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Abstract

While transformers have been at the core of most recent advancements in sequence
generative models, their computational cost remains quadratic in sequence length.
Several subquatratic architectures have been proposed to address this computational
issue. Some of them, including long convolution sequence models (LCSMs), such
as Hyena, address this issue at training time but remain quadratic during inference.
We propose a method for speeding up LCSMs’ inference to quasilinear time, iden-
tify the key properties that make this possible, and propose a general framework
that exploits these. Our approach, inspired by previous work on relaxed polynomial
interpolation, is based on a tiling which helps decrease memory movement and
share computation. It has the added benefit of allowing for almost complete paral-
lelization across layers of the position-mixing part of the architecture. Empirically,
we provide a proof of concept implementation for Hyena-like settings, which gets
up to 4× improvement over standard inference.

1 Introduction

A lot of recent progress in deep learning, particularly in the form of large language models (LLMs)
has been driven by the transformer architecture [Vaswani et al., 2017]. While these models have great
quality, it comes at a computation cost which scales quadratically in sequence length - both during
training and inference. This can become prohibitive for very long contexts and as such a number
of alternative architectures with better computational scaling in context length have been proposed
[Gu and Dao, 2023, Poli et al., 2023, Fu et al., 2024]. While most of these works have improved
computational efficiency for training, some still scale quadratically in sequence length when it comes
to inference, thus not improving asymptotically over transformers.

In this work, we propose a framework for optimizing inference efficiency for a general class of such
models. As a case study, which inspired the method, we focus on long convolution sequence models
(LCSMs) [Poli et al., 2023, Fu et al., 2022, Romero et al., 2021, Li et al., 2022, Karami and Ghodsi,
2024, Fu et al., 2023a]. However, our approach is not limited to LCSMs alone and we identify the
properties that allow for such inference speedups in hope to guide the design of future architectures.

In the particular case of LCSMs (including Hyena), the building block of the architecture is that
of convolving the input sequence with a sequence-length long, (potentially underparameterized)
filter. If we let L be the sequence length (e.g. number of tokens in the case of LLMs), then a naive
implementation of convolution during training would take Ω(L2) FLOPs, but one can employ FFT
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to bring that down to O(L logL). The issue that occurs during inference is that FFT cannot be
used directly since the whole input sequence is not known ahead of time, but rather incrementally
computed. Because of this, the naive inference approach goes up to Ω(L2) - this is the apparent cost
of moving from a static input to a dynamic one.

It turns out that in fact, at least in the case of “dynamic FFT", one can obtain O(L log2 L) time
complexity by using van der Hoeven [1997]’s result on relaxed polynomial convolution. Crucially,
this result works by a direct reduction to several applications of FFT. This allows us to phrase a more
general framework for turning training-efficient architectures to inference-efficient ones.

Our main contributions are:

• Proposing the first quasilinear-in-sequence-length O(L log2 L), exact inference algorithm
for LCSMs.

• Identifying the main features of LCSMs that allow for faster inference to propose a more
general framework.

• Highlighting and exploiting the potential for dealing with most workload of different layers
in parallel, rather than having to wait for all computation of a layer to finish before moving
on to subsequent layers.

• Saving up on data movement thanks to the tiling approach used. We show how to save
factors of 2 in several places, including activation storage, when the convolutional filters are
data-independent. However, our method extends to any causal, data-dependent filters.

• Our framework provides an O(L log2 L) inference algorithm which, when run empirically,
yields up to 8× time-efficiency improvement.

2 Setting and Related Work

Much recent effort has been put in designing more efficient alternatives to transformers [Tay et al.,
2022]. A couple of well-performing classes are state space models (SSMs) [Gu et al., 2021, Gu and
Dao, 2023] and convolution-based models[Fu et al., 2022, Poli et al., 2023]. In this work we focus on
the latter class. To avoid a popular misconception, it is worth emphasizing that while any linear-time
invariant (LTI) SSM has an equivalent convolutional filter, it is not true that any convolutional filter
has an equivalent low-dimensional LTI SSM representation. It could be the case that the smallest LTI
SSM equivalent to a length-L convolution filter has a dimension of L. However, such a dimension
would deem an LTI SSM approach have quadratic time complexity both during training as well as
during inference.

2.1 Notations and Definitions

In the most general form, we consider architectures obtained by stacking several position-mixing
layers potentially interleaved with element-wise, feature-mixing modules, partially following Arora
et al. [2023]’s notation. Put formally, let block1, . . .blockM : RD → RD be feature-mixing modules
and mixer1 . . .mixerM : RL×D → RL×D be position-mixing modules. One can think of the blocks
as being combinations of MLPs, layernorms, skip connections and other modules of similar purpose
and of mixers as playing the role of multi-head attention (MHA) in a transformer - the part where
embeddings at different positions interact with each other. Assume these are all learnt from some
well-defined parameterized classes. Here, D is the used embedding dimension and L can be any
sequence length (unless positional embeddings are used, case in which it can only take values up
to some Lmax). We define the activations a0, . . . , aM : RL×D → RL×D at level 1 ≤ ℓ ≤ M and
position 1 ≤ i ≤ L as (aℓ(x))i ≜ blockℓ(mixerℓ(aℓ−1(x))i) where a0(x) = x represents the input
embeddings (L D-dimensional tokens) and the model output at position i is read from the last layer
(aM (x))i.

We focus on autoregressive sequence models where for an input sequence x1, . . . xp, one generates
the (p + 1)th token by sampling from a distribution given by (aM (x))p (usually via a linear map).
In order for this generation procedure to be sensible, we constrain (by construction of mixers) the
models to be causal, that is, (aℓ(x))i is a function of only x[1,i] or, equivalently, mixerℓ(y)i is a
function of y[1..i].
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2.2 Self-attention

Self-attention is the building block of transformers [Vaswani et al., 2017]. In its simplest form, it
implements a mixer by using three projection matrices Q,K, V ∈ RD×D to obtain three sequences
of vectors q, k, v ∈ RL×D by projecting the input y ∈ RL×D via q = yQ, k = yK, v = yV - these
are called queries, keys and values, respectively. The (causal) self-attention operator attention :
RL×D → RL×D is then given by:

attention(y)j ≜ mixer(y)j =

∑j
i=1 vj · e⟨qj ,ki⟩∑j

i=1 e
⟨qj ,ki⟩

= (v[1,j])
⊤softmax(k[1,j]qj) (1)

which represents, at position j, the average of the previous value vectors v[1,j] exponentially-weighted
by how well the values’ corresponding keys match jth query. Put differently, the bigger ⟨qi, kj⟩ is,
the more jth output attends to ith input. Note that both in the above notation, as well as in general, we
assume any 1-dimensional tensor to be a column vector (for example qj ∈ RD×1). In the transformer
architecture this is how one “head" operates and each embedding is normally split into several such
heads - this is called multihead attention (MHA). If we take the causality away (that is, the i ≤ j)
for simplicity, one could think of attention as being mixer(y) = softmax(qk⊤)v where softmax is
computed along the rows of what is called the attention matrix: qk⊤.

2.3 Long Convolution Sequence Models (LCSMs)

LCSMs [Poli et al., 2023, Li et al., 2022, Gaido et al., 2024] work by creating a SISO (single-input-
single-output) primitive to map an input sequence y ∈ RL to z ∈ RL via zt 7→

∑t
i=0 yi · kt−i where

k is the (possibly infinite, and of length at least L) convolution filter which is often parameterized
by a smaller latent space Θ: k = f(θ) where θ ∈ Θ,dimΘ ≪ L is learnt. These convolution
primitives operate on independent axes of the hidden dimensions to create a positional mixer:
mixer(y)t,c =

∑t
i=0 yi,c · kt−i,c. This assumes the filters to be independent, but shared ones are

possible as well (as is the case for multi-head Hyena [Massaroli et al., 2024]).

For example, the Hyena architecture [Poli et al., 2023] maps back to our definitions if we assume the
block functions, depending on the layer, are either MLPs or gates - that is, element-wise multiplica-
tions with a projection of activations at same position, but lower level. We do not focus on the details
of the blocks since they all involve some D ×D matrix-vector multiplication that is performed once
for every layer and position 1 ≤ i ≤ L and thus scale as Θ(LD2).

2.3.1 The Inference Problem

Whereas during training, the convolutions can be performed in O(L logL) time via FFT as the whole
of y is known beforehand, during inference this is non-trivial. Suppose there is a prompt of size P and
we want to generate L− P more tokens. The bottleneck problem can be understood as computing,
for every layer and every dimension, the below:

zt ≜
t∑

i=1

yi · ρt−i (2)

for all 1 ≤ t ≤ L . To pre-fill the first P values z[1..p] at all levels of activations, since the first P
inputs are known, one can perform FFT as they would normally do during train-time (incurring an
O(P logP ) time cost), but past P th position it is important to note that yi is not available before
computing zi−1 - this is where static FFT breaks. Since dealing with the prompt can be done easily
[Massaroli et al., 2024, Lemma 2.1] by essentially filling in all contributions of y[1..P ] to z[1..L] and
then forgetting the prompt ever existed, we henceforth assume P = 0.

2.3.2 Previous Work on Efficient Inference

Speeding up Equation 2 from the naive Ω(L2) is the object of study of Massaroli et al. [2024]:
they optimize the process by finding a low-dimensional LTI SSM whose equivalent convolution
filter closely resembles k, thus getting an RNN-like problem to simulate. If the learnt SSM has
size D′, then this yields an Θ(LDD′) algorithm for generating L tokens. This has the significant
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added benefit of not needing to store the activations (or even inputs) thus far which makes it memory
efficient and practically time-efficient.

The downside, however, is that by definition this will only be an approximation of the learnt filter.
More importantly, this approximation is a projection to a fundamentally smaller space of models, thus
defeating the purpose of using LCSMs instead of LTI SSMs - it is only a different training procedure
for an LTI SSM model. Furthermore, this approach assumes the filter k is data-independent - this is
needed in order to undergo an expensive distillation procedure as a precomputation step. This can be
qualitatively limiting as shown in Arora et al. [2023]. While we do store all activations, our proposed
framework exactly simulates the architecture and data-dependent filters can also be accommodated.

3 The Flash Inference Framework

We propose a framework called Flash Inference to address the inference efficiency limitations of
Hyena and other architectures sharing a few basic properties. The framework’s main building tool is
that of “tiling" - accounting for the influence of a range of inputs to a range of outputs all at once.

3.1 Assumptions

In order for our framework to apply, even partially, we need to assume a certain shape of the mixers
involved:

A.1 Contribution-based The used mixers work by aggregating contributions of each input posi-
tion to each subsequent output position. That is, for any mixerℓ, there exist an associative
aggregation function agg : X ∗ → X , a read function read : X → RD and a contribution
function cont : RD × N× N→ X such that:

mixer(y)i = read(agg(cont(y, 1, i), cont(y, 2, i), . . . cont(y, i, i))) (3)
where, X is a set of intermediate states and read is a function to map those back
to embeddings. For a sensible architecture, the size of X and cost of agg should
be of order D and by agg being associative, we mean that agg(x1, x2, . . . xτ ) =
agg(agg(x1, . . . xi), agg(xi+1, . . . xτ )) for any 1 ≤ i < τ .
In the case of self-attention this translates to having read ◦ agg simulate the softmax, by
letting X = RD × R, agg =

∑
and

cont(y, i, j) = (V yi · ey
⊤
j QK⊤yi , ey

⊤
j QK⊤yi) = (vi · e⟨ki,qj⟩, e⟨ki,qj⟩)

that is, the exponentially weighted value vector along with the exponential weight. Finally
one can use read(v, w) = v/w to implemnent the softmax normalization step.
In the case of LCSMs, one can simply choose X = RD, read be the identity function, agg
be the sum again and cont(y, i, j)c = yi,c · kj−i,c.

A.2 Query-independent The contribution function cont(y, i, j) does not depend on y[i+1,L].
Note that this is the case in LCSMs since yi,c · kj−i,c only depends on yi.

3.2 Setting and Definitions

Suppose A.1 holds and there exists an algorithm A that for any given input sequence y and indices
l ≤ r < l′ ≤ r′, computes the contributions of y[l,r] to outputs at every position p ∈ [l′, r′]:

A(y, l, r, l′, r′)l′≤p≤r′ = agg(cont(y, l, p), cont(y, l + 1, p), . . . cont(y, r, p)).

Furthermore, for this choice of A, let T : N× N→ N such that for any l ≤ r < l′ ≤ r′, evaluating
A(y, l, r, l′, r′) takes at most T (r − l + 1, r′ − l′ + 1) FLOPs.

If we dropped the r < l′ condition and set l = l′ = 1 and r = r′ = L, this algorithm would
actually represent the procedure one needs to perform a forward pass during training - which we
refer to as the static setting. In the case of LCSM’s, FFT can then be used to get a runtime of
O(DL logL). The naive implementation of the specification of A would yield a time complexity T
given by T (L1, L2) = DL1 · L2, but it turns out that one can employ FFT as well:
Lemma 1. If we are in an LCSM mixer setting, that is if cont(y, i, j)c = yi,c ·kj−i,c, then there exists
an FFT-based implementation of A with T given by T (L1, L2) = O(D · (L1 + L2) log(L1 + L2)).
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Figure 1: Cell (i, j) corresponds to the contribution of ui to zj . To compute zj , all its line of
contributions should’ve been accounted for. (Left Top) represents the standard (lazy) approach, (Left
Bottom) represents the eager approach, and (Right) represents our suggested method.

3.3 Main Result

Our main result can be phrased as follows:
Theorem 2. Under the assumptions A.1 and A.2, one can generate L = 2P tokens autoregressively
by performing, per layer, L− 1 black-box calls to A as well as L more calls to cont, agg, read and
block. Concretely, there are L/2 = 2P−1 calls to A of length 1 each, L/4 = 2P−2 calls of length 2
each and so on up to 1 call of length L/2. Hence, neglecting the cont, agg, read and block part, the
overall time complexity per mixer layer is:

FLOPs =
P−1∑
q=0

2P−1−qT (2q, 2q)

Furthermore, during every token-generation iteration, the calls to A across different layers can be
performed in parallel as there is no data-dependency between them.

Here, we are being ignorant of the L calls to cont, agg, read and block because they only scale
linearly with L - however the MLPs scale quadratically in D and therefore these can be the limiting
factor when D is large in comparison to L.
Corollary 1. In the case of LCSMs, by substituting T (L,L) with O(D · L logL) as per Lemma 1,
we get a per mixer-layer time complexity of O(D · P 22P ) = O(D · L log2 L).

3.4 The Proposed Algorithm

We derive inspiration from the the work of van der Hoeven [1997] regarding relaxed polynomial
interpolation - they propose a fix to dealing with dynamic structure of 2 to achieve an overall
O(L log2 L) times. While their work is specific to convolutions (and thus can only translate to
LCSMs), their approach can be generalized to act as a static-to-dynamic translator. This comes at the
price of blowing up FLOPs by just logL over the static procedure.
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Algorithm 1 Flash Inference for LCSMs

Require: filter k ∈ RM×L×D, block[1,M ], first token a1,0 and sampler

1: Output: All activations a0, . . . , aM ∈ RL×D obtained by autoregressively sampling
2: Initialize a with zeros outside a1,0
3: for i← 1 to L− 1 do
4: U ← maximum power of 2 that divides i # the side of the gray ith tile
5: for ℓ← 1 to M do
6: # account for the contribution of aℓ−1,i to aℓ,i - red cell
7: aℓ,i = blockℓ(aℓ,i + aℓ−1,i ∗ kℓ,0)
8: # account for the contribution of aℓ−1,[i−U+1,i] to aℓ,[i,i+U ] - gray tile
9: aℓ,[i+1,i+U ] += A(aℓ−1, i− U + 1, i, i+ 1, i+ U)

10: end for
11: # generate next token based on the output of last layer at position i
12: a0,i+1 = sampler(aM,i)
13: end for

In describing the method, we will constrain ourselves to the LCSM setting, but all of the reasoning
can be applied more broadly. The high-level idea is to tile the contributions into chunks that can be
dealt with by calls to A. However, as mentioned in Section 2.3.1, we need to be careful about the
inputs being fully available at the time of calling A and this is the main problem to solve.

The crux of the algorithm is exploiting A.2: particularly, one can start accounting for cont(y, i, j)
as soon as yi becomes available - this is in contrast to transformers where cont(y, i, j) depends on
qj which depends on yj . Hence, one can do work ahead of time, at the very extreme accounting
for cont(y, i, j) for all j ≥ i as soon as yi is computed. This eager approach, however, still scales
quadratically in L - the issue is that we are essentially incurring a cost of T (1, L − i + 1). The
standard (lazy) implementation, which at time j iterates through all i ≤ j and accounts for their
contribution essentially incurs a T (j, 1) cost. As noted in Lemma 1, by balancing the two inputs of T ,
one can use FFT to lower T (L1, L2) significantly below L1 ·L2 and this yields biggest improvements
when L1 and L2 are balanced. This motivates the fractal tiling from Figure 1. This tiling is different
from the one proposed by van der Hoeven [1997] and saves a factor 2 by exploiting the fact that k
is data-independent. However, as explored in Appendix B, one can use van der Hoeven [1997]’s
approach to work with data-dependent filters.

The algorithm is illustrated in Algorithm 1. The outer loop (3) iterates through positions i: at each
iteration, one computes all the activations at position i, does some (limited) eager work and samples
next token. To do so, the inner loop (5 iterates through the several mixer-layers. It first accounts for
the red cells in the diagram, that is, the direct dependency on previous layer’s activations at position
i (line 7). After computing the activation at position i, it also accounts for the contribution of the
gray tile that has just been unlocked (line 9) at the current layer - this is only useful to save compute
in the long term, while not being immediately necessary to sample the next token. The accounting
works for considering (in-place) the influence of last U positions to next U ones. For example, during
iteration i = 6, following the Figure 1, the gray cell has 5 ≤ i ≤ 6 and 7 ≤ j ≤ 8, corresponding to
U = 2 defined as largest power of 2 that divides i = 6. Importantly, one can only account for a tile
(red or gray) once all its i’s are known at the previous layer.

3.5 Across-layer Parallelization

One important feature of the proposed method is that it allows for higher parallelization across layers.
In particular, the gray lines can be taken out of the inner loop and performed in parallel across all
layers at once, just after the loop - this is because all their inputs and outputs are disjoint. However,
the red lines make need to be performed sequentially since aℓ,i is a function of aℓ−1,i for every ℓ.

3.6 Memory Considerations

As noted in Theorem 2, the overall size of the inputs to A in the proposed algorithm is only
O(L log(L)) - that is, we access on average activation values at log(L) positions as opposed to the
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naive implementations (such as lazy and eager approaches) that access Ω(L) positions on average.
This directly translates to data movement improvements by a factor of up to L/ logL.

Furthermore the static memory overhead is minimal: at least in the LCSM case, one directly
aggregates contributions to the same activation tensor, thus not using any extra storage. Hence,
the only extra cost we pay is in the peak memory usage which is given by the largest tile - this is
O(MLD), but can be dropped to O(LD) at essentially no cost by dropping parallelization for large
tiles, as further discussed in Appendix E.

Lastly, if one is restricted to only using one GPU and the whole tensor of M × L×D cannot fit it,
it is possible to drop the requirement to only storing M × (L/2)×D activations by paying some
computational cost. This is further discussed in Appendix D.

4 Experiments

Throughout our experiments, we assumed the block’s to be MLPs with a hidden dimension of 2D and
GELU activation. Thus the computation scales as O(MLD2) in the block part. The eager and lazy
approaches scale as O(ML2D) in the mixer part whereas our method scales as O(MDL log2 L).
These are FLOP counts, but practically hardware implications along with parallelization can greatly
impact the end-to-end time.

In all our experiments, the weights of our model are initialized to noise and instead of sampling we
just take the next (i + 1)th token embedding to be aM,i plus some noise to avoid dependency on
vocabulary size since that is out of the scope of our framework and will be negligible at scale.

In terms of notation, we introduce the batch dimension B and while M,D,L correspond to the
number of layers, embedding dimension and number of tokens generated, respectively. We use U
to refer to the square-tile length, as per line 4. We sweep over B ∈ {1, 2, 4, 8},M ∈ {18, 36},
D ∈ {256, 768} and generate up to L ∈ {216, 217} tokens. All results are obtained by averaging
over 10 runs following 3 runs of warm-up. We evaluate our approach on the latest Nvidia A-100
tensor core GPU with 312 peak TFLOPS for FP16, 2TB/s HBM2e memory with 80GB capacity.

(a) (b) (c)

Figure 2: (ab)All our A implementations demonstrate significant speed-ups of 1.5-4× over Lazy, Eager for all
combinations of B, M, and D, both for MLP and non-MLP gating blocks. (c) When measuring only the time
spent processing doing mixer-related computations, our methods outperform the naive ones by a factor of 10 -
our methods become dominated by the block part.

For our baselines, (1) we consider the eager and lazy approaches described in 3.4, depicted in 1.
We also consider their implementation exploiting our observation regarding parallelization across
layers (3.5) (we denote the baselines as non-parallel and the parallel versions simply as lazy and
eager).

Our Fast Inference framework explored various implementations of A, explained in Section 4.1. Our
best method is a Hybrid that dynamically chooses the optimal implementation of A depending on
(B,D,M,U). Figures 2a, 2b show the cumulative time per token time for all our methods against
the baselines, where Hybrid out performs the base lines consistently by 1.5-4 × in the end-to-end
latency, for various combinations of (B,D,M,U) and two different types of gating. We show two
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(a) (b)

Figure 3: (a) Different implementations of A are optimal for different tile sizes creating a pareto optimal curve
for Hybrid to choose, (b) Hybrid shows low variance in per-token response time compared to Lazy and Eager
except at the tokens where large tiles are computed.

representative settings of (B,M,D) but we obtained consistent results throughout all our sweep
(available in Supplementary Material).

4.1 A Implementations and Optimizations

Algorithm 1 assumes an implementation of primitive A that accounts for the contribution of a range
of inputs to a range of outputs of a convolution. We considered 7 different implementations but, here,
we only present results of the ones on the Pareto Frontier - that is, those optimal for at least some
(B,N,D,U) setting. There are 4 such implementations, of two types:

(1) Depthwise-separable 1D Convolution: We use two types of implementations (a) Conv1D refers
to the default PyTorch [Paszke et al., 2019] kernel, that requires explicit padding (2) Flash Conv1D
refers to fused kernel by FlashFFTConv [Fu et al., 2023b] - these are asymptotically quadratic in tile
size U .

(2) FFT based convolution We again use two implementations (a) PyTorch native, shown as FFT, that
requires computing the FFTs of inputs, followed by pointwise multiplication and lastly performing
the inverse FFT operation. (b) the second is provided by FlashFFTConv that does all the above in a
single fused kernel shown as FlashFFT- both these scale quasilinearly in U .

Optimizations:

(1) Since Conv1D is implemented using the cross-correlation operator it requires the convolution
kernel to sliced to the convolution length and flipped on the sequence dimension. We precompute this
for all log(L) tile sizes and cache them.

(2) For PyTorch based FFT we precompute the FFT for the convolution kernel for all log(L) tile
sizes.

(3) The calls to A are always performed parallelly across the M layers - hence, we measure the time
cost as a function of B,D,M,U since these are the variables defining the performance of dealing
with the M gray tiles for an iteration.

4.2 Hybridization

We evaluate the different convolution implmentations for all settings of B,D,M,U and observe that
each of these four implementation lies on the pareto frontier curve of tile size vs latency as shown in
Figure 3a. Our Hybrid approach dynamically chooses the best A implementation for a given tile size
U based on the isolated empirically-measured efficiency of each implementation. Consequently, it is
the best-performing method as seen in Figure 2.
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4.3 Summary

This significant speed-up can be attributed to:

(1) The significantly lower O(L log2 L) FLOPs required for our tile computation approach
compared to the Ω(L2) FLOPs required by Eager and Lazy counterparts. This is shown in
Figure 2c where methods based on our tiling outperform by a large constant the quadratic
methods in terms of time spent on the mixer components.

(2) Drastically reduced activation memory access from Ω(L2) for Eager and Lazy to O(L logL)
Hybrid. This can be shown through the performance of Flash Conv1D which outperforms
lazy and eager by a margin although it also performs Ω(L2) FLOPs - it does so in a more
memory-friendly and kernel-optimizable way.

(3) Parallel tile computation across M layers by all our A implementations. One can notice
improvements of 10− 20% in the Eager and Lazy implementations alone.

(4) The dynamic choice of best A for given tile U - hybrid outperforming any method using a
fixed implementation.

(5) Implementation specific optimizations described in Section 4.1.

5 Conclusion and Further Work

We propose a framework for performing inference in certain autoregressive sequence models. Among
such models, LCSMs such as Hyena, are noteworthy: there, our framework provides an O(L log2 L)
inference algorithm which, when run empirically, yields up to ×4 time-efficiency improvement. The
framework exploits a causal, fractal tiling that helps save on data movement and share computation.
Moreover, it allows for almost-complete across-layers parallelization of mixer-related workload.

An interesting future direction to pursue is that of designing architectures that fit our framework
requirements and thus get fast-inference by construction. Furthermore, in the class of LCSMs, we
have noted that one can achieve the same theoretical complexity if filters are made data-dependent,
and, while previous works Arora et al. [2023], Karami and Ghodsi [2024] have shown the potential
for these, they are not yet causal so looking into how to make filters data-dependent in a causal way
is another promising direction.
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A Proofs

Lemma. If we are in an LCSM mixer setting, that is if cont(y, i, j)c = yi,c · kj−i,c, then there exists
an FFT-based implementation of A with T given by T (L1, L2) = O(D · (L1 + L2) log(L1 + L2)).

Proof. For each dimension independently, consider performing a convolution between y[l,r] and
k[l′−r,r′−l]. It holds that for each j ∈ [l′, r′] and i ∈ [l, r], j− i is in the range of k. On the other hand,
truncating the output of the convolution appropriately, one can keep only the corresponding outputs for
each j ∈ [l′, r′]. The overall size of the FFT is then given by the sum of the lengths, which is at most
r−l+1+(r′−l)−(l′−r)+1 = 2(r−l+1)+(r′−l′+1)−1 = O((r−l+1)+(r′−l′+1)). Since
an FFT of order L runs in O(L logL) and we do this independently for each dimension 1 ≤ c ≤ D,
the conclusion follows.

Theorem. Under the assumptions A.1 and A.2, one can generate L = 2P tokens autoregressively
by performing, per layer, L− 1 black-box calls to A as well as L more calls to cont, agg, read and
block. Concretely, there are L/2 = 2P−1 calls to A of length 1 each, L/4 = 2P−2 calls of length 2

10



each and so on up to 1 call of length L/2. Hence, neglecting the cont, agg, read and block part, the
overall time complexity per mixer layer is:

FLOPs =
P−1∑
q=0

2P−1−qT (2q, 2q)

Furthermore, during every token-generation iteration, the calls to A across different layers can be
performed in parallel as there is no data-dependency between them.

Here, we are being ignorant of the L calls to cont, agg, read and block because they only scale
linearly with L - however it is worth mentioning that when d is large the MLPs scale quadratically in
d and therefore these can be the limiting factor for L’s up to a point.

Proof. Figure 1 shows why the tiling used in Algorithm 1 covers every pair of contributions exactly
once and in the correct order (remember, we only assumed agg to be associative, not necessarily
commutative). The more general algorithm is illustrated in Algorithm 2 and follows the same
shape as its LCSM counterpart. The only difference is that X is not assumed to be RD neces-
sarily, so one cannot store the intermediate accumulated states in the same place they store the
activations (though they could reuse some of the space since only aℓ,i and xℓ,i never need to co-
exist). We use xℓ,i to store the inner part of Equation 3, namely xℓ,i incrementally computes
agg(cont(aℓ−1, 1, i), cont(aℓ−1, 2, i), . . . cont(aℓ−1, i, i)). Finally, we explicitly moved the gray
tile calls to happen after the inner loop and in parallel - this simply shows the last point of the theorem,
namely that the calls to A can be done parallelly across layers.

Algorithm 2 Generic Flash Inference

Require: Functions A, cont, agg, read,block[1,M ], first token a1,0 and sampler

1: Output: All activations a0, . . . , aM ∈ RL×D obtained by autoregressively sampling
2: Initialize x1, . . . xM : XL×D with elements neutral to agg
3: for i← 1 to L− 1 do
4: U ← maximum power of 2 that divides i # the side of the ith gray tile
5: for ℓ← 1 to M do
6: # account for the contribution of aℓ−1,i to xℓ,i - red cell
7: xℓ,i = agg(xℓ,i, cont(aℓ−1, i, i))
8: aℓ,i = blockℓ(read(xℓ,i))
9: end for

10: # account for the contribution of aℓ−1,[i−U+1,i] to xℓ,[i+1,i+U ] - gray tile
11: parallelly across ℓ← 1 to M do:
12: xℓ,[i+1,i+U ] = agg(xℓ,[i+1,i+U ],A(aℓ−1, i− U + 1, i, i+ 1, i+ U))
13: # generate next token based on the output of last layer at position i
14: a0,i+1 = sampler(aM,i)
15: end for

Only part remaining to be proved is the right counting of calls to A per layer: calls of length 2r

happen whenever 2r divides i but 2r+1 does not - that is, for i ∈ {2r, 3 ·2r, 5 ·r2, . . . (2P−r−1) ·2r},
so 2P−r−1 calls.

Corollary. In the case of LCSMs, by substituting T (L,L) with O(D · L logL) as per Lemma 1, we
get a per mixer-layer time complexity of O(D · P 22P ) = O(D · L log2 L).

Proof. By applying Theorem 2, we get:

FLOPs =
P−1∑
q=0

2P−1−qT (2q, 2q) = O

(
P−1∑
q=0

2P−1−qD · 2qq

)
= O

(
P−1∑
q=0

D · 2P−1 · q

)
=

O(D · P 22P ) = O(D · L log2 L)
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B Extension to Data-Dependent Filters

The reason why data-dependent filters are harder to deal with is that cont(y, i, j) = yi · kj−i depends
on both yi and on what kj−i depends on. By only assuming causality, we can only access kj−i after
yj−i has been computed. This stops Algorithm 1 from working out-of-the-box since when i is a
power of 2, in order to account for the contribution of aℓ−1,[1,i] to aℓ,[i+1,2i] one will need access to
kℓ,[1,2i−1] which is not guaranteed to be accessible (only kℓ,[1,i] can be assumed to be known).

The modified algorithm is shown in Algorithm 3 and precisely follows the tiling of van der Hoeven
[1997] and, thus, its correctness transfers. Note that rather than using theA algorithm, it directly uses
the untruncated convolution (implementable via FFT) - in the contribution space this corresponds to
a parallelogram tile rather than rectangle - and this cannot be simulated via a rectangle, although the
other way around is possible. This implementation performs convolutions between 2 sequences of
length U each and uses the whole output and thus requires an order 2U FFT. Note that this happens
twice for a given i when i+ 1 is not a power of 2 (almost always). Algorithm 1, on the other hand,
only performs a convolution between a length-U sequence and a length-2U sequence. However, as
noted in Appendix C, we can get away without padding and thus performing only one order 2U
FFT. Thus, our proposed tiling improves FLOPs by a factor of 2, but it requires the kernel to be
data-independent.

Algorithm 3 Flash Inference for LCSMs with data-dependent filters

Require: first token a·,0, k·,0, block[1,M ] and sampler

1: Output: All activations a0, . . . , aM ∈ RL×D obtained by autoregressively sampling
2: Initialize a with zeros outside a·,0
3: for i← 1 to L− 1 do
4: U ← maximum power of 2 that divides (i+ 1)
5: for ℓ← 1 to M do
6: Compute kℓ,i as a causal function of data aℓ−1,[1,i] as per model specification
7: # account for the newly available contributions
8: aℓ,i = blockℓ(aℓ,i + aℓ−1,i ∗ kℓ,0 + aℓ−1,0 ∗ kℓ,i)
9: # account for some eager contributions

10: if i+ 1 = U then
11: # downgrade the power of 2 by half if i+ 1 is already a power of 2
12: U ← U/2
13: aℓ,[2U,4U−2] += CONV (aℓ−1,[U,2U−1], kℓ,[U,2U−1])
14: else
15: aℓ,[i+1,i+2U−1] += CONV (aℓ−1,[U,2U−1], kℓ,[i−U+1,i])
16: aℓ,[i+1,i+2U−1] += CONV (kℓ,[U,2U−1], aℓ−1,[i−U+1,i])
17: end if
18: end for
19: # generate next token based on the output of last layer at position i
20: a0,i+1 = sampler(aM,i)
21: end for

C Implementation Improvements

In Algorithm1, the calls toA all have a shape ofA(y, i−U +1, i, i+1, i+U) where U is a power of
2 that divides i. Following the proof of Lemma 1, we note that to implement A, we need to perform
the convolution of a segment of length U of y and a prefix of length 2U of k. However, following the
convolution, of the 3U − 1 outputs, indexed [0, 3U − 2], we are only interested in the middle U of
them, namely indices [U, 2U − 1]. The canonical way of performing convolutions via FFT involves
padding by enough 0s and using an order large enough to store the whole output which rounded
up to the closest power of 2 would mean an order 4U FFT. However, using a 2U FFT call, which
will perform a cyclical convolution, is enough for our purposes, since the values of interest are not
affected by the cyclicity - that is, when folding outputs at [2U, 3U − 2] onto [0, U − 2], we do not
intersect [U, 2U − 1]. Furthermore, there are only logL different lengths of prefixes of k involved
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in these convolution so one could, in fact, cache the DFTs for these as a precomputation step, thus
dropping the number of DFT’s per convolution from 3 to 2, speeding up by a further ×1.5 factor.

D Storing Only Half of the Activations

If the whole activation tensor (M × L×D) cannot fit the memory of one GPU, we can save a factor
of 2 in the L-axis. To do this, observe that after (L/2)th iteration completes we never need to look
back to any activation at position i ≤ L/2. Hence, one can hope to reuse the space used for the first
half to store the second half of activations. While doing this directly by having A work as an in-place
operator may not be possible, one way to achieve this is by not applyingA parallelly across all layers,
but rather applying it sequentially for this largest tile - similarly in nature to gradient accumulation -
always placing the output back into the input slot. This way, the peak extra memory required for the
call to A does not scale with M (though it exceeds L×D).

As we get the output of A(a0, 1, L/2, L/2 + 1, L), which has a shape of (L/2)×D, we overwrite
a0 by it and then move on to the next layer. We can do this because the contribution of a0,i to a1,i
has already been properly accounted for so the first half of a0 truly becomes irrelevant for next layers
and iterations to come. Hence, a0 contains the intended second half of a1. We then proceed to do the
same thing for a1 and so on. At the end, a[0...M−1] will contain the second halves of a[1...M ], so we
can shift these by 1, emptying a0 and now finally having a represent the second halves of activations
- the first halves have been discarded.

Although per layer, one will have a peak memory containing both aℓ, the output, and whatever
other necessary temporary values needed to perform A, this does not scale with M - because we
essentially reuse the extra space needed by A across different layers. We seemingly pay the cost
of not performing the calls to A in parallel across layers, but if storing the M × L ×D tensor of
activations was an issue, then one would very likely have to make this sort of compromise to be able
to run A in the first place.

E Discussion on memory

In Section 3.6, we discussed the peak memory usage being given by the gray calls to A. Since each
call to A performs D FFTs of length L each (when dealing with the biggest tile of side L/2), the
naive implementation would use up to MD · L extra memory to perform these FFT calls. However,
this assumes the biggest gray tile is being processed in parallel across all layers and across all
dimensions at once. We do not need to maximize parallelization on all sizes of tiles: for the largest
ones, we can process the tiles at different layers sequentially by reusing the space, thus dropping
to an overhead of O(LD), or even just O(L) if one is to treat sequentially the different dimensions.
Dropping parallelization could theoretically yield a slowdown, but that is only when we are not
memory bandwidth-bound which is the case if one has to worry about allocating more than O(LD) -
in that case, the FFT calls are anyway not happening in parallel. Hence, one can easily drop the peak
memory overhead to O(LD) or even O(L) without incurring an actual time cost.

13


	Introduction
	Setting and Related Work
	Notations and Definitions
	Self-attention
	Long Convolution Sequence Models (LCSMs)
	The Inference Problem
	Previous Work on Efficient Inference


	The Flash Inference Framework
	Assumptions
	Setting and Definitions
	Main Result
	The Proposed Algorithm
	Across-layer Parallelization
	Memory Considerations

	Experiments
	A Implementations and Optimizations
	Hybridization
	Summary

	Conclusion and Further Work
	Acknowledgments
	Proofs
	Extension to Data-Dependent Filters
	Implementation Improvements
	Storing Only Half of the Activations
	Discussion on memory

