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Abstract

Self-supervised speech representation models, particularly those leveraging trans-
former architectures, have demonstrated remarkable performance on downstream
tasks. Recent studies revealed high redundancy of transformer layers, potentially
allowing for smaller models and more efficient inference. We perform a detailed
analysis of layer similarity in speech models, leveraging three similarity metrics.
Our findings reveal a block-like structure of high similarity, suggesting significant
redundancy within the blocks along with two main processing steps that are both
found to be critical for maintaining performance. We demonstrate the effectiveness
of pruning transformer-based speech models without post-training, achieving up
to 40% reduction in transformer layers while maintaining 95% of the model’s
predictive capacity. Lastly, we show that replacing the transformer stack with a few
simple layers can reduce the network size by up to 95% and inference time by up to
87%, significantly reducing the computational footprint with minimal performance
loss, revealing the benefits of model simplification for downstream applications.

1 Introduction

Recent advancements in speech representation models, particularly those leveraging transformer
architectures, have demonstrated remarkable performance across various downstream tasks (1; 2; 3),
however, inference with these models often comes with significant computational costs due to large
model sizes. This paper investigates the redundancy present within transformer layers of speech
representation models, exploring the potential of pruning, thereby using smaller and more efficient
networks for inference. Several studies have shown that transformer models contain a substantial
amount of redundancy (4; 5; 6; 7; 8) and recent research on large language models (LLMs) has
revealed that many layers can be pruned without significantly impacting performance (9; 10; 11). This
phenomenon is not limited to LLMs; similar findings have been observed in speech representation
models, where pruning or informed layer selection can lead to reduced computational requirements
and faster inference times while retaining or even improving performance (12; 13). Moreover,
high linearity was observed in transformer models, further indicating potential redundancy (14).
They demonstrated that the embedding transformations between sequential layers exhibit near-
perfect linearity, suggesting that many layers may perform redundant operations. They retain model
performance while removing the most linear layers or replacing them with linear approximations.
This paper systematically investigates redundancy in speech models. Our main contributions include:

1. A detailed analysis of similarity in speech representation models, leveraging three similarity
metrics. We find a block-like similarity structure suggesting two main processing steps.
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Figure 1: Overview of our analysis framework. Left: We let the fine-tuned transformer to layer i be
f (i), from layer i to L be g(i), and the classifying layer be h. Middle: 2-layer mimicking network
where m(i)

f and m
(i)
g mimic f (i) and g(i), learned via the MSE loss. We fine-tune the m’s and h with

NLL loss. Right: A mimic layer maps a d-dimensional representation to z dimensions and back.

2. Evidence showing that up to 45% of transformer-based speech model layers can be struc-
turally pruned without post-training, with low performance drop. We find that to maintain
performance, parts of both blocks identified in the similarity analysis need to be present.

3. Significant reduction in the computational footprint of transformer-based speech models
while keeping 95% predictive capacity, by replacing the transformer stack with a few layers.

2 Methods

2.1 Layer similarity

We perform an extensive analysis of latent representations of speech representation models. We extract
and compare representations of audio input after each transformer block to identify redundancy.
All scores depend on the input batch X ∈ Rn×D, which we omit in the notation for simplicity,
thus A = f (i) (X) ∈ Rn×D and B = f (j) (X) ∈ Rn×D are the representations of the batch at
layers i, j ∈ {1, . . . ,L}. We center the the representations batch-wise and use cosine similarity,
Scos (i, j) =

1
n

∑n
l=1 A

T
l,·Bl,·/ (||Al,·|| · ||Bl,·||), along with two other metrics detailed below.

Centered Kernel Alignment (CKA) (15) holds desirable properties for neural networks, namely
invariance to isotropic scaling and orthogonal transformations which implies permutation invariance.
In the linear form, CKA between representations of X at layers i and j uses the Frobenius norm

SCKA (i, j) = ||BTA||2F /
(
||ATA||F ||BTB||F

)
(1)

Mutual nearest-neighbor alignment (mutual kNN) (16) captures local structure between represen-
tations. If we let Nk (Al,·) be the set of indices for the k-nearest samples of Al,· in the batch, then
mutual kNN similarity of layers i and j is defined

SkNN (i, j) =
1

n

n∑
l=1

(
1

k
|Nk (Al,·) ∩Nk (Bl,·)|

)
(2)

2.2 Pruning

We investigate the relation between feature similarity patterns and model redundancy by heuristically
pruning the transformer stack. The heuristics considered are forward and backward which removes
layers sequentially from the beginning or end of the transformer stack, respectively. Additionally
we prune by the minimum block-influence score (11) - i.e. BI (i) = 1 − Scos(i − 1, i) - and a
version based on mutual kNN similarity. We remove transformer layers in an order determined by
the heuristic until the stack is empty, while always keeping the first layer. No post-training is done.

2.3 Mimicking networks - knowledge distillation

We propose a simple strategy (Figure 1) for distilling knowledge from fine-tuned audio models
based on reproducing latent representations with a single 1- or 2-layer mimicking network. It learns
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Figure 2: Analysis of redundancy of layers: (a) Similarity between layers of wav2vec2 and
wavLM averaged across batches. All three metrics reveal a block structure. (b) Effect of pruning on
performance for different heuristics. Up to 45% of layers can be pruned while maintaining 95%
of accuracy ( ). Performance drops to random chance ( ) with too much pruning. The [2.5,
97.5] empirical quantiles from N = 5 runs are provided. (c) kNN similarity matrix overlayed
with a pruning mask. White layers indicate pruned layers before the performance hits 50% of the
full capacity. For- and backward pruning only preserve performance while both blocks are present.
kNN-BI pruning mainly considers the first block.

to reproduce representations of a speech model’s last layer and optionally also an intermediate
layer. We experiment with transformer and mimicking layers and their hidden dimensionality,
z ∈ {32, 768, 4096}, while ensuring weight-sharing along the temporal axis. Each model follows
a 2-stage training procedure of 1) a mimicking phase using a mean-squared error (MSE) objective
and 2) an adaption phase for fine-tuning to the downstream task through negative log likelihood
(NLL) on the log-probabilities. Additionally, we examine non-mimicking networks that only learn
representations via the adaption phase, i.e. they are randomly initialized and fine-tuned.

In the mimicking phase, models are trained on a GPU using a batch size of 128 for 50 epochs, i.e.
33,150 steps and Adam. We regularly evaluate the model on 1024 random validation set samples. All
models converged. Next, the adaption phase trains for further 30 epochs, i.e. 19,890 steps, and stores
the best weights before potential overfitting. We fix the learning rate to 10−3 (determined from pilot
experiments). We evaluate models by individually predicting the 4482 test set samples after running
300 forward passes for warming up the GPU to ensure running time comparability between models.
We report average accuracies and inference times along with the standard errors.

2.4 Data & models

All analyses consider a word classification task from the speech commands v0.02 dataset (17) (data
splits available at huggingface.co) which features 35 words spoken by >400 speakers. We resample
audio inputs to 16kHz and pad/restrict to 1 second and exclude the _silence_ class for analyses. We
consider the small and large fine-tuned versions of wav2vec2 (3) and wavLM (2), respectively
having 12 and 24 layers in the transformer stack. These were fine-tuned to classify the 35 words, with
a learning rate of 2x10−5 for 10,000 steps, resulting in accuracies of 98.32 / 97.21% for wav2vec2
(base/large) and 97.22 / 98.86% for wavLM (base/large).

3 Results & discussion

3.1 Layer similarity

Our analysis reveals that all models exhibit two primary blocks characterized by highly similar latent
representations (see Figure 2a). The second block typically comprises the final 4-5 layers. The high
similarities suggest a significant degree of redundancy, raising questions on the necessity of keeping
all layers. Comparing the three similarity metrics, CKA and mutual kNN show the block structure
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Figure 3: Simplification of wav2vec2-small’s transformer stack using mimicking networks.
Reduction in inference time (up to 87%) and number of parameters (up to 95%) using mimicking
networks, while maintaining 95% of the original accuracy ( ). The pruned model removes 3
layers according to kNN-BI. Inference time is normalized wrt. wav2vec2-small and the results for
other models look very similar. The associated data is provided in Appendix A along with similar
illustrations for other models.

more clearly than cosine similarity. Consistent with recent debates (15; 16), our findings indicate that
CKA and mutual kNN better capture similarity structures. Mutual kNN reveals additional blocks
details, suggesting the potential benefit of pruning based on local rather than global similarity.

3.2 Layer-wise pruning

Given the high similarity , we investigate how many layers can be pruned without impacting perfor-
mance. For all models, we can prune a substantial amount of layers before we see a significant drop
in performance (see Figure 2b). When using BI or kNN-BI to prune the least important layers first,
we can prune 25-42% of layers while maintaining 95% of the original performance. Interestingly,
when pruning from the second layer and forward, we observe that we can prune almost the same
amount of layers, indicating redundancy of the early layers of the first similarity block. When pruning
backward the performance drops after only 1-4 pruned layers, depending on the model size. In
Figure 2c, it becomes apparent that performance is maintained only while parts of both blocks are
present, highlighting the importance of both processing steps for classification. However, a recent
study exploring the same fine-tuned models found that with post-training, backward pruning can be
successful without any loss in performance (13).

3.3 Mimicking networks

Based on the two blocks identified in the similarity analysis, we let the intermediate mimicking layer,
m(i), mimic the last layer of the first block. We compare with a 1-layer mimicking network, directly
mimicking f (L) as well as with versions that only learn via the adaption phase. Substitution of the
transformer stack leads to reductions in parameters and inference times of 76.6-94.8% and 79.6-
86.8%, respectively, while most models retain over 95% of the performance. We found that increasing
the hidden dimensionality, z, slightly improved performance, with transformer mimic layers generally
performing best. Interestingly, no significant performance difference was observed for 1- or 2-layer
networks, suggesting intermediate representations to be non-essential for the downstream task. 1-
layer networks without the mimicking phase demonstrated impressive performance, suggesting the
transformer stack’s exact representations to be non-critical, yet, removing it completely and using
only the fine-tuned classification layer dropped accuracy to 79%, indicating the need for some non-
linearity. These findings suggest that the transformer stack can be simplified to a single non-linear
layer for the downstream application.

4 Conclusion

Our findings indicate a significant degree of redundancy within the transformer layers of speech rep-
resentation models. This redundancy is evident from the high similarity between layers, particularly
within the two primary similarity blocks identified in our analysis. The ability to prune 15-45% of the
transformer layers without significant loss in performance further underscores the redundancy present
in transformer layers within speech representation models. We reveal a relation between block-like
similarity patterns and predictive performance; the two main blocks found in the similarity analysis
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seem to be critical for the task, as fully pruning either block results in a massive drop in performance.
However, many layers can be pruned within these blocks, suggesting high redundancy within each
block. Our exploration of mimicking networks - supported by recent studies on knowledge distillation
in speech representation models (18; 19; 20; 21) - suggests that the entire transformer stack can be
replaced with a much smaller and faster network for efficient inference while maintaining over 95%
of performance. This highlights the potential for leveraging large, complex models for on-device
applications in resource-constrained environments which might otherwise be infeasible.

Limitations & future work. Our findings from spoken word classification might vary across tasks
/ domains, yet the analyses broadly apply to investigating efficient inference for transformer models.
We suggest extending to vision transformers or CLIP, as initial studies revealed block-like similarity.
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A Appendix / supplemental material

We present the data behind Figure 3 (see Table 1) along with experiments of mimicking networks for the
wav2vec2-large, wavLM-small and wavLM-large. Note that the L and T respectively denote linear and
transformer layers, while z is the hidden dimension of the layer(s).

Results of simplification of networks using mimicking networks. In wav2vec2-large (Figure 4 and Table 2) and
wavLM-small (Figure 5 and Table 3) the models keep over 95% of their original performance while reducing
the number of parameters by 95-98% and the inference time by up to 91%. In wavLM-large (Figure 6 and
Table 4) the performance is still above 90% of the original performance while reducing the size by 98% and the
inference time by 94%.

Network Layer N z Number of Inference time Accuracy
type type layers parameters (normalized)

Original T 12 - 94577571 1 0.976± 0.002

Mimicker L 1 32 4851331 0.13 0.919± 0.004
Mimicker L 2 32 4901283 0.14 0.925± 0.004
Mimicker L 1 768 5984035 0.14 0.942± 0.003
Mimicker L 2 768 7165219 0.14 0.938± 0.004
Mimicker L 1 4096 11105827 0.15 0.935± 0.004
Mimicker L 2 4096 17402147 0.16 0.934± 0.004

Mimicker T 1 32 7216707 0.14 0.936± 0.004
Mimicker T 2 32 9632099 0.16 0.934± 0.004
Mimicker T 1 768 8347939 0.15 0.921± 0.004
Mimicker T 2 768 11894563 0.16 0.942± 0.003
Mimicker T 1 4096 13463075 0.16 0.945± 0.003
Mimicker T 2 4096 22124835 0.18 0.944± 0.003

Non-mimicker L 1 32 4851331 0.13 0.916± 0.004
Non-mimicker L 1 768 5984035 0.14 0.936± 0.004
Non-mimicker L 1 4096 11105827 0.14 0.945± 0.003

Non-mimicker T 1 32 7216707 0.14 0.93± 0.004
Non-mimicker T 1 768 8347939 0.15 0.931± 0.004
Non-mimicker T 1 4096 13463075 0.16 0.925± 0.004

Table 1: wav2vec2-small

Figure 4: wav2vec2-large
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Network Layer N z Number of Inference time Accuracy
type type layers parameters (normalized)

Original T 24 - 315700387 1 0.971± 0.002

Mimicker L 1 32 5064835 0.089 0.921± 0.004
Mimicker L 2 32 5131427 0.091 0.924± 0.004
Mimicker L 1 768 6574371 0.09 0.938± 0.004
Mimicker L 2 768 8149027 0.094 0.94± 0.004
Mimicker L 1 4096 13400099 0.097 0.945± 0.003
Mimicker L 2 4096 21793827 0.11 0.943± 0.003

Mimicker T 1 32 9267267 0.098 0.927± 0.004
Mimicker T 2 32 13536355 0.11 0.931± 0.004
Mimicker T 1 768 10775331 0.099 0.937± 0.004
Mimicker T 2 768 16552483 0.11 0.938± 0.004
Mimicker T 1 4096 17594403 0.11 0.94± 0.004
Mimicker T 2 4096 30190627 0.12 0.937± 0.004

Non-mimicker L 1 32 5064835 0.088 0.917± 0.004
Non-mimicker L 1 768 6574371 0.09 0.937± 0.004
Non-mimicker L 1 4096 13400099 0.097 0.939± 0.004

Non-mimicker T 1 32 9267267 0.098 0.925± 0.004
Non-mimicker T 1 768 10775331 0.1 0.936± 0.004
Non-mimicker T 1 4096 17594403 0.11 0.929± 0.004

Table 2: wav2vec2-large

Figure 5: wavLM-small

Figure 6: wavLM-large
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Network Layer N z Number of Inference time Accuracy
type type layers parameters (normalized)

Original T 12 - 94587795 1 0.972± 0.002

Mimicker L 1 32 4851331 0.097 0.889± 0.005
Mimicker L 2 32 4901283 0.099 0.91± 0.004
Mimicker L 1 768 5984035 0.1 0.938± 0.004
Mimicker L 2 768 7165219 0.1 0.936± 0.004
Mimicker L 1 4096 11105827 0.1 0.939± 0.004
Mimicker L 2 4096 17402147 0.11 0.932± 0.004

Mimicker T 1 32 7216707 0.1 0.903± 0.004
Mimicker T 2 32 9632099 0.11 0.928± 0.004
Mimicker T 1 768 8347939 0.11 0.928± 0.004
Mimicker T 2 768 11894563 0.12 0.933± 0.004
Mimicker T 1 4096 13463075 0.11 0.928± 0.004
Mimicker T 2 4096 22124835 0.13 0.932± 0.004

Non-mimicker L 1 32 4851331 0.097 0.885± 0.005
Non-mimicker L 1 768 5984035 0.1 0.921± 0.004
Non-mimicker L 1 4096 11105827 0.1 0.924± 0.004

Non-mimicker T 1 32 7216707 0.1 0.915± 0.004
Non-mimicker T 1 768 8347939 0.11 0.915± 0.004
Non-mimicker T 1 4096 13463075 0.11 0.923± 0.004

Table 3: wavLM-small

Network Layer N z Number of Inference time Accuracy
type type layers parameters (normalized)

Original T 24 - 315724515 1 0.989± 0.002

Mimicker L 1 32 5070979 0.064 0.859± 0.005
Mimicker L 2 32 5137571 0.065 0.876± 0.005
Mimicker L 1 768 6580515 0.065 0.906± 0.004
Mimicker L 2 768 8155171 0.067 0.93± 0.004
Mimicker L 1 4096 13406243 0.069 0.915± 0.004
Mimicker L 2 4096 21799971 0.075 0.913± 0.004

Mimicker T 1 32 9273411 0.07 0.849± 0.005
Mimicker T 2 32 13542499 0.076 0.828± 0.006
Mimicker T 1 768 10781475 0.07 0.888± 0.005
Mimicker T 2 768 16558627 0.079 0.829± 0.006
Mimicker T 1 4096 17600547 0.075 0.91± 0.004
Mimicker T 2 4096 30196771 0.086 0.821± 0.006

Non-mimicker L 1 32 5070979 0.064 0.88± 0.005
Non-mimicker L 1 768 6580515 0.064 0.893± 0.005
Non-mimicker L 1 4096 13406243 0.069 0.905± 0.004

Non-mimicker T 1 32 9273411 0.07 0.907± 0.004
Non-mimicker T 1 768 10781475 0.071 0.907± 0.004
Non-mimicker T 1 4096 17600547 0.075 0.89± 0.005

Table 4: wavLM-large
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