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Abstract

In this work, we introduce a novel approach for optimizing neural network training
by adjusting learning rates across weights of different components in Transformer
models. Traditional methods often apply a uniform learning rate across all network
layers, potentially overlooking the unique dynamics of each part. Remarkably,
our introduced Relative Learning Rate Schedules (RLRS) method accelerates the
training process by up to 23%, particularly in complex models such as Mixture
of Experts (MoE). Hyperparameters of RLRS can be efficiently tuned on smaller
models and then extrapolated to 27× larger ones. This simple and effective method
results in a substantial reduction in training time and computational resources,
offering a practical and scalable solution for optimizing large-scale neural networks.

1 Introduction

The learning rate is a crucial hyperparameter in Deep Learning, determining the size of the steps
the optimization algorithm takes when updating model parameters during training. In the context of
Transformers, which are widely used for tasks in Natural Language Processing and other areas, the
learning rate significantly impacts the model’s convergence and overall performance. While higher
learning rates, due to larger updates to the model, may generally converge faster, the training also
becomes less stable. Therefore, the learning rate needs to be chosen specifically to balance the speed
and stability of the training process.

At the same time, modern Deep Learning architectures are not homogeneous, with different parts
serving different purposes and behaving differently. For example, in the Transformer, the Attention
block, the Feed-Forward (MLP) block, and the token Embedding have very different structures,
functions, and—importantly—training dynamics. Moreover, components may behave differently
depending on the training phase. For instance, in Mixture of Experts (MoE) models, the Router often
stabilizes early in training, leading to deterministic routing to the Experts [17]. Additionally, weights
in the Unembedding may diverge, potentially causing instabilities later in the training process [1, 21].

It is reasonable to assume that with such varied layers, their needs also vary, particularly in balancing
training speed and stability. Nevertheless, we often treat all modules uniformly when setting the
learning rate. A common practice, for example, is to reduce the learning rate for the whole model after
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introducing a MoE layer [14]. By design, hyperparameters are typically tuned for the entire network,
disregarding the fact that only one of the layers might be introducing issues such as instabilities. We
aim to investigate the improvements made possible by loosening the implicit assumption of common
hyperparameters across the model. Since each layer’s training dynamics could be different, can we
improve the training procedure by tailoring the learning rate schedules accordingly?

In this work, we introduce Relative Learning Rate Schedules (RLRS) method. RLRS decouples
various optimization hyperparameters in Transformers and tunes them separately for different model
components, including the Unembedding and Embedding layers, Attention, and, in the case of
Mixture of Experts architectures, the Router and Experts. By tailoring the learning rate to the specific
needs of each part, we enhance the overall performance and stability of the model.

We also propose a method for extrapolating RLRS effectively to models at least 27× larger, making
our approach practical. In essence, we offer a method: first, relative LRs should be tuned on a small
model; later, the same relative LRs can be reused when training the model’s significantly larger
counterpart. Our method is easy to implement, with no additional overhead required, apart from
the relatively inexpensive hyperparameter search on the small model. While tailored to our specific
training setup, our relative values have proven to be robust across a range of hyperparameters, making
them an excellent starting point. Additionally, we provide an analysis showing how these values,
determined using automated methods, align with our intuitive understanding of Transformer training.
In summary:

• We propose distinct learning rate schemes tailored for different components of a Transformer
model, optimizing each part individually for improved overall performance.

• We show performance improvements of the introduced methods in standard Transform-
ers with improvements growing in the Mixture of Experts-based model, highlighting the
importance of relative learning rates for more complex models.

• We demonstrate that the hyperparameters tuned on small models extrapolate to larger models,
showing that our approach generalizes effectively across different architecture sizes.

2 Decoupled Relative Learning Rates

We define a decoupled learning rate as a separate learning rate schedule applied to different layer
types (also referred to as components, modules, or parts). Decoupled learning rate schedules allow the
learning procedure to focus on different components during various phases of a model’s pretraining,
facilitating a more targeted and efficient optimization process.

We specify decoupled learning rates following the structure of a cosine learning rate scheduler [9],
which is widely used for training Large Language Models (LLMs) [16, 5]. The cosine scheduler
adjusts the learning rate over time according to a cosine function, starting with a high learning rate
that gradually decays to a minimum value in a smooth, non-linear manner.

The parameters we introduce are:

• Base LR (ηbase) – This is the reference learning rate for the entire model. In a typical cosine
schedule, it represents the initial (or maximum) learning rate, serving as the peak value during the
training cycle, following any possible warm-up period.

• Base LR Final Fraction (λbase) – This fraction of the base learning rate determines the final learning
rate at the end of the training. The Final (or Minimum) Learning Rate is the lowest learning rate
value by the end of the training cycle.

For each component m of the model, we further define:

• Relative Start LR (λm
start) — the scaling factor of the base learning rate at the beginning of training.

• Relative End LR (λm
end) — the scaling factor of the final learning rate at the end of training.

Thus, the decoupled learning rates ηmstart and ηmend for a component m are defined as:

ηmstart = ηbase × λm
start ηmend = ηbase × λbase × λm

end
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These values are adjusted for each transformer component. In this work, we distinguish following
layer modules: Embedding, Attention, Final Linear Layer and additionally for dense model Feed-
forward layer and for Mixture of Experts model, Expert and Router layer.

2.1 Extrapolation Method

Directly tuning relative values on Large Language Models (LLMs) may be impractical due to the
high computational costs. To address this, we propose a method that fine-tunes these values on a
smaller model and transfers them to a larger one. This approach significantly reduces the need for
costly tuning on large models, offering substantial computational savings.

As described in Algorithm 1, our method involves conducting a local search for optimal values
on smaller models. This search is based on the assumption that these relative values extrapolate
effectively to larger models. It consumes only a fraction of the training time required for large models.

Algorithm 1 Relative LR Adjustment Algorithm
1: Find ηbase for a small model.
2: For each module m, find relative values λm

start and λm
end on a small model.

3: Find base learning rate ηbase for the large model.
4: Apply relative learning rates λm

start and λm
end from the small model.

While we do not claim that λm
begin and λm

end values are optimal for larger models, they are easy to
use and yield substantial improvements, as shown in the next section. We leave the investigation of
optimal extrapolation as future work.

3 Results

A smaller model permits a broader exploration of hyperparameters. For a fine-grained search, we
perform a local search (for details, see Appendix A.1) for the optimal ηbase, as well as for each module
λm

start and λm
end.

Type LR Type Base LR Train Tokens Speed-Up

MoE8×34M baseline 3× 10−3 1.3B -
relative 3× 10−3 1.3B 22.8%

Dense34M baseline 2× 10−3 1.3B -
relative 2× 10−3 1.3B 17.2%

Table 1: Using RLRS results in faster model convergence.

Type LR Type Base LR Train Tokens Speed-Up

Dense113M baseline 1× 10−3 2.5B -
relative 1× 10−3 2.5B 19.0%

MoE8×113M baseline 2× 10−3 2.5B -
relative 1× 10−3 2.5B 19.0%

MoE8×113M baseline 1× 10−3 14B -
(overtrained) relative 1× 10−3 14B 14.6%

Dense906M baseline 5× 10−4 20B -
relative 5× 10−4 20B 7.7%

MoE8×906M baseline 2× 10−4 20B -
relative 2× 10−4 20B 13.6%

Table 2: Gains from extrapolating relative learning rates to larger models.
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Subsequently, we extrapolate the relative values to large models, with the largest one having 906M
active parameters (and 5.67B total parameters). The models are trained both in a compute-optimal
and overtrained setting. Remarkably, our gains largely hold. As shown in Table 2, applying the
relative rates from smaller to larger models results in nearly a fifth reduction in training time for both
MoE and dense models.

4 Analysis
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Figure 1: Training loss for Base-
line versus RLRS for MoE8×33M.
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Figure 3: Loss of RLRS and
baseline for different ηbase on
MoE8×113M models. RLRS
results in better loss across a
range of learning rates.

In this section, we present the numerical results and trends for relative learning rates and analyze
them in relation to each layer module. Although the values were obtained experimentally, they are
notably interpretable and align well to address the existing issues of each component.

For the Embedding layer, the relative learning rate λstart starts high at 5 and decays to 0.6. This
aggressive early training helps the Embedding layer stabilize quickly, as it influences the entire net-
work. As training progresses, the learning rate is reduced to avoid drastic changes in the embeddings,
allowing the rest of the model to adjust accordingly. Similarly, in the Unembedding layer, the rate
decreases from 1 (0.6 in the case of MoE) to 0.4. The Router, known for its tendency to freeze
early in training [17], determines which subset of the model’s parameters is used for each token. Our
relative rates aim to prevent this premature convergence, increasing from 0.6 to 1 during pretraining.
Moreover, as the Router tends to be unstable initially, the rate starts with a coefficient less than 1.
The Experts have their learning rates adjusted accordingly. Initially, the rate is lower (0.3) to aid
stability when the Router is essentially random, and later it increases to 1.125 as the model stabilizes.
For the Attention layers, the relative learning rate remains unchanged in MoE, making it unique in
not requiring relative rates, while in dense models, it decreases from 1 to 0.2.

The overall customization of learning rates proposed in this work has several benefits. First, it leads
to faster training convergence, as shown in Section 3 and Figure 1. Furthermore, training with relative
rates is more stable in MoE setting. As seen in Figure 2, the baseline exhibits instabilities that are
absent with the relative schedules. This is also intuitive, as MoE models are considered unstable and
require lower learning rates for optimal learning. Finally as shown in Figure 3, relative learning rates
consistently improve the baseline across various base learning rates, distinguishing our schedule from
simply scaling the base learning rate.

5 Conclusion

We have presented a method for decoupling learning rate schedules across different Transformer
components, which removes the implicit assumption of homogeneity between them, resulting in
better training speed and stability. This method significantly enhances performance in both dense and
Mixture of Experts (MoE) models. By tuning relative learning rates on smaller models, this approach
can be used to cost-effectively achieve significant improvements in the training of order-of-magnitude
larger models.
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A Experimental Setup

All models used in this study are decoder-only Transformers trained on the C4 dataset [13]. The
GPT-2 tokenizer [12] is employed. We optimize using AdamW [10] and apply cosine decay with a
linear warmup for the first 1% of training steps. For better stability, weight initialization follows a
truncated normal distribution with a reduced scale, as suggested by [3]. Mixed precision training is
used, with Attention and Router calculated at high precision. The models use SwiGLU activation
and Token Choice routing with 8 Experts, of which 1 is activated. We use two auxiliary losses
for the Router: z-loss with a weight of 0.001 [21] and load balancing with a weight of 0.01 [3].
Compute-optimal training durations are based on [5], calculated for MoE as 20× the number of
active parameters excluding Embedding and Unembedding, as recommended in [11]. Moreover, we
provide one comparison on overtrained MoE8×113M, with almost 130 token to active parameter ratio.
For all extrapolations, we tune base learning rates separately for RLRS and the baseline with the
precision of a grid defined by {1e−n, 2e−n, 5e−n}.

For both dense and MoE models, the weight decay value has been optimized to 0.1, the initialization
scale to 0.15, and Base LR Final Fraction (λbase) to 0.04 for MoE and 0.06 for dense.

Type Active Params Total Params dmodel nlayers nexperts BS SL

MoE8×34M 33.6M 210M 512 8 8 256 512
Dense34M 33.6M 33.6M 512 8 8 256 512

MoE8×113M 113M 708M 768 12 8 256 512
Dense113M 113M 113M 768 12 8 256 512

MoE8×906M 906M 5.67B 1536 24 8 384 1024
Dense906M 906M 906M 1536 24 8 384 1024

Table 3: Models used in this paper. BS indicates batch size, and SL indicates sequence length.

In Tables 1 and 2, we report a speedup metric that measures how much faster a training process
becomes when relative rates are applied. It is calculated using ( Tbase

Trelative
− 1)× 100%, where Tbase is

the number of steps performed in the standard training with a base learning rate, and Trelative is the
number of steps incurred until the loss of the training with the relative learning rate schedule exceeds
baseline loss. It is important to note that using this metric likely underestimates the improvement
of our method since for relative learning rate training steps, when we compute the speedup, the
cosine schedule has not yet reached its end. We perform three runs for each configuration, except for
Dense906M, due to compute limitations. For each run, we measure the loss per S steps, where S is
1% of all training steps. The speedup is calculated over the means of 3 runs. To reduce variance from
random data seeds, we use 3 specified data seeds for each model type comparison.

Embedding Unembedding Router Experts Attention

Start 5 0.6 0.6 0.3 1

End 0.6 0.4 1 1.125 1

Table 4: Relative learning rate values (λ) for MoE.

Embedding Unembedding Feed-Forward Attention

Start 5 1 1 1

End 0.6 0.4 0.6 0.2

Table 5: Relative learning rate values (λ) for dense models.
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A.1 Hyperparameter Optimization - Local Search

For small models, we tune all η and λ values, as well as weight decay and initialization scale. There are
various ways to optimize these hyperparameters, and we assume our method is largely invariant to the
specific optimization algorithm used. While grid search might be the most straightforward approach,
it requires proper initialization values and an exponential number of experiments. Instead, we opted
for a simple local search algorithm described below, which ran approximately 300 experiments on
MoE8×33M before converging:

Algorithm 2 Local Search
1: Iterate over the set of optimized hyperparameters (η, λ, weight_decay, init_scale).
2: For a given hyperparameter, change its value by { 1

5 ,
2
3 , 1,

3
2 ,

5
1}.

3: Run experiments and select the best result as the current value.
4: If any change has been made to all hyperparameters, return to step 1.

We used the same algorithm to optimize η’s, weight decay, and initialization scale for the baseline.

B Cosine Scheduler Details

The cosine scheduler adjusts the learning rate according to a cosine curve over a specified number
of epochs or iterations. The objective is to gradually reduce the learning rate from an initial value
to a lower final value using the cosine function. The learning rate ηt at step t is computed using the
cosine function:

ηt = ηend +
1

2
(ηstart − ηend)

(
1 + cos

(
Tt

Tstart
π

))
Where ηmax: The initial learning rate. - ηend: The minimum learning rate (often set to a small value),
Tt: The current epoch or iteration, Tstart: The total number of epochs or iterations. s

C Ablations

Model Part Train Tokens Speedup Relative

0 Embedding 2.5B 30.1%
1 Head 2.5B 14.5%
2 Gating 2.5B 2.2%
3 Expert 2.5B 10.5%

Table 6: Above, we present the speed-up obtained from selecting the relative LR for all the components
over the training where one component is excluded. The speed-up is adjusted in relationship to the
full relative schedule. Ablation studies are performed on a small 34M MoE model.

Figure 4 also shows the importance of tuning the relative learning rates for individual modules. The
study indicates the particular significance of Embedding and Unembedding. It is important to note
that the improvement brought by the method comes largely from the interactions between the relative
rates for all the components, rather than any specific module.

D Related and Future Work

The literature on learning rates in Machine Learning, particularly for Transformers, highlights the
importance of adaptive learning rate schedules. Stochastic Weight Averaging (SWA) [8] utilizes a
modified learning rate schedule that applies a decaying learning rate during the initial phase of training,
followed by a constant rate for the remainder. Differentiating learning rates for different layers is also
commonly discussed, as the bottom and top layers of Transformer models capture different types of
information. In [15], the authors introduce layer-wise learning rate decay, applying higher learning
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Figure 4: Varying relative learning rates for different Transformer components for both λstart and
λend. A given scaling factor for a component is varied, while others are fixed. The values in green
are the results of the local search applied in this paper. The study shows that the selected values are
consistently better than the baseline learning rate and generally outperform neighboring values, with
some potential room for improvement. Note that in some instances, the training diverged, which
caused the extraordinarily large bars.

rates to top layers and lower rates to bottom layers. A related concept, discriminative fine-tuning, is
discussed in [6]. Additionally, [2] explores how various parameterizations and optimizers impact the
learning process in large-scale models and proposes a per-layer learning rate strategy.

D.1 Combination with Tensor Programs

Our method examines the transfer of relative learning rates; however, the base learning rate must still
be tuned independently for the extrapolated model. Approaches such as Tensor Programs [18, 19]
propose parameterizations that facilitate the transfer of the base learning rate. By integrating these
two approaches, it may be possible to achieve a zero-shot transfer of the relative learning rates.

While our methods share similarities with Tensor Programs and draw inspiration from them, our
project has a distinct goal. We seek to identify implicit assumptions in the tuning process and
decouple parameters to devise a scheme that allows Large Language Models (LLMs) to converge
in fewer steps. Our extrapolations demonstrate that our optimization scheme is dependent on the
architecture rather than the model size. This scheme is defined relative to the base learning rate,
which must be tuned individually for each model size. Our method does not aim to facilitate learning
rate transfer between different model sizes and is supported by experimental evidence. We do not
mathematically examine the limits of parameter updates in a gradient descent step. A key difference
is that our relative values change dynamically during training, and our goal is to enable the model to
focus on different aspects during pretraining.

D.2 Fine-Tuning

Fine-tuning allows users to adapt pre-trained Large Language Models (LLMs) to more specialized
tasks. In traditional fine-tuning, certain model components are often "frozen" (effectively setting
their relative learning rates to zero) to preserve learned knowledge while adapting other parts. Our
proposed method introduces a more flexible approach, serving as a continuous alternative to freezing
parameters. This allows for fine-grained control over information transfer within specific components
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of the model. Consequently, our method could be particularly applicable to fine-tuning scenarios
and could complement existing methods that involve freezing parameters. Parameter-Efficient Fine-
Tuning (PEFT) techniques, such as LoRA [7], address this by updating only a subset of parameters
while freezing the rest. Our work aligns with more advanced methods like LoRA+ [4], which selects
different learning rates for the adapter matrices, and AdaLoRA [20], which adapts the rank of the
LoRA matrices, providing enhanced flexibility in the fine-tuning process.
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