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Abstract

Speculative decoding aims to speed up autoregressive generation of a language
model by verifying in parallel the tokens generated by a smaller draft model. In
this work, we explore the effectiveness of learning-free, negligible-cost draft strate-
gies, namely N -grams obtained from the model weights and the context. While
the predicted next token of the base model is rarely the top prediction of these
simple strategies, we observe that it is often within their top-k predictions for small
k. Based on this, we show that combinations of simple strategies can achieve
significant inference speedups over different tasks. The overall performance is
comparable to more complex methods, yet does not require expensive preprocess-
ing or modification of the base model, and allows for seamless ‘plug-and-play’
integration into pipelines.

1 Introduction

Large Language Models (LLMs) have had a significant impact across various scientific and industrial
domains. However, their autoregressive decoding process, which generates one new token per model
call, is computationally expensive. This issue is particularly challenging for larger models, which
typically exhibit superior performance compared to smaller ones [Brown et al., 2020, Anil et al.,
2023, Achiam et al., 2023].

To improve computational efficiency and inference latency, many works have proposed methods for
reducing the cost of a single model call. Some examples include quantization methods Yao et al.
[2023], early-exiting strategies Xin et al. [2020], flash-attention [Dao et al., 2022, Dao, 2023], and
multi-token prediction [Gloeckle et al., 2024].

Another line of work has considered variants of autoregressive decoding aimed at better leveraging
the parallel processing capabilities of GPU/TPU hardware accelerators. In particular, speculative
decoding methods [Stern et al., 2018, Leviathan et al., 2023, Chen et al., 2023a, Xia et al., 2023],
sometimes also called guess-and-verify methods, use a smaller “draft model” to generate proposals
for multiple future tokens. They then “validate” all of these tokens in parallel with a single call to
the original model and ensuring that the original model would have predicted the same tokens. This
approach is similar to speculative execution [Hennessy and Patterson, 2011], in which a processor
executes instructions in parallel to verifying if they are needed, trading resources for concurrency, as
in just-in-time XLA compilation in JAX, Pytorch, and Tensorflow.

The effectiveness of speculative decoding is determined by i) the acceptance rate of the draft specula-
tions, ii) the discrepancy in call-time between the original model and the draft model, and iii) the
extra cost required for parallel verification by the main model (although this is often assumed to be
negligible when using hardware accelerators).
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Choosing a draft model that is compatible with the base model and within the available compute
budget can be challenging. To address this issue, several approaches have been developed that involve
augmenting the base model and performing supervised fine-tuning (SFT), with the goal of ensuring
that the draft model and the base model utilize the same feature representations [Cai et al., 2024,
Li et al., 2024, Bhendawade et al., 2024]. Although these strategies often achieve high acceptance
rates, they come with the drawback of necessitating SFT for each individual model, which can be
resource-intensive.

To overcome this, researchers have also considered negligible cost draft models, remarking that if the
cost of the draft model is close to zero then even a low acceptance rate can yield wall-time speedups.
This was first proposed explicitly in Leviathan et al. [2023], where the authors experimented with
unigram and bigram draft models, both trained on external data, as well as implicitly by Santilli et al.
[2023], who used a cost-free draft model, corresponding to the base model’s greedy predictions at a
previous time step.

In this paper, we aim to explore the full potential of negligible-cost draft methods for accelerating
autoregressive decoding. In particular, we argue that even simple strategies — based on N-grams
derived from the model and the context — can be very effective when combined in a batch to
explore the space of possible future trajectories in parallel. Our proposed methods have the following
desirable features: (P1) they do not require training a draft model or finetuning the base model, (P2)
they make use of no external data or external draft model, and most importantly (P3) they can easily
be integrated with any existing pipeline as an out-of-the-box approach, and moreover they can be
combined with other acceleration techniques like the ones mentioned above.

We emphasize, the goal of this paper is not to achieve state-of-the-art inference speed-ups but rather
explore the strengths and weaknesses of simple methods that satisfy the desirable properties (P1), (P2),
(P3). Our experiments across different datasets (MTBench Zheng et al. [2023], HumanEval Chen
et al. [2021], GSM8K Cobbe et al. [2021]) and models (Mistral7B Jiang et al. [2023], Phi-3 Abdin
et al. [2024], Vicuna13B Zheng et al. [2023]) show that such out-of-the-box strategies are surprisingly
effective.

Main contributions.

1. We first revisit the critical assumption made by guess-and-verify methods, namely memory-
bound hardware parallelism, highlighting situations where this assumption may fail.

2. We present a class of learning-free strategies for generating batches of speculative drafts
with negligible computational cost. These strategies are model-independent and can be
implemented with minimal wrapper-code, enabling easy integration into existing systems.

3. We conduct an in-depth analysis and evaluation of our methods, demonstrating that combin-
ing simple strategies can lead to substantial speedups across a diverse set of tasks.

2 Further related work

External draft model. The concept of guess-and-verify using an external draft model was explicitly
proposed in several concurrent works [Leviathan et al., 2023, Chen et al., 2023a, Xia et al., 2023],
with Leviathan et al. [2023] notably exploring negligible cost models and suggesting that fitting
N-grams to the context could potentially be a promising line of future work. Recently, follow-up
works have investigated using a collection of varied size draft models [Chen et al., 2023b], tree-based
guess-and-verify methods [Miao et al., 2023], retrieving speculations from external data sources [He
et al., 2023], and using a collection online-buffers for aligning the draft and base model via training
[Liu et al., 2023]. Contrary to these works, we aim to explore strategies that do not require an external
draft model.

Learning by adapting the base model. In order to align the predictions of the draft model with
those of the base model, several works have proposed grafting a draft model on top of the base model,
so that both share the same features. Cai et al. [2024] propose adding K heads to a model in order
to predict K tokens into the future, together with a tree-based attention mechanism. The authors
explore i) fine-tuning only the heads with the base-model frozen ii) fine-tuning the base LLM with
the heads. Building on this idea, Li et al. [2024] proposes training an auto-regressive decoder from
the penultimate layer, showing that this approach can obtain very high acceptance rates.
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Learning-free methods. Santilli et al. [2023] proposed initializing a random speculation, and
at subsequent decoding steps using the model predictions from the previous step as speculations,
in order to improve upon greedy decoding. This process resembles the Jacobi and Gauss-Seidel
iterative methods (and is hence called Jacobi Decoding), and is implementable just a few lines of
code. Look-ahead decoding Fu et al. [2024] further improves upon the acceptance rate of Jacobi
decoding, by using a custom-attention mask to generate an N-gram speculation cache as well as
verifying matching speculations in parallel.

Glossary

Symbol Usage

X the set of tokens that constitute the vocabulary of an LLM.
k number of batched speculations, taken from the top-k of probability over tokens.
w number of tokens speculated into the future.
q number of query tokens to match with context when looking for an N -gram.
ℓ length of context at a decoding step, assumed to be key-valued cached (KV-cached).

Limitations. For simplicity and ease of integration, our method incurs extra computation cost
through batching (which could be addressed in follow-up works by incorporating methods such
as bifurcated attention Athiwaratkun et al. [2024]). Further exploration is needed for non-greedy
sampling methods such as those discussed in [Leviathan et al., 2023], which are commonly deployed.
Finally, we have limited our experiments to decoder-only transformer models, and it remains to be
tested with other architectures such as state-spaced models [Gu and Dao, 2023].

3 Assumptions on parallelism for verification

We briefly revisit and clarify the key assumption in the guess-and-verify literature [Leviathan et al.,
2023, Chen et al., 2023a, Xia et al., 2023, Santilli et al., 2023] that parallel verification of speculated
tokens by the base model is memory-bound when using hardware accelerators like GPUs/TPUs.

Hardware accelerators like GPUs and TPUs divide matrix multiplications (matmuls) into tiles,
each assigned to independent computation threads. These operations can be parallelized if their
operations-to-bytes ratio (OTB) is below the hardware’s threshold, allowing all threads to be as-
signed to multiprocessors and executed concurrently. If the OTB ratio is above the threshold, the
operation becomes compute-bound (or math-bound), as the number of tiles exceeds the number of
multiprocessors, requiring the total number of tiles to be quantized to fit the available hardware
resources.

For a fixed model and hardware, let ℓ denote the length of the given context at any decoding step,
with all context tokens (except for the final token), assumed to have KV-cache stored in memory. Let
(k,w + 1) denote the dimensions of the input batch, where k ≥ 1 denotes the batch size and w ≥ 0
denotes the number of tokens speculated into the future. With this terminology, the guess-and-verify
assumption above can be rephrased as the following: ‘for a fixed model using KV-caching and a fixed
hardware accelerator, and for a given context length ℓ ≥ 1, the time required to perform a model
call on an input block of size (k,w + 1) is approximately the same as the time for a model call on an
input block of size (k, 1).

When does this assumption hold? For each element in a batch of size k, the attention mechanism
requires multiplying (w + 1) queries by (ℓ+ w) keys, resulting in O (kw(w + ℓ)) complexity. So
for a fixed model, accelerator and (ℓ, k, w) values, the assumption holds if and only if all matmuls in
the forward pass of the model have an OTB ratio less than the accelerator’s threshold. In practice,
this does not always hold. Figure 1 depicts the phase-transition from memory-bound to compute
bound, with varied (ℓ, k, w), for Mistral 7B on a NVIDIA A100 40GB GPU. One does not see a
smooth scaling of O (kw(w + ℓ)) in the phase transition, due to the quantization to multiprocessors,
resulting in jumps known as wave quantization.

In the special case of neglible cost draft models, for which the time to generate speculations is
assumed to be near zero, there will be a clear trade-off between the speed-up gained from accepting
extra tokens (by increasing k and w) vs the potential slow-down that could be faced when entering a
compute-bound setting, where the guess and verify assumption is broken.
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Figure 1: Memory-bound to compute-bound transition: The heatmaps depict the slowdown of
a model call, for varied batch size k ∈ {1, . . . , 32} and speculation length w ∈ {0, . . . , 15}. The
slow-downs are relative to that of standard greedy decoding with no speculation i.e. (k,w) = (1, 0).
The leftmost plot corresponds to a context-length of ℓ = 25, the middle to ℓ = 100 and the rightmost
plot to ℓ = 500. The model used was Mistral 7B at standard bfloat-16 precision, with a single
NVIDIA A100 GPU with 40GB of memory. Each square in the heat-maps corresponds to the average
slow-down over five model calls.

4 Learning-free drafting

The use of N-grams to model language dates back at least to Markov [1913], who published a paper
in which he used conditional probabilities of constants and vowels (computed by hand) to compare
the poem Eugene Onyegin by Pushkin to other texts, showing how unigram and bigram probabilities
could mathematically capture an author’s style. Many sequences of tokens in natural language /
computer code exhibit low entropy, making even simple N-grams effective at predicting them, as
demonstrated in Shannon [1951]. In this section, we explore ways to extract N-grams directly from a
large language model and a context, and use these for speculation. These methods are learning-free,
as they require no training (P1), nor external data (P2), in contrast to the N-gram models used in
Leviathan et al. [2023], which are obtained from external data sources. All the methods discussed in
this section can be implemented with minimal wrapper code (detailed in Appendix B), allowing for
them to be added to existing pipelines with minimal friction (P3).

4.1 Model-derived N-grams

Let M denote a language model with vocabulary X . Let V ∈ RX×d and U ∈ Rd×X denote the
model’s input and output embedding layers, with respective row / column word embeddings {vi}i∈|X|
and {ui}i∈|X|. For a given context c (i.e. a sequence of tokens from X ), we denote the next token
distribution according to M as pM (·|c), where

∑
x∈X pM (x|c) = 1.

Unigram. Consider the function d(x) = ∥ux − ū∥V , where ū ∈ Rd is the mean token output
embedding, and ∥·∥V is the distance induced by the covariance matrix of the input embeddings V , that
is, the inner product ⟨u1, u2⟩V = uT

1 V
TV u2 =

∑
x∈X (uT

1 vx)(u
T
2 vx). This product is more natural

than the standard one in Rd as two tokens will be close when they lead to similar distributions for the
following token for the model, as captured by the vectors (uT

i vx : x ∈ X ) ∈ R|X |. We can hence
define a unigram distribution over tokens using the input and output embeddings as p(x) ∝ e−d(x).

Bigram. We can easily obtain a bigram model from a language model M by calculating pM (· |x)
for all tokens x ∈ X . For typical models, this can be a calculated once for every x ∈ X and stored
for quick use later. For example, generating such a bigram model takes ≤ 1 minute for Mistral 7B on
a single A100 GPU, and is a one-off cost. While this simple bi-gram lacks context for tokens prior
to x, it can still be effective, particularly in cases where the preceding context is not essential for
making accurate predictions.

Batched drafts. When performing autoregressive decoding, the greedy next token prediction (NTP)
of the base model will seldom match with that predicted by the above unigram and bigram models
(derived from the base model). However, we remark that the base model NTP appears often amongst
the top-k predictions of the N-grams, even for small k. Consequentially, we propose obtaining
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Figure 2: Tokens per call as a function of k, the top-k speculations of the model derived unigram /
bigram. In addition, the plot depicts the extended bigram (described below) plotted for w = 2 and
w = 3, showing gains comparing w = 1 to w = 2, but diminishing gains going to w = 3. The results
were obtained on the first 50 examples of MT-bench and Human Eval, using a 7B model (Mistral
Instruct) [Jiang et al., 2023].

speculations from the top-k of a N-gram model, i.e., s : X q → X k×1, where q ≥ 0 denotes the
number of last context tokens to use to produce the speculation (i.e. q = 0 for the unigram and q = 1
for the bigram), and the speculation s returns the top-k next-word token predictions according to the
N-gram.

Speculative decoding using our model derived unigram / bigram can be easily implemented in the
following manner: i) repeat the context3 to form a batch of k identical rows; ii) append a column
corresponding to the top-k speculations to the end of the batch; iii) call the model on the batch to
verify all speculations (rows) in a single forward pass.

While adding redundant computation (regarding repeat flops for the context), this implementation is
extremely simple to integrate into existing code, and in addition, is fully-compatible with popular
inference methods, e.g. , flash-attention [Dao et al., 2022, Dao, 2023] and paged-attention / vLLM
[Kwon et al., 2023], which is generally not the case for methods that require custom attention masking
such as tree / lookahead attention masking [Fu et al., 2024, Cai et al., 2024].

Extensions. The model-derived bigram and unigram allow for speculating w = 1 token into
the future. In addition, by repeatedly applying either the model bigram (or, alternatively greedily,
decoding with the model from the bigram), we can easily extend the model-derived N-grams to
speculate w > 1 tokens into the future s̃ : X q → X k×w. Just like the model bigram, this extension
can be generated quickly one time and stored as a O(1) lookup table.

Top-k speculation. Figure 2 provides evidence motivating our approach, depicting how speculating
with the top-k tokens increases the number of tokens per call for a 7B model on the first 50 examples
of MT-Bench and Human Eval, for both the unigram and bigram models, obtained directly from the
Transformer. We remark that with w = 2, speculating with the top-25 of the model bigram gives a
≈ 50% increase in tokens per call.

4.2 Context-derived N-grams

Another natural idea to obtain N-grams for speculations is to look within the context provided to a
model; indeed this was suggested by Leviathan et al. [2023] as a potential avenue for future work. We
propose looking for all previous occurrences of the last q ≥ 1 tokens of the context, and speculating
with the w ≥ 1 tokens that follow a match. To define a discrete probability distribution, we can assign
each match a count i.e. how many times it occurred in the context, with ties being decided by which
match occurred later in the context (hence prioritizing more recent matches). For more details on the
context N-gram please refer to the attached code in Appendix B.2.

3If the context has a key-value cache, one can utilize a method to obtain a batched tensor view without
consuming additional memory, e.g., torch.extend.
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4.3 Mixed strategies

For a chosen batch size k > 1, one has the flexibility of using any combination of “strategies” i.e.
model / context derived N-grams, to populate the batch of speculations. This allows for the exploration
of diverse combinations of speculation methods. In this work we consider the a straightforward way
to mix strategies: first, we populate the k drafts by using as many speculations from the context
derived N-gram model as possible, depending on how many matches are obtained (possibly zero);
then we use a ‘extended model bigram’ to fill in the remaining speculations. This means that the
number of speculations allocated to each strategy (context/model bigram) is variable depending on
the context at each step of decoding, which we ablate in Section 5.2.

5 Experiments

Datasets and models. We assess our proposed mixed strategies described in Section 4.3 using
the same experimental setup and datasets as Cai et al. [2024], Li et al. [2024]: MTBench Zheng
et al. [2023] (a multi-turn question benchmark with many unique tokens), HumanEval Chen et al.
[2021] (a coding benchmark), GSM8K Cobbe et al. [2021]) (mathematical reasoning problems). We
experimented with three different instruction-tuned models of various sizes: Phi-3 Abdin et al. [2024],
Mistral7B Jiang et al. [2023] and Vicuna13B Zheng et al. [2023]. All models are freely available
from the Hugging-Face transformers library, with reference url links detailed in the Appendix C. All
experiments were run on a single Nvidia A100 GPU with 40GB of memory at bfloat-16 precision.
We report two metrics of interest:

1. tokens per call: measures how many tokens are produced in a single model call on average,
i.e., the acceptance rate. This would be the observed speed-up if one had both true parallelism
and zero cost speculation.

2. wall-time speed-up: this is the physical observed speed-up on the hardware. To obtain
accurate timings, we used the CUDA Runtime API and ran all experiments three times,
reporting the mean and standard deviation.

Mixed strategies. We consider mixed strategies (as detailed in Section 4.2), defined by values
k ∈ {1, 5, 10, 20, 25} and w ∈ {2, 4, . . . , 14}, with query length q = 14 when deriving speculations
from the context. The resulting (k,w) grid totals 35 different strategies to assess, whose performance
will be dictated by trade-offs between i) token per call acceptance and ii) potential compute-bound
slowdowns.

For comparative purposes, we include the results reported by lookahead decoding [Fu et al., 2024],
an effective learning-free guess-and-verify method, using custom-attention masks to grow an N-gram
cache in parallel to verifying speculations. Contrary to look-ahead decoding, our method does
not require custom attention masks, due to the naive batching (P3), and is hence fully compatible
with methods such as flash-attention [Dao et al., 2022, Dao, 2023], and is comparatively simpler to
integrate / implement.

We also include results reported by REST (Retrieval-Based Speculative Decoding) [He et al., 2023],
a recent approach which also utilizes negligible draft models. REST requires pre-processed databases
to retrieve tree-based speculations. In contrast, our method requires no external data, using only the
context and model derived N-grams. We note that it is important to exercise caution when forming
exact comparisons between methods and models, since additional factors such as hardware5, tokenizer
and instruction formatting will impact the observed speedups for all reported methods.

5.1 Results

For each dataset and model, we report the strategy that led to the largest wall-time speedup, which we
denote (k∗, w∗). As a reference, we also reported (k,w) = (10, 10), to compare how a square input

4We experimented with longer query length q = 2 and q = 3, but observed a degradation in both speed-up
and tokens per call across all data sets and models.

5Lookahead used a GPU with a higher operations-to-bytes (OTB) ratio than our experiments, whilst the
experiments of RAST were conducted on a GPU with a lower OTB ratio.
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MT Bench Human eval GSM8K

Model Size Strategy tok/call speedup tok/call speedup tok/call speedup

3b
Ours (10, 10) 2.17 2.01±0.02 2.28 2.11±0.01 2.38 2.30±0.02

Ours (k∗, w∗) 2.36 2.18±0.02 2.51 2.34±0.02 2.41 2.51±0.01

7b
Lookahead – 1.65 – 2.25 – 1.89
REST – 1.69 – 2.12 – –
Ours (10, 10) 2.13 1.91±0.01 2.22 2.04±0.01 2.16 2.03±0.03

Ours (k∗, w∗) 2.13 1.91±0.01 2.19 2.05±0.01 2.16 2.03±0.03

13b
Lookahead – 1.51 – 2.26 – 1.72
REST – 1.77 – 2.17 – –
Ours (10, 10) 2.78 2.31±0.01 2.89 2.50±0.01 2.56 2.21±0.01

Ours (k∗, w∗) 2.68 2.45±0.02 2.91 2.77±0.02 2.46 2.32±0.01

Table 1

block, representative of a default non-optimized choice in our sweep fared compared to (k∗, w∗).
Table 1 shows the mean and standard deviation across the three runs, for all models and datasets.

For Mistral7B, the average wall-time speedups for the complete grid of strategies is depicted in
Figure 3. The grids all show a clear tradeoff between tokens-per-call (by increasing either k and/or
w) and compute-bound slowdowns, with the pattern of Figure 3 shared across the three different tasks
suggesting a consistent relationship between (k,w) and speed-up. For reference, the corresponding
tokens per call are reported in Appendix A.1. The equivalent plots for both Phi3B and Vicuna13B
can be found in Appendix A. For Phi3B, we notably observed the model never reached an OTP ratio
that was large enough to incur slowdowns which would outweigh increases in tokens per call. For
this reason the optimal values were trivially those of maximum value, i.e. (k∗, w∗) = (25, 14) ; the
true optimal speed-up using our batched approach would hence occur at a larger (k,w).

Overall, our methods consistently achieve more than 2x speedup across models and tasks (except for
the 7B model on MT bench, which attained a 1.91 times speedup). While the optimal (k∗, w∗) varied
between models and datasets, it can be seen that the representative default (10, 10) achieved good
performance on all of the settings.

5.2 Ablation on strategies

In order to understand the role that both the model- and context-derived N-grams play in the observed
speed-ups, we ablate the Mistral7B experiment for (k,w) = (10, 10) across the three data sets. We
explore i) the number of speculated tokens accepted by both the model and context derived N-grams
ii) the rank of accepted speculations amongst the top-10 speculations iii) the amount of drafts i.e.
rows in the batch, that each of the strategies used. The results are depicted in Figure 4.

Our ablations shine light on the strengths and weaknesses of both the model bigram and context
derived draft strategies. The model-bigram is robust across all tasks, with an additional 1-2 future
tokens frequently found within its top-10 predictions, with the ranking distribution being notably
heavy-tailed (relative to that of the context-derived N-gram). The model’s bigram weakness lies in its
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Figure 3: Average wall-time speedup across datasets for Mistral7B instruct for varied (k,w).
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Figure 4: Ablations: Top: distribution of acceptance length for mixed strategies. Middle: distribution
of ranking of accepted speculations amongst the top-k. Bottom: allocation distribution of strategies
i.e. number of speculations for each strategy.

ineffectiveness for larger values of w, which is expected since it only considers the last token of the
context rather than encompassing all prior context, making it insufficient for longer speculations.

On the other hand, we see that the context derived N-gram compliments the bigram’s weakness as
it can successfully speculate further into the future, with speculations of length w = 10 accepted
on all tasks. However, its performance is notably less robust across tasks. For example, GSM8K
exhibits a wider distribution of accepted lengths due to the varied sizes of calculations in the math
word-problems, while HumanEval more frequently accepts w = 10 length speculations due to
the coding nature of the task. Furthermore, it exhibits more pronounced diminishing returns from
batching (compared to the bigram), which is a weakness given that it is often allocated the entire
batch for speculations (see the bottom row of Figure 4). This suggests that further research into
enhancing strategy allocation could indeed yield further additional gains.

6 Conclusions

We introduced a set of learning-free strategies for generating batches of speculative drafts, extracted
from both the base model and context. Our approach is conceptually simple and is fully compatible
with other optimization techniques (e.g. quantization, early exiting, flash attention, etc.). Experi-
mentally, we observed that our proposed strategies led to significant speedups in auto-regressive
inference, while requiring minimal implementation overhead and being easily integrable. Our analysis
demonstrates that simple strategy combinations can substantially enhance performance across a range
of different tasks and model sizes, with our ablations shining light on the strengths and weaknesses
of the proposed strategies.
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A Additional results

A.1 Mistral 7B
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Figure 5: Tokens per call across datasets for Mistral7B instruct for varied (k,w).

A.2 Phi3B

We remark that Phi3B never was compute-bound, so maximum speed-up from mixing strategies was
not attained.
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Figure 6: Average wall-time speedup across datasets for Phi3B-instruct for varied (k,w).
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Figure 7: Tokens per call across datasets for Phi3B-instruct for varied (k,w).

A.3 Vicuna 13B
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Figure 8: Average wall-time speedup across datasets for Vicuna13B for varied (k,w).
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Figure 9: Tokens per call across datasets for Vicuna13B for varied (k,w).

B Learning-Free N-Grams

B.1 Model Based N-Grams

def unigram(model):
'''
Obtain a Unigram topk from a transformer's weights
'''
Wenc = model.get_input_embeddings().weight.detach()
covV = Wenc.T @ Wenc / Wenc.shape[0]
Wdec = model.lm_head.weight.detach()

# look at the distance from the mean embedding in the decoder space.
mu = Wdec.mean(dim=0, keepdim=True)
dists = mu @ covV @ Wdec.T
dists = dists.squeeze()
ranks = torch.topk(-dists, k=dists.size(0)).indices

def bigram(model):
'''
Pseudo code: bigram topk from a transformer:
'''
V = model.config.vocab_size

lookup = torch.empty(V, V)

# this can be done in batches
for x in range(len(V)):

lookup = model(x).logits
return lookup

B.2 Context Based N-Grams

@torch.inference_mode
def context_ngram_matcher(context, query, Ndraft=1, Npad=1):

'''
matches query of any length Q to grams of size Q + Npad

query : tensor (query to match with)
Ndraft : int (number of drafts)
Npad : int (number of tokens to speculate with)
'''
# obtain length of query
Q = query.size(-1)
# use unfold to obtain all N grams
grams = context.flatten().unfold(0, Q + Npad, 1)
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# extract mask of matching ngrams
mask = torch.all(grams[:, :Q] == query, dim=-1)
if torch.any(mask):

matching_grams = grams[mask]
# obtain counts of all ngrams
matches, counts = torch.unique(matching_grams, dim=0, return_counts=True)
Nfound = counts.size(0)
Ntake = min(Ndraft, Nfound)
# take up to top Ndraft occuring Ngrams
most_freq_ids = counts.topk(Ntake).indices
return matches[most_freq_ids]

else:
return None

C Models

• Phi3B : https://huggingface.co/microsoft/Phi-3-mini-4k-instruct (MIT Li-
cense)

• Mistral 7B : https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
(Apache 2.0 License)

• Vicuna 13B : https://huggingface.co/lmsys/vicuna-13b-v1.3 (Non-commercial
license)

D Key-Value Cache

We use a static key-value cache based upon the implementation from Cai et al. [2024], Li et al. [2024].
However, we add minimal modifications to i) allow for batching ii) over-write all rows to be that
of the maximum length accepted speculation iii) initialize from a k = 1 cache (since the context is
repeated), via a broadcasting.
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