
Dynamic Speculation Lookahead Accelerates
Speculative Decoding of Large Language Models

Jonathan Mamous Oren Peregs Daniel Korats
Moshe Berchanskys Nadav Timor♢ Moshe Wasserblats Roy Schwartzp

s Intel Labs, Israel
♢ Weizmann Institute of Science, Israel

pSchool of Computer Science & Engineering, Hebrew University of Jerusalem
Correspondence: jonathan.mamou@intel.com

Abstract

Speculative decoding is commonly used for reducing the inference latency of
large language models. Its effectiveness depends highly on the speculation looka-
head (SL)—the number of tokens generated by the draft model at each iteration. In
this work we show that the common practice of using the same SL for all iterations
(static SL) is suboptimal. We introduce DISCO (DynamIc SpeCulation lookahead
Optimization), a novel method for dynamically selecting the SL. Our experiments
with four datasets show that DISCO reaches an average speedup of 10% compared
to the best static SL baseline, while generating the exact same text.

1 Introduction

Large language models (LLMs) generate tokens autoregressively [Radford et al., 2019, Brown et al.,
2020], which often leads to slow generation. Speculative decoding algorithms Leviathan et al. [2023],
Miao et al. [2024], Chen et al. [2023] reduces the inference latency by splitting the inference of a
given model into two steps. First, a fast draft model generates tokens autoregressively. Then a more
accurate (target) model validates all generated draft tokens simultaneously. See Fig. 1 for an example.
The effectiveness of speculative decoding depends on the speculation lookahead (SL)—the number
of tokens generated by the draft model at each iteration. An SL too small leads to too many target
forwards steps; SL values too large add redundant draft forward passes. Yet, existing speculative
decoding approaches use a static SL—an SL that remains constant across all iterations [Leviathan
et al., 2023, Miao et al., 2024, Chen et al., 2023, Cai et al., 2024, Li et al., 2024]. This work starts
by defining an oracle SL—a method that assigns each iteration its optimal SL. We observe that the
optimal SL shows a high variance across iterations (Fig. 2). We then use this oracle to estimate an
upper bound of the expected speedup (compared to using static SLs), showing a potential gain of up
to 39% speedup. We then propose DISCO, a novel method for selecting the SL before each iteration.
DISCO estimates the likelihood of the next draft token being accepted by the target model, and
halts the draft model if this likelihood is too small. We evaluate DISCO across various tasks: code
generation, text summarization, and instruction following. Our results show an average speedup of
10% compared to optimal static SL and 31% compared to a previously known heuristic for controlling
SLs Gante [2023], all without modifying the output text (App. F). DISCO also transfers well across
tasks from the same category: training it on one task and using it on another leads to similar speedups.

2 Background: Speculative Decoding

Speculative decoding expedites LLM generation while ensuring no accuracy loss by dividing it into
two stages. In the first stage, a fast but less accurate draft model MD autoregressively generates

4th NeurIPS Efficient Natural Language and Speech Processing Workshop (ENLSP-IV 2024).

mailto:jonathan.mamou@intel.com

a sequence of tokens. In the second stage, a large but more accurate target model MT conducts
parallelized verification over the generated draft tokens. This process allows the model to potentially
produce multiple tokens per target forward pass.

Figure 1: An illustration of a single spec-
ulative decoding iteration with Specu-
lation Lookahead (SL) = 5. Given a
prompt t0, a draft model autoregressively
generates 5 tokens t1, . . . , t5. The target
model validates them all in parallel and
accepts only t1, t2, t3. As t4 and t5 are re-
jected, the SL is suboptimal (too large).

Speculation lookahead (SL) The effectiveness of spec-
ulative decoding in accelerating the token generation pro-
cess relies heavily on the SL parameter, which determines
how many tokens are generated by the draft model before
each validation step. The effect of the SL on the overall
speedup is subject to a tradeoff; higher SLs potentially
reduce the number of target model validations, but also in-
crease the number of redundant draft generations (Fig. 1),
and vice-versa. The majority of speculative decoding ap-
proaches use a static SL—the same number of draft tokens
are generated per speculative iteration.1 Chen et al. [2023]
explored various static SLs, across different target-draft
model pairs and tasks, and empirically showed that as the
SL rises, the overall speedup increases until reaching a
certain threshold, beyond which it either levels off or even
regresses. To study the effect of the SL, Leviathan et al.
[2023] defined the improvement factor (IF) as the expected
token generation speedup:

IF =
1 − αγ+1

(1 − α)(γc + 1)
(1)

where α denotes the acceptance rate, indicating the ex-
pected probability of a draft token to be accepted by the target model; c represents the cost coefficient,
indicating the ratio between the walltime of a forward pass run of the draft model MD and the wall
time of a forward pass run of the target model MT ; and γ represents the static SL value.2 While
both α and c are important to the selection of the target-draft model pair, finding the optimal γ is
fundamental to the effectiveness of the system.

3 Dynamic Speculation Lookahead

The IF function (Eq. (1)) is based on the simplifying assumption that the probability of accepting
draft tokens by the target model is i.i.d. Nevertheless, in practical scenarios, different tokens may
have varying levels of predictability, which challenges this i.i.d. assumption, and suggests that using
a static SL might be suboptimal. Below we consider an oracle experiment, which applies the optimal
dynamic γ value at each iteration. We then propose a method for dynamically setting γ, showing that
it strongly outperforms a static selection method for any choice of a static SL.

Finding the optimal SL per iteration We start by employing an oracle for detecting the optimal
value of SL (γ) for each speculative iteration. The oracle uses the draft model to autoregressively
generate tokens until a mismatch occurs between the predicted tokens of the draft and target models.
This process is repeated for each speculative iteration, ultimately returning the optimal (maximum)
number of accepted draft tokens per iteration. The mismatch between the tokens is determined by
using the rejection sampling algorithm introduced by Leviathan et al. [2023] with zero temperature.
This oracle fulfills the speculative decoding potential: generating the maximal number of valid draft
tokens at each iteration, and making a minimal number of calls to both draft and target model. Figure 2
shows the oracle SL values across the speculative iterations for one MBPP example. Compared to
the static SL, we observe a lower number of both draft and target forward passes. Figure 3 shows
the average oracle SL over the speculative iterations for the Alpaca dataset Taori et al. [2023]. Both
figures show a high variance of oracle SL values, implying that astatic SL is likely to be suboptimal.
See App. A for further analysis.

1A notable exception is Gante [2023], who applies a heuristic for dynamic SL adaptation by modifying the
SL based on the acceptance rate of previous iterations.

2IF computation assumes enough compute resources for increased concurrency as γ rises.

2

Figure 2: Oracle and static SL values for different
speculative iterations on one MBPP example. For
static SL, we run 38 target forward passes and
192 draft forward passes, while for oracle SL, we
only run 27 target forward passes and 129 draft
forward passes. We observe a high variance of
oracle SL values.

Figure 3: The average oracle SL over the nor-
malized index of the speculative iterations for the
Alpaca dataset. We observe a high variance of
oracle SL values.

DynamIc SpeCulation lookahead Optimization We introduce DISCO, a simple method for
dynamically setting the SL value at each iteration. To estimate the correct SL value at each step, we
employ a simple classifier as follows. Immediately after generating any draft token, our classifier
decides whether the draft model MD should proceed and generate the next token or switch to the
target model MT for verification. The classifier takes as inputs the probability vector of the draft
model (yD

i) and the token position (i), generating a confidence score (Ci) used for the decision-making
as follows:

Ci = FFN(Concat(Topk(yD
i), Ent(yD

i), i)) (2)

where Topk() selects the top k values and Ent() is the entropy function.3 At inference time, Ci is
compared against a predetermined threshold τ to decide whether the draft model should continue to
generate the next token or turn to the target model for validation. In addition, we limit the number
of draft generated tokens to SLmax.4 Note that our method adapts the rejection sampling algorithm
which preserves the distribution of MT , thus ensuring no quality degradation.

4 Experiments

Datasets and Models We evaluate our method on four datasets spanning three tasks: code gen-
eration using MBPP Austin et al. [2021] and HumanEval Chen et al. [2021]; text summarization
using CNN-DailyMail Nallapati et al. [2016]; and instruction-following using Alpaca. We use the
training sets for training the SL classifier and the validation sets for setting the threshold τ and
the SLmax hyperparameter. For HumanEval, which has no training and validation sets, we evaluate
transfer learning from MBPP. For code generation tasks, we use the Starcodermodel family Li et al.
[2023]—15B for target and 168M for draft. For the other tasks, we use Vicuna models—13B as
target Chiang et al. [2023] and 68M as draft Yang et al. [2024]. See Apps. B and C for more details.

SL classifier training To train the classifier we extract features from the training sets of our datasets
MBPP, CNN-DM, and Alpaca. For minimal overhead, we use a shallow 2-layer FFN classifier and
train it based on the extracted features to predict the agreement between the draft and target models.
The training employs cross-entropy loss with Total Variance as distance measure: TV(yD

i , y
T
i), where

yD
i and yT

i represent the vocabulary distribution of MD and MT respectively at the ith token position.
We evaluate the quality of the classifier by measuring its F1 score on the validation set. The F1 results
obtained on the datasets are relatively high; for instance, 95% on MBPP, compared to 85% using the
optimal static SL. See Apps. D and E for more details.

Baselines and Results We compare the LLM inference latency of DISCO to both static SL (static
SL-5) and dynamic heuristic SL setups (dynHeur SL; Gante, 2023).

3We use k = 10 in all experiments.
4SLmax enables optimized execution with LLMs using fixed tensor shapes.

3

Benchmark Method Latency Speedup

MBPP

Target 23.21 1.00x
dynHeur SL 20.07 1.16x
static SL-5 15.88 1.46x
static SL-opt 14.16 1.64x
DISCO (ours) 12.58 1.84x

oracle 10.18 2.28x

HumanEval
(transfer
learning)

Target 23.46 1.00x
dynHeur SL 22.57 1.04x
static SL-5 14.43 1.63x
static SL-opt 14.42 1.63x
DISCO (ours) 12.78 1.84x

oracle 10.59 2.22x

CNN-DM

Target 38.29 1.00x
dynHeur SL 21.18 1.81x
static SL-5 19.74 1.94x
static SL-opt 20.66 1.85x
DISCO (ours) 17.85 2.15x

oracle 15.41 2.48x

Alpaca

Target 47.67 1.00x
dynHeur SL 31.83 1.50x
static SL-5 23.79 2.00x
static SL-opt 23.65 2.02x
DISCO (ours) 22.49 2.12x

oracle 20.04 2.38x

Table 1: Average latency results (in milliseconds) on
different benchmarks. HumanEval results use a clas-
sifier trained on MBPP (transfer learning). All results
are provided with greedy decoding (temperature=0).

We also consider the optimal static SL base-
line tuned on our validation sets (static SL-
opt). Finally, we also report results for our
oracle (Sec. 2), which represents the lower
bound on latency. Table 1 presents our re-
sults using the rejection sampling scheme
with greedy decoding (temperature=0) since
baselines get higher speedup Leviathan et al.
[2023]. Employing an SL classifier consis-
tently outperforms all other baselines across
all benchmarks. Average latency improve-
ments of DISCO over the optimal static
SL and the dynamic heuristic baselines are
10.3% and 31.4% respectively, while preserv-
ing the same output as the target model. Im-
portantly, our improvement does not come
only from our training data: the optimal static
SL (as fit by that data) is still underperformed
by DISCO. Finally, DISCO transfers well
across tasks: when trained on MBPP, it is
still outperforms all baselines on HumanEval.
See App. G for further analysis.

5 Related Work

Pioneering studies on speculative decod-
ing Leviathan et al. [2023], Chen et al. [2023]
introduced a rejection sampling scheme that
preserves the distribution of the target model,
guaranteeing that speculative decoding main-
tains the quality of the target model. Subse-
quent work Miao et al. [2024] elevated the
average number of accepted tokens by using several draft models. Most recently, Timor et al. [2024]
introduced DSI, a distributed variation of speculative decoding that is provably faster than non-
distributed methods and does not require additional training or architectural changes. To eliminate
the need for a separate draft model, Li et al. [2024], Cai et al. [2024], Bhendawade et al. [2024],
Yang et al. [2024] train additional, specialized draft layers on top of the transformer decoder. DISCO
transfers well within domains and does not require classifier training per dataset whereas these
methods necessitate training per dataset. At inference time, they employ a static SL; we believe
that DISCO can be beneficially applied to these approaches, we leave this research for future work.
Zhang et al. [2023] proposed draft-exiting with an adaptive threshold for self-speculative decoding
using a rule-based approach that compares a confidence to a predetermined threshold. This method
seems suitable to approaches where the draft is a subset of the target model, whereas our approach is
more generic. A very recent concurrent work by S et al. [2024] enhanced the draft model’s accuracy
by granting it access to the target model’s representations. In addition, it employed a classifier to
determine whether to halt or continue the speculation process. Our work delves into the impact of the
SL on the efficiency of speculative decoding, encompassing comparisons between static and dynamic
SL approaches, as well as the upper bound of improvement represented by the oracle SL.

6 Conclusion

We have shown that using the same speculation lookahead parameter across speculative decoding
iterations is suboptimal. We introduced DISCO, a dynamic speculation lookahead optimization
method. The method uses a classifier that determines whether the draft model should continue to
generate the next token or pause and transition to the target model for validation. We evaluated
DISCO’s effectiveness using four benchmarks and demonstrated average speedup gains of 10.3% and
31.4% relatively to the optimal static SL and dynamic heuristic baselines. Our results highlight the
potential of further reducing inference cost by using simple, efficient techniques.

4

References
Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,

Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021. URL https://arxiv.org/abs/2108.07732. arXiv:2108.07732.

Loubna Ben Allal, Niklas Muennighoff, Logesh Kumar Umapathi, Ben Lipkin, and Leandro von
Werra. A framework for the evaluation of code generation models. https://github.com/
bigcode-project/bigcode-evaluation-harness, 2022.

Nikhil Bhendawade, Irina Belousova, Qichen Fu, Henry Mason, Mohammad Rastegari, and Mahyar
Najibi. Speculative streaming: Fast llm inference without auxiliary models, 2024. URL https:
//arxiv.org/abs/2402.11131. arXiv:2402.11131.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri Dao.
Medusa: Simple llm inference acceleration framework with multiple decoding heads, 2024. URL
https://arxiv.org/abs/2401.10774. arXiv:2401.10774.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling, 2023. URL
https://arxiv.org/abs/2302.01318. arXiv:2302.01318.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.
arXiv:2107.03374.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna:
An open-source chatbot impressing GPT-4 with 90%* ChatGPT quality, 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong, Wen
tau Yih, Luke Zettlemoyer, and Mike Lewis. Incoder: A generative model for code infilling and
synthesis. In Proc. of ICLR, 2023. URL https://arxiv.org/abs/2204.05999.

Joao Gante. Assisted generation: a new direction toward low-latency text generation, 2023. URL
https://huggingface.co/blog/assisted-generation.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In Proc. of ICML, 2023. URL https://arxiv.org/abs/2211.17192.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue
Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João Monteiro,
Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Logesh Kumar
Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason
Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang,
Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo Villegas,
Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor, Jennifer Ding, Claire
Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu, Jennifer Robinson,

5

https://arxiv.org/abs/2108.07732
https://github.com/bigcode-project/bigcode-evaluation-harness
https://github.com/bigcode-project/bigcode-evaluation-harness
https://arxiv.org/abs/2402.11131
https://arxiv.org/abs/2402.11131
https://arxiv.org/abs/2401.10774
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2107.03374
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/2204.05999
https://huggingface.co/blog/assisted-generation
https://arxiv.org/abs/2211.17192

Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy, Daniel Fried,
Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf, Arjun
Guha, Leandro von Werra, and Harm de Vries. StarCoder: may the source be with you!, 2023.
URL https://arxiv.org/abs/2305.06161. arXiv:2305.06161.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE: Speculative sampling
requires rethinking feature uncertainty, 2024. URL https://arxiv.org/abs/2401.15077.
arXiv:2401.15077.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Rae Ying Yee Wong,
Zhuoming Chen, Daiyaan Arfeen, Reyna Abhyankar, and Zhihao Jia. SpecInfer: Accelerating
generative llm serving with speculative inference and token tree verification. In Proc. of ASPLOS,
2024. URL https://api.semanticscholar.org/CorpusID:258740799.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos, Çağlar Gulçehre, and Bing Xiang. Abstractive
text summarization using sequence-to-sequence RNNs and beyond. In Stefan Riezler and Yoav
Goldberg, editors, Proceedings of the 20th SIGNLL Conference on Computational Natural Lan-
guage Learning, pages 280–290, Berlin, Germany, August 2016. Association for Computational
Linguistics. doi: 10.18653/v1/K16-1028. URL https://aclanthology.org/K16-1028.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Aishwarya P S, Pranav Ajit Nair, Yashas Samaga, Toby Boyd, Sanjiv Kumar, Prateek Jain, and
Praneeth Netrapalli. Tandem transformers for inference efficient llms, 2024. URL https://
arxiv.org/abs/2402.08644. arXiv:2402.08644.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Alpaca: A strong, replicable instruction-following model.
Stanford Center for Research on Foundation Models, 2023. https://crfm.stanford.edu/
2023/03/13/alpaca.html.

Nadav Timor, Jonathan Mamou, Daniel Korat, Moshe Berchansky, Oren Pereg, Moshe Wasserblat,
Tomer Galanti, Michal Gordon, and David Harel. Distributed speculative inference of large
language models. arXiv preprint arXiv:2405.14105, 2024.

Sen Yang, Shujian Huang, Xinyu Dai, and Jiajun Chen. Multi-candidate speculative decoding, 2024.
URL https://arxiv.org/abs/2401.06706. arXiv:2401.06706.

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen, Gang Chen, and Sharad Mehrotra. Draft &
verify: Lossless large language model acceleration via self-speculative decoding, 2023.

6

https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2401.15077
https://api.semanticscholar.org/CorpusID:258740799
https://aclanthology.org/K16-1028
https://arxiv.org/abs/2402.08644
https://arxiv.org/abs/2402.08644
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://arxiv.org/abs/2401.06706

Datasets Target Model Draft Model oracle SL
MBPP Starcoder-15B Starcoder-168M 18.0 (± 46.2)

HumanEval Starcoder-15B Starcoder-168M 14.7 (± 42.6)
CNN-DM Vicuna-13B Vicuna-68M 3.2 (± 4.0)

Alpaca Vicuna-13B Vicuna-68M 2.4 (± 2.1)
Table 2: Average (and STD) of the oracle SL as determined by the oracle per dataset and target/draft
models.

Datasets Train Validation Test
MBPP 374 80 80

HumanEval - - 80
CNN-DM 500 80 80

Alpaca 500 80 80
Table 3: Number of samples per dataset and split.

A Oracle SL Analysis

Table 2 shows the oracle SL expectancy and standard deviation of the oracle measured on different
datasets and models and Fig. 4 shows the probability distribution of the oracle SL for the different
datasets. We observe a high variance of SL values.

We hypothesized that later tokens are more predictive but eventually found only a relatively weak
correlation, as Fig. 2 and Fig. 5 show. The figures are bar charts of the average oracle SL over the
normalized index of the Speculation Iteration. We calculate the bars as follows. For each prompt of a
dataset, we have its corresponding sequence of oracle SLs. The length of the sequence is equal to the
number of Speculation Iterations. For example, consider a prompt with oracle SLs ⟨7, 3, 13, 21, 8⟩.
Its normalized index is ⟨0, 0.25, 0.5, 0.75, 1⟩. The bars represent the average oracle SL of buckets of
size 0.0001.

B Datasets and Prompts Details

We use standard datasets from Hugging Face and standard prompts from the state-of-of-the-art. Tab. 3
summarizes the composition of the datasets. We provide more details per dataset in the next sections.

B.1 MBPP

For MBPP, we use the ‘train’, ‘validation’ and ‘test’ splits of the ‘full’ subset. The whole ‘train’
split is used for training, while 80 randomly selected samples of the ‘validation’ and ‘test’ splits are
respectively used for validation and test. MBPP is distributed under the cc-by-4.0 License.

Concerning the prompt, we followed Ben Allal et al. [2022], Fried et al. [2023] and included the
description of the programming task and a single test to verify solution, in order to help the model
catch the signature of the function (see Fig. 6).

B.2 HumanEval

HumanEval dataset contains a single subset with a single split (‘test’ split). We use 80 randomly
selected samples of that split for test. Note that since we evaluate transfer learning from MBPP, we
don’t need HumanEval training and validation sets. HumanEval is distributed under the MIT License.

Prompt contains only prompt field from the dataset.

B.3 CNN-DM

For CNN-DM, we use the ‘train’, ‘validation’ and ‘test’ splits of the ‘2.0.0’ subset. 500 randomly
selected samples of the ‘train’ split is used for training, while 80 randomly selected samples of the

7

https://huggingface.co/datasets
https://huggingface.co/datasets/mbpp
https://creativecommons.org/licenses/by/4.0/deed.en
https://huggingface.co/datasets/openai_humaneval
https://choosealicense.com/licenses/mit/
https://huggingface.co/datasets/cnn_dailymail

Figure 4: Oracle SL probability histogram on the different datasets. We observe a high variance of
SL values.

8

(a) MBPP

(b) HumanEval

(c) CNN-DM

(d) Alpaca

Figure 5: Bar chart of the average oracle SL. Note that the iteration index seems to have low predictive
power for the oracle SL.

9

"""{text}
{test_list[0]}
"""

Figure 6: MBPP Prompt

"""Summarize:
{article}
Summary:
"""

Figure 7: CNN-DM Prompt

‘validation’ and ‘test’ splits are respectively used for validation and test. CNN-DM is distributed
under the Apache License 2.0.

We included the article field in the prompt as in Fig. 7.

B.4 Alpaca

Alpaca dataset contains a single split (‘train’ split). As for CNN-DM, 500 randomly selected samples
of the ‘train’ split is used for training, while 80 randomly selected samples of the ‘validation’ and
‘test’ splits are respectively used for validation and test. Alpaca is distributed under the cc-by-nc-4.0
License.

We follow Taori et al. [2023] to define the prompts. For samples with a non-empty input field, we use
the prompt as in Fig. 8 while for samples with empty input field, we use the prompt as in Fig. 9.

C Models

For all models, we retrieve model weights from Hugging Face. For clarity and reproducibility, we
provide the URLs for each model used:

• Vicuna-13B: https://huggingface.co/lmsys/vicuna-13b-v1.3, distributed under
Non-Commercial License.

"""Below is an instruction that describes a
task, paired with an input that provides
further context. Write a response that
appropriately completes the request.

Instruction:
{instruction}

Input:
{input}

Response:
"""

Figure 8: Alpaca prompt for samples with a non-empty input field.

10

https://choosealicense.com/licenses/apache-2.0/
https://huggingface.co/datasets/tatsu-lab/alpaca
https://creativecommons.org/licenses/by-nc/4.0/deed.en
https://creativecommons.org/licenses/by-nc/4.0/deed.en
https://huggingface.co/models
https://huggingface.co/lmsys/vicuna-13b-v1.3

"""Below is an instruction that describes a
task. Write a response that appropriately
completes the request.

Instruction:
{instruction}

Response:
"""

Figure 9: Alpaca prompt for samples with empty input field.

Datasets F1 static-SL F1 DISCO
MBPP 85 95

CNN-DM 76 88
Alpaca 68 77

Table 4: Classifier F1 scores for both static SL and DISCO.

• Vicuna-68M: https://huggingface.co/double7/vicuna-68m, distributed under the
Apache License 2.0.

• Starcoder-15B: https://huggingface.co/bigcode/starcoder, distributed under
the Responsible AI License.

• Starcoder-168M: https://huggingface.co/bigcode/tiny_starcoder_py, also
distributed under the Responsible AI License

D Classifier

D.1 Feature Extraction from Training Data for Classifier Training

To train the model for each dataset, MBPP, CNN-DM, and Alpaca, we used the corresponding
training set of each dataset. For each token in each training set, we extracted a boolean label
(accepted/rejected) and a list of features in the following manner: We ran the target model using
the standard autoregressive approach for generating tokens based on the input prompt. In contrast,
the draft model iteratively generated only a single token per iteration. During each iteration, the
draft model generated this token based on the concatenation of the input prompt and the tokens
subsequently generated by the target model. Draft tokens that resembled the target token at the same
position were labeled "accepted," while others were labeled "rejected." Corresponding features were
extracted for both draft and target tokens, encompassing the top-k probabilities of the vocabulary
distribution, the entropy associated with these probabilities, and the token position value counted
from the beginning of the generation process.

D.2 Classifier F1 Results

We evaluate the quality of the classifier by measuring its F1 score on the validation set and report in
Tab. 4 F1 scores for both static SL and DISCO. F1 scores of DISCO always outperforms F1 scores of
static SL.

F1 score measures the accuracy of the classifier in predicting the speculative length (SL) but does
not account for how well the predictions align with the oracle’s behavior in reducing latency. In
particular, F1 is influenced by 2 different types of error FP and FN that have a different impact on
the speedup. FP Errors lead to unnecessary speculative execution, which wastes resources but might
not drastically reduce overall speedup. FN Errors lead to missed opportunities for speedup, having a
more severe impact on overall latency reduction.

11

https://huggingface.co/double7/vicuna-68m
https://choosealicense.com/licenses/apache-2.0/
https://huggingface.co/bigcode/starcoder
https://www.licenses.ai/
https://huggingface.co/bigcode/tiny_starcoder_py
https://www.licenses.ai/

Dataset static SL-opt dynHeur SL

MBPP 11.2 37.3
HumanEval 11.4 43.4
CNN-DM 13.6 15.7
Alpaca 4.9 29.3

Average 10.3 31.4
Table 5: The latency improvement (percentage) of DISCO over static SL-opt and dynHeur SL across
four datasets.

Benchmark Method Latency(ms) Speedup

CNN-DM

Target 36.32 1.00x
static SL-5 21.88 1.66x
DISCO (ours) 19.96 1.82x

ppl SL-opt 26.79 1.43x
Table 6: Additional average latency results for CNN-DM: temperature=1; perplexity-based baseline.

E Additional Implementation Details

Our implementation is based on the Transformers library of HuggingFace, distributed under the
Apache License 2.0, and PyTorch Deep Learning library, distributed under the BSD License (BSD-3).
Our code will be available upon publication under the Apache License 2.0.

For every dataset, DISCO classifier is trained on the train set; threshold τ and SLmax hyper-parameters
are fine-tuned on the validation set optimizing the latency. Optimal static SL is estimated on the
validation set. Latency results are reported on the test set.

All our experiments are run on a single A100 80GB GPU.

F Additional Results

Table 5 shows the percentage of improvement in latency of DISCO over static SL-opt and dynHeur
SL baselines. The numbers are calculated based on the latency results shown in Table 1

G Further Latency Results Analysis

Concerning SL-opt and SL-5 speedup values on CNN-DM reported in Tab. 1, note that the optimal
static SL is tuned on the validation set while the latency and speedup reported numbers are on the
test set. This is similar to our setup, where the classifier is tuned on the validation set, and similarly
reported on the test set. We observe that for CNN-DM, the optimal SL on the validation set is not as
good as the SL-5 on the test set.

Since DISCO is sampling temperature agnostic, we present in Tab. 6 latency results for CNN-DM
with non-zero temperature; we observe that DISCO speedup also improves in that case. In addition,
we report latency results using a simple rule-based approach: we use the perplexity to measure the
confidence in the sequence of tokens predicted by the draft, when lower perplexity indicates higher
confidence. Optimal perplexity threshold is tuned on our validation sets (ppl SL-opt). We observe
that it yields a lower speedup.

12

https://github.com/huggingface/transformers
https://choosealicense.com/licenses/apache-2.0/
https://github.com/pytorch/pytorch
https://opensource.org/license/BSD-3-Clause
https://choosealicense.com/licenses/apache-2.0/

	Introduction
	Background: Speculative Decoding
	Dynamic Speculation Lookahead
	Experiments
	Related Work
	Conclusion
	Oracle SL Analysis
	Datasets and Prompts Details
	MBPP
	HumanEval
	CNN-DM
	Alpaca

	Models
	Classifier
	Feature Extraction from Training Data for Classifier Training
	Classifier F1 Results

	Additional Implementation Details
	Additional Results
	Further Latency Results Analysis

