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Abstract

This paper explores the potential of a small, domain-specific language model trained
exclusively on sports-related data. We investigate whether extensive training data
with specially designed small model structures can overcome model size constraints.
The study introduces the OnlySports collection, comprising OnlySportsLM,
OnlySports Dataset, and OnlySports Benchmark. Our approach involves:
1) creating a massive 600 billion tokens OnlySports Dataset from FineWeb,
2) optimizing the RWKV-v6 architecture for sports-related tasks, resulting in a
196M parameters model with 20-layer, 640-dimension structure, 3) training the
OnlySportsLM on part of OnlySports Dataset, and 4) testing the resultant
model on OnlySports Benchmark. OnlySportsLM achieves a 37.62%/34.08%
accuracy improvements over previous 135M/360M state-of-the-art models and
matches the performance of larger models such as SomlLM 1.7B and Qwen
1.5B in the sports domain. Additionally, the OnlySports collection presents
a comprehensive workflow for building high-quality, domain-specific language
models, providing a replicable blueprint for efficient AI development across various
specialized fields.

1 Introduction

General-purpose large language models (LLMs) have demonstrated remarkable capabilities across
various tasks [17]. However, such performance comes at the cost of excessive computational resources
and sometimes inefficiencies in domain-specific applications. Domain-specific language models offer
a promising alternative, potentially achieving comparable or superior performance in targeted areas
while significantly reducing model size.

Despite their potential, recent domain-specific models face several challenges. Large models such as
BloombergGPT [23], while powerful, requires extensive computational resources (e.g., 64 × 8 A100
40GB with a total of 1.3 million GPU hours), making them infeasible for most research institutions.
Additionally, many domain models suffer from a lack of high-quality domain-specific text data, with
models like BioMedLM [4] trained on only 34.6 billion tokens and SportsBert [16] on merely 1-2
billion tokens. Furthermore, most domain models follow the model structure of general models,
leaving room for optimization, especially for smaller model sizes.

In light of these challenges, recent research on small general-purpose language models, such as
MobileLLM [13] and SmolLM [1], has provided valuable insights into efficient model structures.
However, their effectiveness in domain-specific modeling remains unproven. To address these
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challenges and leverage recent insights, we propose a new approach for small domain-specific
language models, utilizing specialized model structures and a collection pipeline for large in-domain
corpus for efficient and cost-effective training.

To verify this approach, we choose sports as the target domain due to its unique combination of
broad public interest, rich content, and a constant influx of new data through ongoing events and
competitions. Moreover, sports language often contains domain-specific jargon, statistics, and
contextual nuances that general-purpose models may struggle to capture accurately. By focusing
on sports, we can demonstrate the potential of domain-specific models in a field that is both widely
accessible and technically challenging. Additionally, the sports domain provides an excellent testbed
for evaluating a model’s ability to handle real-time information processing and generation, skills that
are crucial in many real-world applications. Based on this approach and domain selection, we present
OnlySports1, a novel framework for developing high-performance, small-scale sports language
models.

1.1 Contributions

1. OnlySports Dataset: A large-scale, high-quality sports-specific text corpus of 600 billion
tokens, extracted from the FineWeb dataset [19].

2. OnlySports Benchmark: A novel evaluation method for assessing sports knowledge generation,
using 1000 diverse prompts and state-of-the-art (SOTA) language models for evaluation.

3. OnlySportsLM: A 196 million parameter RWKV-v62 [20] based sports language model trained
on half of the OnlySports Dataset. In our OnlySports Benchmark, OnlySportsLM outperforms the
preceding SOTA general purpose 135M/360M language model by 37.62%/34.08%.

2 Collection of Domain Data

In this section, we present the path to building OnlySports Dataset, a comprehensive collection of
English sports documents. This dataset comprises a diverse range of content including news articles,
blogs, match reports, interviews, and tutorials, all extracted from the FineWeb dataset. FineWeb is a
thoroughly cleaned and deduplicated subset of CommonCrawl, spanning from 2013 to present. It
represents one of the best open-source datasets for LLM training. Our extraction process involved
two key steps: first, we applied URL filtering to identify potentially relevant content, and second, we
developed a custom sports text classifier to accurately identify and extract sports-related documents
from the filtered data. The resulting OnlySports Dataset encompasses 1.2 TB of text, equivalent
to approximately 600 billion RWKV tokens. This makes it the largest sport domain dataset to date,
significantly surpassing previous collections in both scale and comprehensiveness.

2.1 URL Filtering

To efficiently identify potentially sports-related content within the FineWeb dataset, we implemented
a preliminary URL filtering step. We carefully select a list of sports-related terms, encompassing
various sports, leagues, brands, and media. This approach allows us to rapidly narrow down the
dataset to documents likely to contain sports content.

Our keywords include:

• General sports terms: sport, athletic, athlete, fitness, workout, gym, league, team, champion,
football, soccer, basketball, baseball, tennis, cricket, rugby, golf, volleyball, hockey, cycling,
swimming, wrestling, running, boxing, racing, swim, goal

• Major leagues and organizations: NFL, NBA, MLB, NHL, FIFA, UEFA, NCAA, MMA,
UFC, WWE, Premier League, LaLiga, Bundesliga, SerieA, Ligue1, EPL, NASCAR, MotoGP,
Formula1, F1

• Sports events, brands, and media: Olympic, cup, playoff, marathon, copa, Nike, Adidas,
ESPN, BleacherReport, SI.com, news

1Our Huggingface collection is available at: https://huggingface.co/collections/
Chrisneverdie/onlysports-66b3e5cf595eb81220cc27a6

2Our training code is available at: https://github.com/chrischenhub/OnlySportsLM
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Figure 1: Data pipeline to create OnlySports Dataset

We applied these keywords in both their standard and capitalized forms where appropriate (e.g.,
NBA/nba, FIFA/fifa). This keyword list ensured a high recall in identifying potential sports content,
which was then further refined by our classification model. Although the list does not exhaustively
cover all sports, the nature of sports websites often includes the word sport in their URL, ensuring
broad coverage of sports-related content.

Table 1: Sports text classifier performance in the test set, correctly classifying most labels

Class Precision Recall F1-Score Support
0 0.98 0.98 0.98 3631
1 0.99 0.99 0.99 6429
Accuracy 0.99 10060
Macro Avg 0.99 0.99 0.99 10060
Weighted Avg 0.99 0.99 0.99 10060

2.2 Sports Text Classifier

To develop our sports text classifier, we first created a balanced dataset of sports and non-sports
content. We manually scraped 64k samples from seven prestigious sports websites, selected to cover
a wide range of sports topics. To balance this, we classified 36k non-sports text documents from a
subset of FineWeb using GPT-3.5, ensuring diversity in the non-sports content. We then labeled this
combined dataset, designating sports-related text as class 1 and non-sports text as class 0.

For the classification model, we chose Snowflake-arctic-embed-xs [15] as our base due to its efficient
performance on text classification tasks. We then add a binary classification layer to this model and
train it for 10 epochs with a learning rate of 3e-4.

Table 1 presents the performance metrics of our classifier, demonstrating its exceptional accuracy in
distinguishing between sports and non-sports documents. The model achieves near-perfect precision,
recall, and F1-scores for both classes, with an overall accuracy of 0.99.

2.3 Data Filtering and Conversion

Figure 1 presents a scalable MapReduce architecture [8] to filter sports-related content from the
90TB FineWeb dataset for model training. This approach allows us to overcome limitations in CPU
resources and disk space.

In the map phase, we use a Golang-based coordinator with the Gin Web framework to distribute
tasks across eight Python-powered worker servers. The filtering process occurs in two steps: 1. URL
keyword filtering, which reduced the dataset size by 85%. 2. Application of our sports text classifier
for further curation.
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The resulting filtered data is stored in parquet format and uploaded to HuggingFace. For the reduce
phase, we utilized a high-capacity cloud server to tokenize the parquet files using an open-source
Rust script. This streamlined pipeline enabled us to efficiently process the massive FineWeb dataset,
extracting a high-quality sports-specific corpus for training OnlySportsLM.

3 Optimizing Model Structure for Sports Domain

We explore the potential for model structural optimization before training with the OnlySports
Dataset. A previous study [13] suggests that general-purpose sub-billion parameter models perform
better when using more layers than the traditional 12-layer design while having fewer embedding
dimensions. Inspired by this depth versus width study for general models, we hypothesize that
domain-specific small models would also follow this deep and thin rule. We explore models with
approximately 190M parameters and find results that partially support this principle

3.1 Training Setup

Our experiments are conducted on 8 H100 GPUs. We perform exploratory experiments on a 4.5B
tokens subset of OnlySports Dataset.

We evaluated the pre-trained model on zero-shot commonsense reasoning tasks, including ARC-
easy, ARC-challenge [7], PIQA [3], HellaSwag [27], as well as sports text generation task using
OnlySports Benchmark.

3.2 OnlySports Benchmark

We introduce a novel evaluation method inspired by the Hellaswag benchmark but targeted specifically
for sports knowledge generation. Instead of asking multiple choice questions, our benchmark directly
assesses a model’s ability to complete sports-related prompts without fine-tuning, providing insight
into sports-specific language understanding and generation capabilities. To ensure a comprehensive
and relatively unbiased assessment, we employ multiple state-of-the-art language models as evaluators,
assessing generated responses across two key criteria: accuracy and factuality, and continuity and
relevancy. This approach allows for an evaluation of sports-related text generation capabilities across
various models.

3.2.1 Tag and Partial Sentence Generation

To construct our evaluation dataset, we generated 50 diverse sports-related tags encompassing popular
sports, major leagues, prominent athletes, and game strategies using GPT-4 API. These tags serve as
the foundation for creating a comprehensive set of prompts. For each tag, we craft 20 incomplete
sentences, resulting in a total of 1,000 prompts. Each prompt is intentionally designed to end abruptly,
providing an ideal context for models to complete. The prompts incorporate well-known sports
facts, statistics, or narratives, allowing assessment of a wide range of sports-related knowledge and
generation capabilities. For instance, for the tag #BasketballTeams, the following partial sentence
prompt is generated: Spurred on by the superstar duo of Shaquille O’Neal and Kobe Bryant, the
L.A Lakers clinched three consecutive. This abrupt ending sets the stage for models to complete
the narrative. A well-trained model would likely continue the sentence with "NBA championships
from 2000 to 2002" or a similar factual completion, demonstrating its ability to maintain contextual
coherence and accuracy.

3.2.2 Model Inference and Evaluation Using SOTA LLMs

In our inference process, each prompt is separately fed to the models. We employed consistent
hyperparameter settings across all models, with temperature set to 1 and top-p value to 0.3, to ensure
the generation of consistent, high-probability outputs. Each response is limited to 80 tokens.

To evaluate the model-generated responses, we adopt an approach inspired by LLM-as-a-judge [29],
which approximates human preferences in assessing open-ended text. We utilize two state-of-the-art
language models, GPT-4o and Claude 3.5 Sonnet, as evaluators. The assessment is conducted across
two distinct criteria at a scale of 1-5, adhering to the principle of multi-dimensional evaluation as
recommended by [29]. To mitigate potential biases inherent in large language model judges, we
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implement several measures: 1. Deployment of multiple LLM judges to enhance reliability and
reduce individual model biases. 2. Standardization of prompts and evaluation criteria to ensure
consistency across assessments. After scores are generated by each model, we take the average of
them to be the final score.

The input prompt format for evaluation is defined as follows:

• prompt: (partial sentence fed to the models)

• response: [SEP] Answer1 [SEP] Answer2 [SEP] Answer3...

Where [SEP] is a separator token used to distinguish between different model responses.

The two evaluation criteria are defined as follows:

• Accuracy and Factuality: Evaluates the model’s ability to generate accurate and fact-based
continuations, ensuring that the information aligns with well-known sports facts and data.
The score is denoted as OS-acc on a scale from 1 (mostly inaccurate with significant factual
errors) to 5 (fully accurate and factually impeccable).

• Continuity and Relevancy: Assesses the relevance of the generated text to the given
prompt, ensuring that the continuation is contextually appropriate and directly related to the
previous sentence. This criterion, denoted as OS-rel, is scored from 1 (poor continuation
that diverges significantly from the prompt’s context) to 5 (excellent continuation that
seamlessly extends the prompt’s narrative, context, and style).

For each criterion, a system message with a detailed grading rubric is provided in the appendix for
reference.

Table 2: Model performance across varying architectures. Compares models with different layer
counts and dimensions on OnlySports Benchmark and general zero-shot tasks (ARC-e, ARC-c,
PIQA, Hellaswag).

#Layer #Dim #Param final loss OS-acc OS-rel ARC-e ARC-c PIQA HS
12 768 196M 2.344 1.88 2.42 28.6 22.5 54.5 27.6
16 704 200M 2.360 1.70 2.19 28.9 22.0 53.6 27.8
20 640 196M 2.335 1.84 2.42 29.7 23.5 53.9 27.9
24 576 185M 2.338 1.86 2.38 30.1 22.3 53.1 27.7
28 512 169M 2.364 1.79 2.38 29.7 22.4 54.6 27.8

3.3 Depth and Width Experiments

Our experimental results presented in Table 2 reveal interesting insights about the relationship
between model depth and performance. We conduct a study involving models ranging from 169M
to 200M parameters, varying in depth from 12 to 28 layers and width from 512 to 768 dimensions.
We observe that both traditional wider models and moderately deeper architectures perform well
on OnlySports Benchmark. While the 12-layer wider model has the highest OS-acc (1.88) and
OS-rel (2.42) scores, the 20 layers model shows comparable results in relevancy score and slightly
less OS-acc (1.84). This finding, contrary to conclusion by [13] and [1], underscores the need for
task-specific architectural experimentation.

General zero-shot tasks exhibit some benefits from increased depth, though less pronounced than in
previous studies on general-purpose models. Models with 20 to 28 layers often outperform shallower
configurations across various reasoning tasks.

Based on these findings, we selected the L20D640 (20 layers, 640 dimensions) model for further
training, balancing strong performance across domain-specific and general tasks. We denote this
model as OnlySportsLM
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Figure 2: OnlySportsLM training loss over time with varying learning rates. The graph shows how
loss fluctuates as we adjust the learning rate, starting from higher rates and gradually decreasing to
stabilize training and reduce loss spikes. This insight is shared by the author of RWKV [20].

4 Experiments

4.1 Experimental Settings

We train OnlySportsLM from scratch utilizing the AdamW optimizer [14] with a weight decay of
0.1 and a context length of 1024 tokens. Our experiments are performed on a cluster of 8 H100 GPUs
using Lambda Lab3, with a per-GPU batch size of 40. Following a cosine decay schedule, the initial
learning rate is set to 6e-4. However, due to observed loss spikes during training, the learning rate is
subsequently adjusted, ultimately being reduced to 1e-4 (detailed in Figure 2). The ideal training
time for all 600B tokens is estimated at 223 hours. However, due to loss spikes, we had to restart the
training multiple times, resulting in a longer overall training process. Ultimately, due to constraints
on available funding, we were able to train on 315B tokens in 142 hours, completing 7500 steps. This
represents approximately half of the OnlySports Dataset.

4.2 Main Results

We compare the final OnlySportsLM checkpoint on OnlySports Benchmark and zero-shot com-
monsense reasoning tasks (Hellaswag, PIQA, ARC-challenge, and ARC-easy) with previous training
checkpoints and recent open-source models. To ensure consistency in evaluation procedures, all
models were assessed using their publicly available implementations from the HuggingFace model
repository. General benchmark scores are retrieved from their corresponding paper.

4.2.1 Sports Domain Generation

Table 3 compares our OnlySportsLM and two recent state-of-the-art general-purpose models, ranging
from 137M to 1.7B parameters. We focused on two sets of models: 1. The SmolLM series [1], with
137M, 360M, and 1.7B parameter models, reportedly surpasses the performance of all comparable
small language models on general benchmarks. 2. The Qwen2 collection [26], with 500M and
1.5B parameter models, also claims top performance on major benchmarks, even though they
were trained on multilingual datasets. These model collections, released in June 2024 and July
2024 respectively, represent the latest development in small model research. For models under 1B
parameters, OnlySportsLM outperforms all models by a significant margin. Notably, our model
gains 34.44% accuracy over Qwen2-0.5B while being 61% smaller in size. Moreover, even when
comparing to models over 1B parameter, our model performs only slightly worse (-5.23%) than
Qwen2-1.5B and marginally better (0.40%) than SmolLM-1.7B in average score. This is a surprising
result considering our model is only 12% the size of SmolLM-1.7B.

4.2.2 Zero-shot General Benchmarks

Table 3 also presents the comparison in zero-shot commonsense reasoning benchmark between
our model and the two other model collections detailed in the previous section. As expected,

3https://lambdalabs.com
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Table 3: Performance comparison of OnlySportsLM against state-of-the-art models. Our model
outperforms larger sub-1B models on sports tasks and competes with 1B+ models, raw scores
provided in Appendix A.3

Model #Params OS-acc OS-rel OS-Avg. ARC-e ARC-c PIQA HS
number of parameters < 1B

OnlySportsLM 196M 2.157 2.847 2.502 37.2 23.5 59.6 37.8
SmolLM-135M 135M 1.684 1.951 1.818 43.9 - 69.9 42.3
SmolLM-360M 360M 1.705 2.027 1.866 51.1 - 72.0 53.8
Qwen2-0.5B 500M 1.645 2.077 1.861 39.7 31.5 69.3 49.3

number of parameters ≥ 1B
Qwen2-1.5B 1.5B 2.327 2.952 2.640 48.2 43.9 75.5 66.6
SmolLM-1.7B 1.7B 2.261 2.723 2.492 61.5 - 77.3 64.1

OnlySportsLM performs the worst in all benchmarks, which is understandable given that it is only
trained on sports-related text. For general-purpose models, we observe a positive correlation between
their performance on sports domain tasks and their scores on commonsense reasoning benchmarks.

4.2.3 Performance Across Training Steps

In addition to cross-model comparison, we evaluate our model every 1000 checkpoints for
OnlySports Benchmark and every 500 checkpoints for general benchmarks throughout the training
process. This evaluation allows us to track the model’s learning progression and identify any critical
points or plateaus in performance

Figure 3: Evolution of OnlySportsLM performance across training steps. Left graph shows
OnlySports Benchmark improving steadily. Right graphs display progress on general tasks, ex-
hibiting upward trends despite fluctuations.

Figure 3 presents our model’s performance on various Benchmarks throughout the training pro-
cess. We observe a consistent improvement in both OS-acc and OS-rel scores for OnlySports
Benchmarks as training progressed. Surprisingly, we also notice performance improvements across
all general benchmarks. This unexpected trend suggests that domain-specific training on sports-
related text may enhance the model’s general language understanding and commonsense reasoning
capabilities. While the overall trend is positive, some fluctuations in performance were observed,
particularly in the general benchmarks, which could be attributed to the complexities of the training
process and the diverse nature of the evaluation tasks.

4.3 Future Work

Building upon the promising results achieved with OnlySportsLM, future work will focus on explor-
ing the model’s full potential. We aim to complete training on the entire 600B token OnlySports
Dataset when more funding is available, which may yield further improvements in both domain-
specific and general language understanding. We also plan to explore instruction tuning techniques
like instruction pre-training [6] and LAB [21] to improve performance of our model. Additionally, we
plan to investigate fine-tuning approaches for OnlySportsLM, potentially enhancing its performance
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on specific sports-related tasks. We are also interested in examining how domain improvements scale
with increased model size, given that the performance of our model is comparable to other models
with 1B parameters.

5 Related Work

Foundation models like GPT-4 [18] and Llama 3 [10] have demonstrated impressive performance on
general-purpose language related tasks. These models are huge, with parameter ranges in hundreds
of billions, and demand excessive computational resources to train. However, these general-purpose
models fail to capture domain-specific nuances and context when generating content [2, 12]. Though
techniques like fine-tuning [28, 19] and prompt engineering [5] can help in customization of general
purpose LLMs for specific domains, the model size still remains an issue.

In parallel, efforts around developing domain-specific language models with models trained on
in-domain data are also underway. Models like BloombergGPT [23] for finance, BioMedLM [4] for
medical, and Galactica [22] for scientific research are LLMs trained on domain-specific data. These
models also have billions of parameters and demand large-scale domain-specific dataset for training.
The scale of training data and the computational cost has constrained wide-scale development of
domain-specific LLMs. Further, excessive computational resources and energy requirement of
such LLMs makes their deployment challenging on mobile devices thereby necessitating model
compression through techniques like quantization [25] and pruning [11].

Recently [13] developed MobileLLM, a sub-billion parameter family of LLMs achieving SOTA per-
formance on standard language benchmarks. Through model architecture search they identified that
deep and thin architectures achieve better performance for compact LLMs. Within less than a month
of the release of MobileLLM family, two new family of LLMs with sub-billion models, Qwen2 [26]
and SmolLM [1], were introduced. SmolLM-360M is claimed to beat performance of existing models
with less than 500M parameters. The performance gains in SmolLM family are attributed to training
using a well curated, high quality dataset. These work, though focused on developing general-purpose
models, highlight the importance of data quality and model architecture optimization in developing
high performing compact LLMs. Our OnlySports framework incorporates these insights when
developing OnlySportsLM.

In sports domain, most related works focus on video and image analysis. We identified only one
other sports-specific language model, SportsBERT [16], a BERT-based [9] model trained on sports
articles. However, SportsBERT was trained on a relatively small dataset of 8 million samples (1–2
billion tokens) and is limited to performing mask-filling tasks, preventing further evaluation in
broader contexts. Additionally, we examined SportsQA [24], a multiple-choice sports comprehension
benchmark. While it offers a useful benchmark for evaluating sports-specific language models,
the study primarily employs general-purpose models with more than 13B parameters. We tested
OnlySportsLM alongside other small models on this benchmark and found that such models struggle
with this format, given their size constraints.

6 Limitation

While OnlySports collection presents promising results, we acknowledge its limitations. The
primary limitation lies in the creation criteria of OnlySports Dataset. Due to the complicated
nature of sports URLs and concerns about processing efficiency, we could not include sports beyond
the mainstream ones such as lacrosse, yoga, and archery, and their representations in general sports
websites such as ESPN can be limited. We are dedicated to discovering better low-cost extraction
techniques for domain-specific texts and planning to expand OnlySports Dataset when more
resources are available.

Another limitation is the strategy used in OnlySports Benchmark. A primary limitation in our
benchmarking approach relies on LLMs as both content generators and evaluators. This dual role
introduces the potential for error propagation, where biases or inaccuracies in generated outputs may
influence evaluation judgments, possibly inflating model performance or concealing deficiencies.
This concern is particularly relevant in the sports domain, where accurate handling of statistical
data, historical records, and specialized terminology is essential. Although we have implemented a
multi-model consensus to minimize bias, integrating human evaluators would enhance the reliability
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of accuracy claims. However, employing human evaluators poses significant challenges, especially for
under-resourced researchers, given the substantial time, cost, and domain-specific expertise required.

7 Conclusion

This study focuses on optimizing sports domain language models with sub-billion parameters. Our
findings demonstrate that for sports-related tasks, a carefully designed small model can outperform
larger general-purpose models. By leveraging OnlySports Dataset and a carefully designed
model architecture, we achieved significant improvements in sports knowledge generation and un-
derstanding. Our OnlySportsLM, a 196M parameter model, exhibits substantial advancements in
sports-related text generation compared to previous state-of-the-art methods. The model’s perfor-
mance on OnlySports Benchmark underscores its effectiveness in continuing sports-related text.
Furthermore, we demonstrate the potential of our approach in creating high-quality, domain-specific
large datasets and evaluation methods. The OnlySports Dataset and Benchmark can provide
valuable resources for future research in sports-related NLP tasks. Our study contributes to the
ongoing research in developing efficient, domain-specific language models. While our approach
shows promise in the sports domain, further investigation is needed to determine its adaptability to
other specialized fields. We believe this work may offer insights that could be valuable for researchers
exploring resource-efficient AI solutions across various domains.
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A Appendix

A.1 Evaluation Criteria

This appendix provides detailed grading rubrics for the two main evaluation criteria used in the
OnlySports Benchmark: Accuracy and Factuality (OS-acc), and Continuity and Relevancy (OS-
rel). These rubrics were provided to the GPT-4 and Claude 3.5 Sonnet models as part of their system
messages when acting as evaluators. {num} specified the number of responses that will be in the
prompt for evaluation.

A.1.1 Accuracy and Factuality

Prompt for evaluating accuracy and factuality:

You are a sports expert assigned to grade language models’ generation performance on general
sports-related text according to the provided rubric. 1 prompt and {num} responses will be presented,
all attempting to complete the same given prompt. Each response is separated by [SEP] and limited
to 80 tokens.

Evaluate responses using the following rubric for "Accuracy and Factuality":
"1": "Mostly inaccurate, significant factual errors.",
"2": "Partially accurate, mix of correct and incorrect information.",
"3": "Mostly accurate, minor factual errors.",
"4": "Highly accurate, negligible errors.",
"5": "Fully accurate and factually impeccable."

When evaluating, only consider the accuracy and factuality in the context of the given prompt. Score
these generated responses on a scale of 1-5. Only output the scores! Output scores in the following
format: ’X, X, X, X, X...’, where X is a number between 1 and 5.

A.1.2 Continuity and Relevance

Prompt for evaluating continuity and relevance:

You are a sports expert assigned to grade language models’ generation performance on general
sports-related text according to the provided rubric. 1 prompt and {num} responses will be presented,
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all attempting to complete the same given prompt. Each response is started by [SEP] and limited to
80 tokens.

Evaluate responses using the following rubric for "Continuity and Relevance":
"1": "Poor continuation, diverges significantly from the prompt’s context or topic.",
"2": "Weak continuation, maintains some elements of the prompt but introduces unrelated content.",
"3": "Adequate continuation, generally follows the prompt’s direction with some minor deviations.",
"4": "Strong continuation, closely follows the prompt’s context and style with minimal inconsisten-
cies.",
"5": "Excellent continuation, seamlessly extends the prompt’s narrative, context, and style."

When evaluating, only consider how well the generated text continues or extends the given prompt in
terms of context, topic, and style. Score these generated responses on a scale of 1-5. Only output the
scores! Output scores in the following format: ’X, X, X, X, X...’, where X is a number between 1 and
5.

A.2 Example Prompts and Responses for OnlySports Benchmark Scoring

This appendix provides concrete examples of prompts and OnlySportsLM responses to illustrate
the scoring criteria used in the OnlySports Benchmark. We present four distinct scenarios that
demonstrate various combinations of Accuracy and Factuality (OS-acc) and Continuity and Relevancy
(OS-rel) scores:

1. High Accuracy, High Relevancy 2. High Accuracy, Low Relevancy 3. Low Accuracy, High
Relevancy 4. Low Accuracy, Low Relevancy

For each scenario, we provide the original prompt, response, and a brief explanation of the scoring
rationale. These examples are designed to offer clarity on how the evaluation criteria were applied
and to aid in the reproducibility of our results.

1. Prompt: Named after the famed coach, the Vince Lombardi Trophy is awarded to the team that
wins

Response: the Super Bowl. The trophy is awarded to the team that wins the Super Bowl, and the
trophy is named after the coach who won the most Super Bowls. The trophy is named after Vince
Lombardi, who won the Super Bowl with the Green Bay Packers in 1967. The

This response accurately states that the Vince Lombardi Trophy is awarded to the Super Bowl winner.
It correctly mentions Vince Lombardi and his connection to the Green Bay Packers. The information
is directly relevant to the prompt and provides additional context about the trophy’s history.

2. Prompt: With flippers and a flutter kick, scuba divers use a modified version of the freestyle stroke
to

Response: keep their hands and feet on the ground. The dives are performed in a single-piece,
high-tech suit. The diver is required to wear a mask and a cap. In the 2012 London Olympics, the
dives were judged by a panel of experts. In 2013, the International Olympic Committee (IOC) banned
the dives.

While the response contains accurate information about diving suits and Olympic judging, it’s not
relevant to the prompt about scuba diving techniques. The mention of flippers and freestyle stroke is
ignored, making the response off-topic despite its factual correctness.

3. Prompt: "As the Lakers head toward another challenging season, they are hopeful about LeBron
James’s"

Response:’ decision to return to the team. James, who will be a free agent this summer, has not made
a decision on his future."I’m just happy that he’s back," Lakers coach Frank Vogel said. "I think he’s
a big part of our team. He’s a big part of our team. I think he’s going to be a big part of our team’

The response is relevant to the Lakers and LeBron James’s future with the team, matching the
prompt’s topic. However, it contains inaccuracies: LeBron James was not a free agent at the time
specified, and Frank Vogel was no longer the Lakers’ coach. The content is on-topic but factually
incorrect.
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4. Prompt: Hockey legend Wayne Gretzky holds the NHL record for the most points scored in a single
season at

Response: 100 points. NHL players are not the only ones who have the ability to score goals. Some
of the most popular sports in the world include soccer, basketball, baseball, football, and hockey.
In addition to the games themselves, the sport of hockey is also a popular pastime for many people.
There are many ways to play hockey, and the rules of the game

This response is both inaccurate and irrelevant. The stated record of 100 points is incorrect (Gretzky’s
record is 215 points). Most of the response diverges into general sports discussion unrelated to
Gretzky’s NHL record, making it largely irrelevant to the prompt.

A.3 Model Scores from Claude and GPT

In this section, we present the raw score from the two state-of-the-art LLMs: Claude 3.5 and GPT-4o.
The table below (Table 4) showcases the scores for each model across OS-rel (Relevance) and
OS-acc (Accuracy). These scores provide insight into how well each model performs in generating
sports-related content, with higher scores indicating better performance. We observe that Claude 3.5
Sonnet generally gives higher scores than GPT4o, using the same prompt.

Table 4: Performance scores for different language models across two evaluators

Model Claude 3.5 GPT-4o
OS-rel OS-acc OS-rel OS-acc

OnlySportsLM 3.19 2.38 2.50 1.94
Qwen2-0.5B 2.34 1.93 1.82 1.36
Qwen2-1.5B 3.23 2.73 2.68 1.93
SmolLM-135M 2.25 1.96 1.66 1.41
SmolLM-360M 2.23 1.91 1.82 1.50
SmolLM-1.7B 2.97 2.55 2.48 1.97

A.4 Social Impact

Our work on OnlySportsLM has potential for both positive and negative societal impacts. On the
positive side, a more efficient, domain-specific language model for sports could democratize access
to sports information and analysis, enhancing fan engagement and potentially supporting smaller
sports organizations with limited resources. It could also aid in sports journalism, making it easier to
generate accurate, timely reports on sporting events. However, we acknowledge potential negative
impacts as well. The model could be misused to generate false or misleading sports news, potentially
spreading misinformation or manipulating betting markets. There’s also a risk of perpetuating biases
present in sports reporting, potentially reinforcing stereotypes or unfair representations of athletes or
teams. Privacy concerns arise if the model is used to generate detailed profiles of athletes based on
publicly available data.
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