “T” stage. Following standard
practice in tokenizing images via patches, we treat each height-width location as a token, and thus
create 9 total tokens (or patches), each with dimension 768. Each expert is a 2-layer MLP with inputs
and outputs that are both 768 dimensional, and the number of hidden units is 768 ∗ 64/n. A summary
of the model features are provided in Table 6.

One additional modification we had to make to this architecture was that there are no residual
connections from directly before Soft MoE to directly after Soft MoE. All of the other residuals
connections between other blocks were retained. We made this design choice because we found that
our Soft MoE variant of Astroformer trains in a manner that essentially ignores expert outputs and
only relies on the residual connections (i.e., the expert outputs are negligible compared to the residual
portion). Such a scenario biases the results, since the remainder of the network makes predictions
without relying on the Soft MoE layer at all, and we thus cannot assess Algorithm 1. While this may
be an artifact of hyperparameter settings that are not optimized for our Soft MoE variant models, we
did not have the compute surplus to perform an exhaustive search over hyperparameters and utilized
those that were provided with the model implementation and code.

To train our Soft MoE variant of the Astroformer-1 models, we followed the exact same training
procedure as that provided in the Astroformer paper [21] and their public codebase1, with the

1https://github.com/Rishit-dagli/Astroformer
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Figure 5: Each bar presents the number of unique subsets of experts of size k = n/4 that were used to produce
the highest accuracy, for each setting of the total number of experts n.

Model Feature Used Value

Raw Input Size 3× 32× 32
Resized Input Size 3× 96× 96

Soft MoE Input Size 768× 3× 3
Patch Size 768× 1× 1

Base Model Architecture Astroformer-1
Total Model Parameters 180M
Total Expert Parameters 150M

Number of Soft MoE Layers 2
Parameters per Expert 150M/2n

Models Trained CIFAR10: n ∈ {21, 22, 23, 24, 25, 26, 27}
CIFAR100: n ∈ {21, 23, 24, 26, 27}

Table 6: Model details for CIFAR10 and CIFAR100 experiments in Section 4.4.

Hyperparameter Used Value

Batch Size 800
Gradient Accumulation Steps 1

Epochs 500
Optimizer AdamW

LR Scheduler Cosine
Base LR 3e-4

LR Cycle Decay 1e-2
LR K Decay 1
Warmup LR 1e-5

Epochs 500
Warmup Epochs 5

Mixup 0.8
Label Smoothing 0.1

Dropout Rate 0.1
Table 7: Key hyperparameters used for CIFAR10 and CIFAR100 experiments in Section 4.4.

exception of the input resizing and base learning rate. While there are many hyperparameter settings
that were set by default when we used their codebase and commands, we provide a summary of a few
key settings in Table 7. We trained with the standard train set of 50, 000 datapoints and used the test
set of 10, 000 datapoints for evaluation. Training was halted as soon as the model crossed 95% test
accuracy, which was typically well before the total number of epochs.
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For the CIFAR100 experiment, we used the exact same model and training code as that of CIFAR100.
In our trials of training the base Astroformer-1 model (i.e. without any MoE layers or modifications),
the model converges to ≈ 80% test accuracy over 500 epochs of training, and our Soft MoE variants
of Astroformer-1 also converged to ≈ 80% test accuracy using the same training procedure and code.

For the ImageNet-1k experiment, we used the same model architecture as that used by the seminal
paper that proposed Soft MoE [10]. Specifically, we used the Soft MoE adaptation of the ViT Base
model, with the only difference being that the expert MLPs are of different sizes, depending on
the number of experts, n. We defer exact details of the architecture by referring the reader to the
Soft MoE paper [10] and previous works on ViTs [22], but we re-iterate a few key features of the
architecture here in text and in Table 8. Our model is based on the ViT Base model with patch
size 16× 16. This model consists of 12 encoder blocks in total, where each encoder block consists
of an attention layer followed by an MLP. The MLP of the last 6 out of 12 encoder blocks have
been replaced with a Soft MoE layer, where each expert is a 2-layer MLP. The input and output of
each expert MLP is 768-dimensional, and there is one hidden layer of dimension 768 ∗ 64/n. In
implementing these models, we relied on a publicly available PyTorch implementation of Soft MoE
variant of ViT2.

Model Feature Used Value

Raw Input Size 3× 224× 224
Input Resizing None

Patch Size 3× 16× 16
Soft MoE Input Size 197× 768

Base Model Architecture ViT Base
Total Model Parameters 513M
Total Expert Parameters 454M

Number of Soft MoE Layers 6
Parameters per Expert 454M/6n

Models Trained n ∈ {21, 23, 24, 26, 27}
Table 8: Model details for ImageNet-1k experiments in Section 4.4.

Hyperparameter Used Value

Batch Size 512
Gradient Accumulation Steps 1

Epochs 800
Optimizer FusedLAMB

LR Scheduler Cosine
Base LR 3e-3

Warmup LR 1e-6
Epochs 500

Warmup Epochs 5
Random Erase Prob 0.0

Mixup 0.8
Cutmix 1.0

Label Smoothing 0.0
Dropout Rate 0.0
Weight Decay 0.05

Table 9: Key hyperparameters settings for ImageNet-1k experiments in Section 4.4.

Since there are no publicly available pretrained weights for the Soft MoE variant of ViT models, we
had to train each model from scratch. We relied on the DeiT (Data-efficient Image Transformers) [40,
41] training procedure and code, since our compute constraints made pretraining on a large corpus
of data infeasible. Specifically, we used the “‘DeiT-III”’ training procedure, which is publicly

2https://github.com/bwconrad/soft-moe
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available 3. We used the same command that was used to train the “deit_base_patch16_LS” model on
ImageNet-1k with just one change: we trained without resizing the inputs from 224 to 192. A few
key hyperparameter settings used are listed in Table 9.

We trained with the standard train set of 1.3M datapoints and used the validation set of 50, 000
datapoints for evaluation. The DeiT-III code and provided command can train the original ViT Base
model (i.e. without any MoE layers or modifications) to ≈ 81% validation accuracy over 800 training
epochs. Our Soft MoE ViT models are able to reach ≈ 79% validation accuracy within 800 epochs.
We note that this code and the hyperparameters set are highly optimized for training original ViT
models, thus it is not surprising that our models are not able to reach or exceed the validation accuracy
of the original ViT model.

We had access to 8 NVIDIA A6000 GPUs to train all of our models.

E.3 Additional Results for Section 4.4.2

This section provides additional results for the experiments discussed in Section 4.4.2. Specifically,
we provide the number of standard deviations by which the accuracy of Algorithm 1 exceeds the mean
accuracy of random expert subset selection. While Section 4.4.2 provides the results for CIFAR100,
we repeat the result here for completeness, and provide the full set of results for MNIST (Table 10),
CIFAR10 (Table 11), CIFAR100 (Table 12), and ImageNet-1k (Table 13).

n

21 22 23 24 25 26 27 28 29

k = n/2 25.79 33.61 22.95 25.39 23.33 26.47 22.98 10.19 18.70
k = n/4 - 0.00 16.33 45.83 38.89 49.00 37.15 31.33 29.44
k = n/8 - - 11.81 28.24 46.78 38.78 50.46 42.34 66.90

Table 10: MNIST - number of standard deviations that the performance of Algorithm 1 is above the mean
performance of Random expert set selection. For the Random selection, we used 10 random seeds to obtain its
mean and standard deviation.

n

21 22 23 24 25 26 27

k = 5 - - 1.73 0.95 3.88 7.25 25.90
k = 4 - - 1.99 2.51 4.74 15.12 46.92
k = 3 - 0.53 3.47 7.81 12.28 21.53 88.96
k = 2 - 4.05 12.26 15.17 24.26 42.77 176.57
k = 1 3.22 20.40 33.14 35.48 70.75 83.71 234.04

Table 11: CIFAR10 - number of standard deviations that the performance of Algorithm 1 is above the mean
performance of Random expert set selection. For the Random selection, we used 10 random seeds to obtain its
mean and standard deviation.

n

21 23 24 26 27

k = n/2 6.23 6.73 1.89 3.47 2.49
k = n/4 - 7.31 6.34 4.56 4.50
k = n/8 - 21.22 28.20 13.96 5.74

Table 12: CIFAR100 - number of standard deviations that the performance of Algorithm 1 is above the mean
performance of Random expert set selection. For the Random selection, we used 10 random seeds to obtain its
mean and standard deviation.

3https://github.com/facebookresearch/deit/blob/main/README_revenge.md
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n

21 23 24 26 27

k = n/2 2.23 6.72 1.63 24.54 35.50
k = n/4 - 20.71 14.06 38.89 32.11
k = n/8 - 31.88 20.21 35.04 60.38

Table 13: ImageNet-1k - number of standard deviations that the performance of Algorithm 1 is above the mean
performance of Random expert set selection. For the Random selection, we used 10 random seeds to obtain its
mean and standard deviation.

E.4 Details of Experiments in Section 4.5

For this experiment, we consider the same Soft MoE variant of the ViT Base architecture as those
used in Section 4.4, but with larger experts to make the total parameter count larger. Specifically,
each of the Soft MoE layers has 8 experts, each of which are 2 layer MLP with input and output
dimensions of 768 and a hidden layer with 768 ∗ 40 units. The whole model has 2.32B parameters,
of which 2.27B parameters are in the experts.

The data used for the forward pass was generated from a standard normal distribution. The experiment
was done on a single NVIDIA GeForce RTX 2080 Ti GPU. Latency was measured by first performing
100 warmup forward passes, then synchronizing CUDA, then measuring the elapsed wall clock time
during the next 100 forward passes plus the end of another synchronization of CUDA. The reported
figures in Table 3 are based on these latter 100 forward passes. While this experiment is simple and
relatively small-scale, a proper analysis would require industry-scale models, and would be dependent
on the hardware and the extent of distributed computing and per-device parallelization, as discussed
in Section 4.5. We lack the compute capacity to perform such a thorough study.
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