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Abstract

We introduce Neural Attention Memory Models (NAMMs) to improve the per-
formance and efficiency of transformer foundation models. NAMMs are evolved
atop pre-trained transformers to provide different latent contexts containing the
most relevant information for individual layers and attention heads. NAMMs are
universally applicable to any model using self-attention as they condition exclu-
sively on the attention matrices produced in each layer. NAMMs learned on a
relatively small set of problems substantially improve performance across multiple
unseen long-context language tasks while cutting the model’s input contexts up to
a fraction of the original sizes, setting them apart from prior hand-designed KV
cache eviction strategies that only aim to preserve model behavior. We show the
generality of our conditioning enables zero-shot transfer of NAMMs trained only
on language to entirely new transformer architectures even across input modalities,
with their benefits carrying over to vision and reinforcement learning. Our source
code is available at https://github.com/SakanaAI/evo-memory.

1 Introduction

Figure 1: NAMMs use evolution to optimize the performance of
LMs by pruning their KV cache memory. Evolved NAMMs can
be zero-shot transferred to other transformers, even across input
modalities and task domains.

Transformer architectures have be-
come the golden standard in deep
learning, with ubiquitous applications
in the design of modern foundation
models, exhibiting exceptional perfor-
mance and scalability [1–7]. The out-
puts of a transformer are solely con-
ditioned on a recent context of in-
put tokens, which for language mod-
els (LMs) generally correspond to a
window of preceding words. Thus,
tractably extending this context win-
dow is critical for long-range tasks
and has emerged as a focal area of
research [8]. However, longer con-
texts also immediately introduce con-
straints and efficiency trade-offs, hin-
dering efficiency and scalability dur-
ing training and inference.

We start tackling this challenge by focusing on the inference stage of transformers. During this stage,
the context of a transformer is maintained by what is referred to as the Key-Value (KV) cache, a
buffer of the latent representations for the keys and values of the most recent input tokens. The KV
cache can be seen as the memory of a transformer, allowing for tractable auto-regressive conditioning
without incurring quadratic costs during self-attention for each newly generated token. However, even
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maintaining a long KV cache on GPU devices for efficient execution can be prohibitively expensive.
Based on these considerations and motivated by the observed sparsity in self-attention matrices, recent
studies in language modeling have proposed several simple hand-designed heuristic strategies to
prune the KV cache, attempting to retain most of the original model’s behavior and performance [9].

In contrast, our research aims to go beyond hand-designed strategies as we hypothesize that the condi-
tioning challenge entails new opportunities to improve the capabilities of transformers in downstream
applications. A widely evidenced example in support of our hypothesis is the effectiveness of input
modifications through prompt engineering [10], even allowing foundation models to learn in-context
entirely new skills at test time [11]. Furthermore, managing memory at the token level rather than
the prompt level could enable providing targeted contexts to individual layers and attention heads,
allowing them to focus on the most relevant information for their specific needs.

Motivated by these considerations, we propose using evolutionary optimization to directly learn
a new memory system for transformers. We parameterize this framework via what we refer to
as Neural Attention Memory Models (NAMMs), learning to preserve only the task-critical tokens
from long contexts to maximize downstream performance. Evolution inherently overcomes the
non-differentiability of memory management operations with binary outcomes (selecting tokens to
preserve/discard) which render popular gradient-based methods incompatible. Our efforts are inspired
by the key role that natural evolution played in shaping human memory, which analogously appears
to selectively incorporate and actively prune information based on its lifelong usefulness [12–14].

Table 1: Summarized NAMMs performance in language modeling
(top) and zero-shot transfer settings (bottom)

Model/Eval LongBench InfiniteBench ChouBun

Performance Cache size Performance Cache size Performance Cache size

Base model 28.86 (1.00) 32768 (1.00) 1.05 (1.00) 32747 (1.00) 21.21 (1.00) 12099 (1.00)

H2O 28.37 (0.99) 8192 (0.25) 1.05 (1.00) 8193 (0.25) 19.86 (0.94) 8292 (0.69)

L2 27.42 (1.00) 8192 (0.25) 1.63 (1.55) 8193 (0.25) 18.93 (0.89) 8292 (0.69)

NAMMs 29.33 (1.11) 8155 (0.25) 11.00 (10.45) 13192 (0.40) 24.44 (1.15) 9895 (0.82)

Model/Eval 70B parameters LM Computer Vision Reinforcement Learning

Performance Cache size Performance Cache size Performance Cache size

Base model 35.22 (1.00) 10107 (1.00) 43.84 (1.00) 7039 (1.00) 29.04 (1.00) 3000 (1.00)

H2O 34.17 (0.97) 6662 (0.66) 41.97 (0.96) 4479 (0.64) 28.70 (0.99) 2048 (0.68)

L2 33.50 (0.95) 6662 (0.66) 41.45 (0.95) 4479 (0.64) 27.91 (0.96) 2048 (0.68)

NAMMs 34.70 (0.99) 8365 (0.83) 44.38 (1.01) 5100 (0.72) 31.73 (1.09) 2434 (0.81)

Our NAMMs are conditioned on fea-
tures entirely constructed from the at-
tention matrix, making them univer-
sally applicable to any transformer-
based architecture. Learning NAMMs
atop a pre-trained Llama 3 8B
model [15], we not only obtain effi-
ciency benefits, with substantial re-
ductions in the number of retained to-
kens in the KV cache, but also exceed
the performance of the full-context
model with notable margins. We val-
idate these findings across 36 differ-
ent tasks from LongBench [16], In-
finiteBench [17], and ChouBun1, a new Japanese benchmark designed to assess long-context capabil-
ities beyond the common English and Chinese. These results are in clear contrast to prior KV cache
eviction strategies, often unable to even preserve the original full-context performance.

Furthermore, we show that the generality of our parameterization enables zero-shot transfer of
NAMMs trained on three natural language tasks to entirely new transformer models. In particular, we
observe performance and efficiency gains not only when using the evolved NAMMs with other LMs
of increased size, but also transformers concerned with entirely new input modalities designed for
vision and reinforcement learning (RL). Our technical contributions can be summarized as follows:

• We introduce NAMMs, a novel memory evolution framework that adds a new dimension to
optimizing transformer models without altering their powerful architectures.

• We design and successfully train NAMMs on top of pre-trained transformer models, obtain-
ing both performance and efficiency gains on several long context language tasks.

• We show NAMMs, trained only on language tasks, can be transferred zero-shot to any other
transformers, retaining benefits across different input modalities and task domains.

2 Background and preliminaries

Attention and transformers. Transformers are neural network architectures designed specifically
for efficiently processing input sequences. These models take as input a stream of input token
embeddings and produce a set of latents with the same length within their layers. The self-attention

1ChouBun is the pronunciation of “長文”, literally translating to “long text” in Japanese.
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Figure 2: Schematic depiction of our Neural Attention Memory Model design. We extract features from a
spectrogram over the KV cache tokens attention values (left), which we reduce via an element-wise EMA
(center). These features are fed to mϕ with fully connected (FC) and cross-token BAM connections (right).
layer [18], characterizes modern transformers, facilitating effective information sharing across token
representations. This layer conducts a set of parallel computations, each known as an attention
head, mapping tokens to query, key, and value vectors ∈ Rd. These vectors are organized along the
sequence dimension in the matrices Q, K, and V , and the layer’s output is computed as:

attentionM (Q,K, V ) = AV, where, A = softmax
(
M × QKT

√
d

)
. (1)

Here, M represents an optional mask multiplying the attention matrix A, usually enforcing an causal
conditioning such that each token cannot attend to its future. An interpretation of the attention layer
comes from the elements of the attention matrix Aj

i , i.e., the dot products between each key i and
query j normalized along the column dimension. Intuitively, each of these values can be understood
as the relative importance of token i in processing the input representation of token j.

Frequency-based feature extraction. An established canonical technique to pre-process one-
dimensional non-stationary signals is the Short-Time Fourier Transform (STFT) [19]. This technique
has seen plenty of applications for feature extraction concerning audio, biomedical, seismic, and
many more kinds of modalities. The STFT performs a time-convolution of a signal, shifting each
convolutional window to the frequency domain through a discrete Fourier transform, producing a
spectrogram representation of the original input. We use ωt ∈ RM+1 to denote the fixed-sized vector
produced at each timestep t, where the M frequencies span from zero up to the Nyquist frequency.
Concretely, the m-th frequency from an STFT for time t is extracted from an input v ∈ RT as:

ωt[m] =

T∑
t′=0

v[t′]w[t− t′]e
−mπt

M . (2)

Here, the convolutional filter of the SFTF is defined by the product of a finite-length window function
w with each exponential term in the Fourier transform. A popular choice for w is the Hann window
[20], designed to minimize frequency overestimation caused by spectral leakage [21].

3 Neural Attention Memory Models

An immediate limitation of transformers is the quadratic costs associated with computing the attention
matrix A. To partially address this issue, during auto-regressive generation, the latents for the keys
and values of the tokens generated at the previous steps are usually stored in what is referred to as
the KV cache. This object can be regarded as being analogous to the memory of the transformer,
which now, at each step, only needs to compute the query, key, and value of the latest token and
perform attention over a horizontal vector by exploiting causal ordering. In this section, we describe
the feature extraction, architecture, and optimization of NAMMs, which have been designed to act on
the KV cache to improve both the performance and practicality of this powerful class of models.

3.1 Attention spectrograms for model-agnostic feature extraction

The feature extraction framework of NAMMs is designed to be agnostic to the parameterization of
the base transformer they are applied for. In particular, we build a representation for each token
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in the current KV cache memory from its corresponding column vector in the attention matrix Ai.
This vector contains precisely the knowledge of each token’s relative importance for all the past-
encountered queries, discarding all other information specific to the learned transformer weights. To
meaningfully compress this unbounded vector signal, we process it via a short-time Fourier transform
with a fixed-sized Hann window (Fig. 2, left). This operation produces a spectrogram representation
of the attention columns ωt

i , representing the frequencies with how the queries attend to each of the
stored key tokens (indexed by i) on a compressed time-axis (indexed by t).

As NAMMs rely only on the attention values for their input, they are universally applicable to any
layer producing an attention matrix. This property enables us to avoid learning individual NAMMs
for different layers, thus, greatly limiting the number of total optimized parameters. Furthermore, it
allows efficient training on top of smaller transformers and later zero-shot test-time transfer.

3.2 Memory model design and cross-token communication

Figure 3: Our backward
mask makes each token attend
exclusively to its future.

NAMMs parameterize a small neural network mϕ to output a scalar
selection score si = mϕ(ω

1:T
i ) for each ith token in the KV cache.

First, to obtain a consistent input dimension, we reduce the attention
spectrogram into a smaller feature vector ωi by compressing the time-
axis via an element-wise exponentially moving average (EMA: ωi =∑

t γ
tωt

i ; Fig. 2, center). We then append positional encodings and
feed the vector ωi to the memory model’s network mϕ to produce the
score si. Finally, we evict from the KV cache memory all latent tokens
with si < 0, treating the problem as binary classification. We repeat
this process with a fixed interval, every set number of input tokens, nup.

Backward attention memory models (BAM). For the design of mϕ,
we posit that sharing information from all tokens in memory could be
key for assessing their importance. A particularly motivating scenario
in LMs arises when considering the case of repeated words or sentences,
where learning a diversity measure that compares different tokens would
allow preventing redundancies in the KV cache. Corroborating this
intuition, even from a biological perspective, memory formation and re-
tention appear to adhere to models of neuronal competition [22]. Based
on these considerations, we design the backward attention memory
architecture (BAM) for parameter-efficient sharing of information while making use of the powerful
inductive biases enabled by masked self-attention. In particular, we implement mϕ via an initial
self-attention layer with a counter-causal mask M̂ , which we refer to as backward (Fig. 3). This
design serves to introduce a purposeful asymmetry that allows our NAMM to distinguish between
older and newer tokens. We then output si from a final linear operation:

oi = attentionM̂ (KΩ, VΩ, QΩ), si = linear(oi), (3)
where KΩ, VΩ, QΩ are the key, value, and query matrices from all feature vectors ωi in memory.

3.3 Training NAMMs with incremental evolution

We evolve our NAMMs to directly optimize performance on a subset of long-context language
modeling tasks from LongBench [16]. As we share a single mϕ across all layers, even with our
largest NAMM we only evolve about 4000 parameters. We use CMA-ES [23] and apply NAMMs
atop a Llama 3 8B base model [15] with a context extended from 8192 to 32768 tokens via NTK
positional interpolation [24]. Due to the inference costs of LMs with long inputs, we sample a subset
of different prompts from each task in each generation and propose training in an incremental fashion:
starting from a single task, and adding additional tasks at later training stages. Empirically, we
found both these choices to provide effective regularization, improving generalization (see App. C).
The performance of modern LMs on LongBench varies considerably across tasks, and even across
different task prompts. Hence, instead of using the raw scores, we opt to maximize normalized
performance relative to the base model’s full-context performance on each same subset of prompts.

We choose three tasks from different LongBench categories where Llama 3 seems to particularly
struggle: PassageRetrieval-en, DuReader, and NarrativeQA. We evolve our NAMM for 300 genera-
tions in its first incremental phase, 250 in its second, and 120 in its third, to counteract the increasing
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Figure 4: Mean and standard deviation over the CMA-ES population batch performance (left), together with
the performance of the learned mean parameter on each task (right).
Table 2: NAMMs evaluation on LongBench. The normalized performance (in brackets) is calculated using the
base model with full cache. The tasks used for NAMM’s training are highlighted in gray.

Model/Task id Single-Doc QA Multi-Doc QA Summarization
1-1 1-2 1-3 1-4 2-1 2-2 2-3 2-4 3-1 3-2 3-3 3-4

Base model 10.38 (1.00) 12.79 (1.00) 22.60 (1.00) 21.31 (1.00) 10.41 (1.00) 12.67 (1.00) 7.54 (1.00) 25.86 (1.00) 29.34 (1.00) 23.93 (1.00) 0.92 (1.00) 2.66 (1.00)

H2O 8.75 (0.84) 13.07 (1.02) 22.11 (0.98) 21.62 (1.01) 10.28 (0.99) 12.40 (0.98) 7.20 (0.95) 26.58 (1.03) 28.56 (0.97) 23.98 (1.00) 0.88 (0.96) 2.25 (0.85)

L2 8.83 (0.85) 13.13 (1.03) 22.22 (0.98) 21.79 (1.02) 9.97 (0.96) 12.15 (0.96) 5.88 (0.78) 24.96 (0.97) 28.05 (0.96) 23.28 (0.97) 1.15 (1.25) 1.52 (0.57)

NAMM (Ours) 9.14 (0.88) 12.63 (0.99) 21.94 (0.97) 21.34 (1.00) 9.71 (0.93) 11.63 (0.92) 6.98 (0.93) 20.58 (0.80) 28.78 (0.98) 24.39 (1.02) 1.04 (1.13) 3.63 (1.36)

Model/Task id Few-shot Learning Synthetic Code Overall
4-1 4-2 4-3 4-4 5-1 5-2 5-3 6-1 6-2 All tasks Test tasks Cache size

Base model 73.00 (1.00) 89.45 (1.00) 46.54 (1.00) 40.00 (1.00) 1.48 (1.00) 12.18 (1.00) 28.80 (1.00) 69.09 (1.00) 65.17 (1.00) 28.86 (1.00) N/A 32768 (1.00)

H2O 73.00 (1.00) 90.03 (1.01) 46.48 (1.00) 34.00 (0.85) 2.18 (1.47) 9.93 (0.82) 27.76 (0.96) 69.37 (1.00) 65.44 (1.00) 28.37 (0.99) N/A 8192 (0.25)

L2 66.41 (0.91) 84.92 (0.95) 45.78 (0.98) 34.38 (0.86) 3.13 (2.11) 11.00 (0.90) 28.68 (1.00) 73.45 (1.06) 55.20 (0.85) 27.42 (1.00) N/A 8192 (0.25)

NAMM (Ours) 73.00 (1.00) 89.81 (1.00) 46.35 (1.00) 40.00 (1.00) 3.04 (2.05) 27.55 (2.26) 28.60 (0.99) 69.53 (1.01) 66.35 (1.02) 29.33 (1.11) 1.07 8155 (0.25)

costs of later phases and make more efficient use of computational resources. At the end of each
phase, we resume from the best previous checkpoint. We provide training curves of our main NAMM
with BAM in Fig. 4, showing the average and standard deviation of the normalized batch performance
across the population (left), together with the normalized per-task performance on all samples of
the optimized mean from CMA-ES (right). We refer to App. A for additional details and the set of
hyper-parameters. We also provide statistics and training curves for other NAMMs in App. C.

4 Experimental Results

In this section, we evaluate and analyze evolved NAMMs as compared to full-context transformers
and two recent hand-designed methods for KV cache management: H2O [25] and L2 [26]. We
compare each method in terms of absolute and normalized performance and also provide the resulting
average cache size recorded at the end of each prompt. We first consider three long-context language
modeling benchmarks spanning 36 diverse tasks in three languages, atop the same Llama 3 8B model
from training. Then, we evaluate the zero-shot transfer of NAMMs to other unseen transformers and
task domains. In particular, we not only consider transfer to larger LMs, but also transformers with
tokens constructed from modalities other than language. For all these settings, we provide additional
results in App. C: evaluating NAMMs with simpler architectures, different training procedures,
and comparing performance at every stage of incremental evolution. Lastly, we perform a targeted
analysis to understand the behavior of our new memory framework which we later extend in App. D.

4.1 Long-context language understanding

Longbench. In Table 2, we provide results across all LongBench tasks [16]. Our NAMM yields
concrete improvements to the Llama 3 transformer both when considering the full set or exclusively
the held-out set of test tasks that were not used for evolution, with improvements of 11% and 7%. At
the same time, our NAMM also yields efficiency benefits, notably reducing the context-extended KV
cache size. Instead, while both H2O and L2 produce even smaller cache sizes, they both come with
some performance costs - in line with their stated objective of retaining rather than improving the
original full-context performance. These results indicate how two different hand-designed extremes,
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Table 3: NAMMs evaluation on InfiniteBench. The normalized overall performance (in brackets) is calculated
using the average performance of the base model with full cache.

Model/Task name Retrieval Dialogue Novel Math Code Overall
Ret.PassKey Ret.Number Ret.KV En.Dia En.Sum En.MC En.QA ZH.QA Math.Find Code.Run Code.Debug All tasks Cache size

Base model 0.00 0.00 0.00 1.00 7.73 0.00 1.05 1.79 0.00 0.00 0.00 1.05 (1.00) 32747 (1.00)

H2O 0.00 0.00 0.00 1.50 5.38 0.00 1.01 1.71 1.71 0.25 0.00 1.05 (1.00) 8193 (0.25)

L2 0.00 0.00 0.00 1.00 5.41 0.44 0.83 2.59 7.43 0.25 0.00 1.63 (1.55) 8193 (0.25)

NAMM (Ours) 11.86 11.86 1.80 1.00 14.91 36.24 8.78 17.67 10.57 1.75 4.57 11.00 (10.45) 13192 (0.40)

Table 5: NAMMs evaluation on LongBench with a Llama 3 70B model. The normalized performance (in
brackets) is calculated using the base model with full cache.

Model/Task id Single-Doc QA Multi-Doc QA Summarization
1-1 1-2 1-3 1-4 2-1 2-2 2-3 2-4 3-1 3-2 3-3 3-4

Base model 9.38 (1.00) 13.84 (1.00) 24.99 (1.00) 17.78 (1.00) 11.73 (1.00) 14.26 (1.00) 8.11 (1.00) 26.43 (1.00) 13.13 (1.00) 24.55 (1.00) 23.20 (1.00) 10.08 (1.00)

H2O 8.80 (0.94) 13.48 (0.97) 25.02 (1.00) 18.44 (1.04) 12.36 (1.05) 14.32 (1.00) 8.15 (1.01) 26.22 (0.99) 13.37 (1.02) 24.50 (1.00) 23.20 (1.00) 9.22 (0.91)

L2 8.57 (0.91) 13.40 (0.97) 24.70 (0.99) 17.94 (1.01) 12.77 (1.09) 13.85 (0.97) 7.13 (0.88) 25.74 (0.97) 12.78 (0.97) 23.21 (0.95) 23.35 (1.01) 8.45 (0.84)

NAMM (Ours) 9.13 (0.97) 13.53 (0.98) 24.25 (0.97) 17.82 (1.00) 11.45 (0.98) 13.76 (0.96) 8.34 (1.03) 21.79 (0.82) 12.66 (0.96) 24.21 (0.99) 23.56 (1.02) 8.62 (0.86)

Model/Task id Few-shot Learning Synthetic Code Overall
4-1 4-2 4-3 4-4 5-1 5-2 5-3 6-1 6-2 All tasks Test tasks Cache size

Base model 78.00 (1.00) 92.43 (1.00) 48.67 (1.00) 45.50 (1.00) 22.50 (1.00) 75.37 (1.00) 33.89 (1.00) 74.60 (1.00) 71.19 (1.00) 35.22 (1.00) N/A 10107 (1.00)

H2O 77.50 (0.99) 92.43 (1.00) 48.33 (0.99) 39.75 (0.87) 18.12 (0.81) 64.69 (0.86) 33.89 (1.00) 74.61 (1.00) 71.09 (1.00) 34.17 (0.97) N/A 6662 (0.66)

L2 76.50 (0.98) 93.22 (1.01) 46.15 (0.95) 36.25 (0.80) 16.98 (0.75) 64.34 (0.85) 36.28 (1.07) 74.38 (1.00) 67.43 (0.95) 33.50 (0.95) N/A 6662 (0.66)

NAMM (Ours) 78.50 (1.01) 92.36 (1.00) 48.49 (1.00) 45.50 (1.00) 19.07 (0.85) 74.19 (0.98) 34.28 (1.01) 74.71 (1.00) 72.42 (1.02) 34.70 (0.99) 0.99 8365 (0.83)

either retaining all tokens or aggressively dropping them, come with their own set of downsides for
either efficiency or performance. On the other hand, NAMMs are the only methods making consistent
improvements from the base model across both axes, highlighting how end-to-end optimization can
open new orthogonal directions beyond what is feasible with manually-designed heuristics.

InfiniteBench. In Table 3, we provide results across the InfiniteBench tasks [17]. In this benchmark,
the average prompt length is close to 200K tokens making it extremely challenging, especially for
LMs that were not expensively finetuned for very long context understanding. In fact, as reported by
Zhang et al. [17], even GPT4 [1] cannot exceed a performance of 1% on some of its problems. In line
with these results, the full-context Llama 3 together with H2O and L2 obtain near-zero performance
on most tasks. Instead, our NAMM provides outstanding improvements, bringing overall benchmark
performance from 1.05% to 11%. We also observe that our NAMM’s memory size is considerably
lower in relation to the base model’s as compared to in LongBench (now only 40%). This result
suggests that NAMMs learned a scalable memory strategy, forgetting redundant and detrimental
information at an increasing rate with longer contexts without the hand-designed hard cache limits
enforced by L2 and H2O. Table 4: Evaluation on the new ChouBun benchmark.

Model/Task Extractive QA Summarization Overall
JA.WikiQA JA.EdinetQA JA.CorpSecQA JA.CorpSecSum All tasks Cache size

Base model 22.91 (1.00) 28.34 (1.00) 11.83 (1.00) 21.75 (1.00) 21.21 (1.00) 12099 (1.00)

H2O 20.76 (0.91) 26.39 (0.93) 10.42 (0.88) 21.87 (1.01) 19.86 (0.94) 8292 (0.69)

L2 19.60 (0.86) 24.06 (0.85) 8.23 (0.70) 23.83 (1.10) 18.93 (0.89) 8292 (0.69)

NAMM (Ours) 21.34 (0.93) 28.61 (1.01) 14.64 (1.24) 33.15 (1.52) 24.44 (1.15) 9895 (0.82)

ChouBun. Our benchmark
focuses on tasks designed
exclusively in Japanese, a
language unseen during
NAMM training. We pro-
vide details and evaluation
metrics for a wider range of popular LMs in App. B. In Table 4, we report our results evaluating
NAMMs. Once again, we observe a clear contrast with prior hand-designed methods. While in-
tegrating either H2O or L2 leads to notable performance drops, our NAMM provides substantial
improvements, with overall performance up by 15% from the full-context Llama 3 base model.

4.2 Zero-shot transfer across architectures and modalities

Table 6: Evaluation on the LongVideoBench and MLVU
benchmarks with a Llava Next Video 7B model.
Model/Task name LongVideoBench MLVU All tasks Cache size

Base model 43.45 (1.00) 44.23 (1.00) 43.84 (1.00) 7039 (1.00)

H2O 40.91 (0.94) 43.03 (0.97) 41.97 (0.96) 4479 (0.64)

L2 40.84 (0.94) 42.07 (0.95) 41.45 (0.95) 4479 (0.64)

NAMM (Ours) 44.58 (1.03) 44.18 (1.00) 44.38 (1.01) 5100 (0.72)

Cross-scale adaptation. In Table 5, we
provide results zero-shot transferring our
NAMM to the Llama 3 70B model on
LongBench. Across all tasks, we find
performance to be very close to the full-
context baseline with an overall gap of less
than 1% even for the test subset. While
NAMMs are not able to improve the overall full-context performance in this setting outside specific
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Table 7: Evaluation on D4RL with a Decision Transformer. The normalized performance (in brackets) is
calculated using the base model with full cache.

Model/Task name Hopper-v3 Walker2d-v3 HalfCheetah-v3 Overall
Medium Med-Replay Expert Medium Med-Replay Expert Medium Med-Replay Expert All tasks Cache size

Base model 33.36 (1.00) 18.37 (1.00) 44.62 (1.00) 68.21 (1.00) 7.18 (1.00) 38.98 (1.00) 34.91 (1.00) 5.06 (1.00) 10.64 (1.00) 29.04 (1.00) 3000 (1.00)

H2O 33.19 (1.00) 17.86 (0.97) 49.10 (1.10) 67.63 (0.99) 7.59 (1.06) 40.03 (1.03) 26.73 (0.77) 4.46 (0.88) 11.74 (1.10) 28.70 (0.99) 2048 (0.68)

L2 32.85 (0.98) 17.96 (0.98) 43.75 (0.98) 65.47 (0.96) 7.18 (1.00) 40.64 (1.04) 30.10 (0.86) 4.76 (0.94) 8.52 (0.80) 27.91 (0.96) 2048 (0.68)

NAMM (Ours) 36.10 (1.08) 18.86 (1.03) 49.39 (1.11) 70.87 (1.04) 7.53 (1.05) 50.02 (1.28) 34.56 (0.99) 5.90 (1.17) 12.34 (1.16) 31.73 (1.09) 2434 (0.81)

task categories (e.g., coding and few-shot learning), they still outperform both H2O and L2 baselines
and retain a similar efficiency as with their original training transformer.

Vision Language Understanding. In Table 6, we provide results zero-shot transferring NAMMs to
the vision domain atop a Llava Next Video 7B transformer [27] on LongVideoBench [28] and Multi-
Task Long Video Understanding (MLVU) [29]. As when evaluated with Llama 8B, our NAMM is the
only method recording gains over the full-context model in both tasks. We also find that our NAMM
learns to act almost exclusively on images even though it never trained with such modality, forgetting
redundant video frames rather than the language prompt descriptions, validating its flexibility.

Reinforcement learning. In Table 7, we provide our zero-shot transfer results for the offline RL,
where we apply NAMMs atop a decision transformer [30] and consider the canonical continuous-
control tasks from the D4RL benchmark [31]. We find our NAMM improves the base transformer
quite considerably in this domain across eight out of nine offline tasks with over 9% overall gains,
opposing the performance loss of the other efficient baselines. We posit that since the nature of the
decision transformer optimization is closely tied to behavior cloning, the ability to discard part of the
context allows NAMMs to forget and avoid imitating past mistakes autoregressively. In support of
this hypothesis, we observed slightly higher average rewards in the transitions for the retained tokens
(by 1.4%, 0.8%, and 12.3% for the Hopper, Walker2d, and HalfCheetah environments, respectively).

Table 8: Summarized comparison of different NAMMs in
language modeling (top) and zero-shot transfer (bottom)
Model/Eval LongBench InfiniteBench ChouBun

Performance Cache size Performance Cache size Performance Cache size

Base model 28.86 (1.00) 32768 (1.00) 1.05 (1.00) 32747 (1.00) 21.21 (1.00) 12099 (1.00)

NAMM (MLP, s1) 28.83 (1.05) 7639 (0.23) 3.08 (2.93) 11329 (0.35) 22.09 (1.04) 9525 (0.79)

NAMM (MLP, s2) 29.22 (1.07) 8475 (0.26) 4.00 (3.80) 13031 (0.40) 22.06 (1.04) 9815 (0.81)

NAMM (BAM, s1) 28.91 (1.05) 7951 (0.24) 10.14 (9.63) 11173 (0.34) 22.73 (1.07) 9569 (0.79)

NAMM (BAM, s2) 29.25 (1.07) 8267 (0.25) 9.78 (9.29) 12789 (0.39) 24.05 (1.13) 9867 (0.82)

NAMM (BAM, s3) 29.33 (1.11) 8155 (0.25) 11.00 (10.45) 13192 (0.40) 24.44 (1.15) 9895 (0.82)

Model/Eval Llama 3 70B Computer Vision Reinforcement Learning

Performance Cache size Performance Cache size Performance Cache size

Base model 35.22 (1.00) 10107 (1.00) 43.84 (1.00) 7039 (1.00) 29.04 (1.00) 3000 (1.00)

NAMM (MLP, s1) 34.11 (0.97) 7930 (0.78) 40.44 (0.92) 584 (0.08) 29.30 (1.01) 1993 (0.66)

NAMM (MLP, s2) 34.29 (0.97) 8445 (0.84) 40.39 (0.92) 713 (0.10) 29.58 (1.02) 2834 (0.94)

NAMM (BAM, s1) 34.11 (0.97) 7947 (0.79) 41.52 (0.95) 723 (0.10) 30.44 (1.05) 2009 (0.67)

NAMM (BAM, s2) 25.20 (0.72) 8276 (0.82) 44.63 (1.02) 4948 (0.70) 31.53 (1.09) 2534 (0.84)

NAMM (BAM, s3) 34.70 (0.99) 8365 (0.83) 44.38 (1.01) 5100 (0.72) 31.73 (1.09) 2434 (0.81)

NAMMs comparison. In Table 8, we
provide summarized results compar-
ing NAMMs with either BAM or the
simpler MLP architecture at the end
of each stage of incremental evolu-
tion. First, we note that even the MLP
NAMM after stage 1 impressively
improves performance across all lan-
guage benchmarks. Additionally, per-
formance sees near-monotonic im-
provements with each additional stage
of incremental evolution in both lan-
guage and zero-shot transfer settings.
Comparing our implementations, the
performance benefits from the mem-
ory models with BAM appear consis-
tently superior to the MLP. Moreover, on ChouBun. we observe that the performance with BAM sees
a notable upswing after the second stage of incremental training, which might be associated with
the introduction of another ideogram-based language in the training set.2 The same improvement
not occurring with the MLP-based NAMMs might be further evidence of architectural performance
saturation, highlighting the effectiveness of our main implementation.

4.3 Understanding Neural Attention Memory Models

Influence of layer depth. We begin analyzing the final amount of retained tokens by NAMMs and
their oldness3. At the top of Fig. 5, we provide these normalized metrics as a function of layer depth.
Our learned NAMM does not appear to affect the KV cache uniformly, retaining visibly more and
older tokens for some of the early-middle layers of the base transformer. One possible interpretation

2The DuReader task, used in the second stage of incremental training, uses the Chinese language.
3We define oldness of a retained token as the number of new queries since its introduction in the KV cache.
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Figure 5: Memory size and token oldness recorded for each layer in Llama (top) or task in LongBench (bottom).
These values are normalized with their average across tasks or the mean sample length respectively.

Figure 6: Density plot of gradient magnitudes for each score with respect to all memory tokens (left), together
with a qualitative analysis extracting slices from three tokens (center) and computing the dot products of the
gradients with the scored-token’s feature vector (right).

of our results, in line with recent analysis [32], is that these layers might be particularly important for
aggregating information over longer contexts, thus requiring larger memories than the rest.

Influence of task structure. At the bottom of Fig. 5, we instead provide these metrics varying the
source task, normalizing by the average prompt lengths shown in green. Our results show an inverse
correlation between normalized memory size and prompt length, with a Pearson coefficient of -0.84,
confirming our earlier observations of sub-linear memory growth and favorable scaling to longer
prompts. In the code completion tasks with ids 6-*, we also observe that NAMMs learned to preserve
visibly more tokens relative to the prompt lengths. This result appears intuitively consistent with the
higher information density in code, leaving room for less redundancy than in natural language.

Backward attention cross-token interactions. We record the gradients of each token score si
with respect to all input features vj for all tokens in memory after storing 1024 tokens, i.e., for
j = 1, 2, . . . , 1024. We denote these quantities as ∇gji = ∂si/∂vj and illustrate our results on the
PassageRetrieval-en task for a randomly selected layer and prompt in Fig. 6. On the left subplot,
we visualize the squared magnitudes (∇gji )

T∇gji for each combination of tokens (either scored or
attended upon in BAM, i.e., indexed by i or j). Here, the effects of the backward mask are clearly
visible, allowing tokens to exclusively attend to later ones. Predictably, these magnitudes mostly
peak on the subplot’s diagonal, indicating the self-influence that each token’s features have on its
corresponding score. However, we also find exceptions, as shown in the center subplot, where we
overlap three slices from our surface plot for the gradients of the first, together with the highest and
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lowest-scored tokens in memory (respectively indexed by i =0, 292, and 800). We provide directional
information of these gradient vectors in the right subplot, where we take their dot products with the
scored token’s own feature vector (∇gji )

T vi. After the first spike at i = j, most other dot-products
with the largest magnitudes consistently have negative values. Hence, we can deduce that the scores
of these tokens would benefit from pushing the representations of future tokens away from their
own. This result appears to validate the hypothesis that BAM learns a mechanism for cross-token
competition, promoting tokens covering diverse frequencies in the attention spectrogram.

5 Related works

Devoto et al. [26] and Yao et al. [33] try to identify the least important tokens to evict using heuristics
such as L2 magnitude and entropy. Alternative strategies include considering simple statistics from
the attention matrix [25, 34, 35]. Ge et al. [36] and Li et al. [37] build on these ideas by applying
multiple strategies based on matching specific attention patterns. Unlike this prior work, our approach
uniquely employs a black-box model to learn token-level memory management and shows potential
for improving both the performance and efficiency of transformers. We refer to App. E for references
and connections to the wider literature, including efficient architectures, memory, and evolution.

6 Discussion and future work

This work introduced Neural Attention Memory Models, providing a new framework to enhance the
performance of transformers while significantly reducing memory footprint. By evolving NAMMs
on top of pre-trained LMs, we demonstrated their effectiveness across diverse long-context tasks
in three languages, significantly surpassing previous hand-designed KV cache eviction frequently
hindering performance, and the original model relying on costly full-context conditioning. Our
carefully designed approach also enabled NAMMs, trained solely on language tasks, to achieve
zero-shot transferability across architectures, input modalities, and task domains. This work has only
begun to explore the design space of our memory models, which we anticipate might offer many
new opportunities to advance future generations of transformers. In this regard, we believe NAMMs
should not be viewed as a replacement for gradient-based optimization, but rather an orthogonal
framework that could be combined and alternated with parameter fine-tuning. Such an extension has
the potential to unlock efficient long-context training, drawing parallels to the iterative process of
learning and evolution that shaped human memory.
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Table 9: NAMMs hyper-parameters used for training and evaluation. The omitted CMA-ES hyper-parameters
can be obtained by following the recommended default calculation by Hansen [23].

NAMMs hyperparameters
Spectrogram window size nw 32
Spectrogram window stride sw 16
Spectrogram window type Hann
Spectrogram EMA reduction coefficient γ 0.9916

Positional features 8
NAMMs execution delay 512
NAMMs non-linearity ReLU

Optimization hyperparameters, notation from Hansen [23]

Evolution algorithm CMA-ES
Elite ratio 0.5
Mean coefficient cm 1
Initial step size σ 0.65
Samples batch size per-task 64
Population size 32
Task for incremental stage 1 PassageRetrieval-en
Task for incremental stage 2 DuReader
Task for incremental stage 3 NarrativeQA

BAM-specific
Hidden dimensions 16
Use bias True
Masking strategy counter-causal
Number of attention layers 1
Number of final linear layers 1
Use residual connections True
Use multiplicative interactions True

MLP-specific
Hidden dimension 25
Number of hidden layers 2
Use residual connections True

A Implementation details

A.1 Model specifics and NAMMs execution

We evolve our Neural Attention Memory Models on top of a context-extended Llama 3 8B [15]
base model. In particular, we employ the NTK-aware positional interpolation strategy [24] to
extend the context by four times from 8192 to 32768. Unlike prior strategies that require further
gradient fine-tuning to avoid performance collapse [38], NTK-aware positional interpolation has
been shown to produce sensible results even when applied zero-shot. In case the length of a task
prompt still exceeds 32768 we perform mid-sentence cropping [39, 40], as standard in long-context
LM evaluation [16, 17].

When applying NAMMs, we only affect the execution of the base model with a fixed frequency,
once every nup = 512 steps. When feeding longer prompts to our model, we simply split the tokens
into nup-sized chunks. We note that due to modern frameworks being bound primarily by memory
constraints, input-splitting in itself has minimal effects on running time, with similar approaches
being already performed under the hood by established kernel procedures [41].

A.2 Feature extraction and architecture details

Our new feature extraction framework is a key component for enabling the transfer properties of
NAMMs. In practice, we extract the attention spectrogram from the real-valued attention matrix using
a Hann window of size nw = 32, resulting in just seventeen complex-values frequencies that we
convert to real numbers by simply taking their magnitude, yielding each ωt

i ∈ R17. We use a stride of
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half the window size sw = 16, producing nT = nup/sw = 32 frequency representations over the
time axis of the attention matrix from the latest chunk of nup queries, ω1

i , . . . , ω
nT
i . Thus, we reduce

these frequency representations over the time axis via an element-wise exponentially moving average
operation. We note that our EMA does not only consider the nT representations computed for the
frequency of each token in the nup-sized chunk of the latest queries, but also the discounted EMA at
the previous execution step or our memory for each retained token, denoted ω′

i. Thus, each of our
reduced spectrogram representations reflects the full history of previous attention values:

ωi =

(
nT∑
t=1

γt−1ωt
i

)
+ γnT ω′

i, (4)

where we use γ to denote the EMA’s discount factor. To expedite learning the weights of our
architecture, we ensure all spectrogram features have unit variance at initialization across our training
data, using the statistics of the base Llama 3 model computed on the first task employed in incremental
learning (PassageRetrieval). Finally, we also concatenate a small eight-dimensional sinusoidal
positional embedding using the oldness of each token, i.e., the amounts of new queries observed
since its introduction in the KV cache.

Figure 7: Schematic depiction of the components of our Neural At-
tention Memory Models, denoted mϕ, parameterized with our BAM
architecture. The spectrogram representation of each token, denoted ωi,
is processed by an attention layer followed by a simple linear operation
to output its relative score. Backward masking introduces asymmetry,
ensuring that each token can only attend to its future relatives.

Our backward-attention
memory network processes
these representations by
directly first applying
the self-attention layer
employing the counter-
autoregressive backward
masking introduced in
Section 3, designed to
facilitate asymmetric in-
teractions between tokens
in memory. The output of
self-attention is then fed to
a single final linear layer to
obtain the final score. We
employed a few important
additional design choices
following some preliminary
testing. First, motivated by
efficiency considerations,
we use a single head within
our attention mechanism
and no layer normalization.
Second, our attention layer
produces outputs that are twice the dimensionality of the spectrogram features. These outputs are
integrated back into the main network before the final linear layer via both residual and multiplicative
interactions. We provide a schematic depiction of our minimal architecture in Figure 7. Through
our minimalist design choices, our full network comprises only just over four thousand learnable
parameters, a negligible amount, orders of magnitudes lower than even a single layer in modern
transformers.

A.3 Zero-shot transfer

For our zero-shot transfer experiments, we consider a Llama 3 transformer with 70B parameters [15],
a Llava Next Video transformer with 7B parameters [27], and a decision transformer [30] with about
1M parameters. For our 70B experiments, we follow the exact same setup as when evaluating our 7B
Llama model used in training. For our video-language model, we extract 12× 12 image tokens from
48 uniformly sampled frames, 6912 in total. We also slightly shift the selection score threshold by 5,
to counteract the lower number of total tokens and get a comparable average cache size to the L2
and H2O baselines. We adapt the code and follow the standardized experimental setup from Li et al.
[42]. For the reinforcement learning experiments, we encode each state, action, and return-to-go into
separate tokens and do not apply any restrictions or modifications to our standard NAMM LM setup.
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We average the performance collected over 20 random seeds to account for the stochasticity of the
initial state in the Gym Mujoco environments [43]. Our RL experiments adapt the checkpoints and
setup provided by Beeching and Simonini [44].
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Table 10: Statistics of ChouBun. Lengths are counted by tokens produced by Llama 3 tokenizer.

Statistics Extractive QA Summarization Overall
JA.WikiQA JA.EdinetQA JA.CorpSecQA JA.CorpSecSum All tasks

Number of documents 20 20 30 30 70
Number of QA pairs 200 390 150 30 770
Number of reference answers 1 1 1 5 1 or 5
Document length max. 13027 10152 85981 85981 85981
Document length mean 10131 8994 26220 26220 13317
Document length min. 8196 6825 5640 5640 5640
Answer length max. 40 208 30 140 208
Answer length mean 7 11 8 80 21
Answer length min. 1 1 1 55 1

Table 11: Performance of a wider range of LLMs on the ChouBun benchmark.

Model/Task name Extractive QA Summarization Overall
JA.WikiQA JA.EdinetQA JA.CorpSecQA JA.CorpSecSum All tasks Max. length

mistralai/Mistral-7B-v0.1 8.68 8.34 16.25 10.50 10.94 32768
rinna/llama-3-youko-8b 16.68 12.23 17.03 22.27 17.05 8192
meta-llama/Meta-Llama-3-8B 14.58 14.77 16.86 22.84 17.27 8192
meta-llama/Llama-2-7b-hf 16.77 9.92 20.86 21.97 17.38 2048
01-ai/yi-6b-200k 30.36 23.64 38.09 21.11 28.30 200000
elyza/Llama-3-ELYZA-JP-8B 20.77 21.45 35.59 40.21 29.50 8192

B ChouBun details

The ChouBun benchmark is created to assess the generalization ability of NAMMs to a new language
(Japanese), but we hope it will also serve as a standard benchmark for Japanese LLMs. The benchmark
is composed of two task categories — extractive QA and abstractive summarization — and four tasks
as follows.

• JA.WikiQA is an extractive QA task about 20 randomly sampled articles from the 20240429
dump of Japanese Wikipedia4. Each article corresponds to 10 QA pairs, and there are 200
QA pairs in total.

• JA.EdinetQA is an extractive QA task based on 20 security reports from EDINET5. The
EDINET security reports are in CSV format, which makes them less human-readable.
Nevertheless, we choose not to convert the format because the conversion process per se
is non-trivial, and using a CSV-style text input helps us evaluate a model’s capability of
understanding structured data. The total number of QA pairs in JA.EdinetQA is 390.

• JA.CorpSecQA is another extractive QA task based on 30 security reports downloaded from
three corporation websites (MUFG6, NTT7, and Toyota8). We extract texts from original
file in PDF format. There are 150 QA pairs in total.

• JA.CorpSecSum is an abstractive summarization task based on the same data of
JA.CorpSecQA. Each document corresponds to one data point, and we collect 5 reference
summaries for each data point.

Collecting human annotations for long-text tasks is challenging, therefore we use synthetic QA pairs
and summaries. In particular, we prompt various LLMs9 to generate multiple question-answer pairs
or summaries for each document. Different instructions are designed for the two tasks and they are

4https://dumps.wikimedia.org/other/cirrussearch/
5https://disclosure2.edinet-fsa.go.jp/
6https://www.mufg.jp/ir/report/security_report/
7https://group.ntt/jp/ir/library/results/
8https://global.toyota/jp/ir/library/securities-report/
9gpt-4o-2024-05-13, gpt-4o-mini-2024-07-18, gpt-4-turbo-2024-04-09, and

claude-3-5-sonnet-20240620
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Prompt for extractive QA 

抽出型の長文QAモデルのトレーニングデータを作成しています。 
コンテキストとして長い文書を提供します。 
文書を注意深く読み、分析し、20個の質問と回答のペアを生成してください。 
生成されたQAペアの要件は以下の通りです。\n 
1. 回答は文書からのテキストの一部でなければなりません。\n 
2. 回答は短く簡潔なテキストの一部であるべきです。\n 
3. 質問は多様で、文書の異なる側面をカバーすべきです。\n 
4. 回答は、直接文章の内容を引用してください。余計な情報は含めないでください。\n 
以下の形式で20個の質問と回答のペアを直接回答してください：\n 
### 質問 1 ###\n 
{question_1}\n 
### 回答 1 ###\n 
{answer_1}\n 
...\n 
### 質問 20 ###\n 
{question_20}\n 
### 回答 20 ###\n 
{answer_20}\n 
文書は以下の通りです：\n 
### 文書 ###\n 
{doc_text} 

Prompt for abstractive summarization 

抽象的な長文要約モデルのトレーニングデータを作成しています。 
コンテキストとして長い文書を提供します。 
文書を注意深く読み、分析し、5個の要約例を生成してください。 
以下は生成される要約の要件です。\n 
1. 各要約は短く簡潔であるべきです。\n 
2. 各要約は文書の一般的なアイデア、トレンド、洞察を網羅すべきです。\n 
3. すべての要約は内容が同一でありながら、表現が多様であるべきです。\n 
以下の形式で5個の要約を直接返信してください：\n 
### 要約 1 ###\n 
{summary_1}\n 
...\n 
### 要約 5 ###\n 
{summary_5}\n 
文書は以下の通りです：\n 
### 文書 ###\n 
{doc_text}

Figure 8: LLM prompts for generating synthetic QA pairs and summaries in ChouBun.

shown in Figure 8. To improve the reliability of the synthetic data, we ensure that every answer in
extractive QA tasks is a text span presented in its corresponding source document. In Table 10, we
provide the statistics of the benchmark.

We use F1 score and ROUGE score for evaluation in the extractive QA tasks and summarization task,
respectively. Reference text and hypothesis text are pre-tokenized by the MeCab tokenizer10. A wider
range of LLMs’ performance on the ChouBun benchmark is presented in Table 11.

10https://github.com/polm/fugashi
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Table 12: NAMMs evaluation on LongBench [16]. The normalized performance (in brackets) is calculated
using the base model with full cache. The aggregate test task performance of NAMMs models is taken by
averaging the normalized scores on the tasks not used for incremental evolution.

Model/Task id Single-Doc QA Multi-Doc QA Summarization
1-1 1-2 1-3 1-4 2-1 2-2 2-3 2-4 3-1 3-2 3-3 3-4

Base model 10.38 (1.00) 12.79 (1.00) 22.60 (1.00) 21.31 (1.00) 10.41 (1.00) 12.67 (1.00) 7.54 (1.00) 25.86 (1.00) 29.34 (1.00) 23.93 (1.00) 0.92 (1.00) 2.66 (1.00)

NAMM (MLP, s1) 7.60 (0.73) 12.74 (1.00) 22.74 (1.01) 21.08 (0.99) 9.58 (0.92) 12.24 (0.97) 6.48 (0.86) 19.41 (0.75) 27.76 (0.95) 23.61 (0.99) 0.95 (1.03) 3.44 (1.29)

NAMM (MLP, s2) 6.76 (0.65) 12.77 (1.00) 23.74 (1.05) 20.56 (0.96) 9.69 (0.93) 12.21 (0.96) 6.93 (0.92) 22.40 (0.87) 27.30 (0.93) 24.20 (1.01) 1.72 (1.87) 2.78 (1.05)

NAMM (BAM, s1) 5.77 (0.56) 12.76 (1.00) 22.94 (1.02) 21.55 (1.01) 9.47 (0.91) 12.21 (0.96) 6.51 (0.86) 18.73 (0.72) 28.06 (0.96) 23.97 (1.00) 1.01 (1.10) 4.00 (1.50)

NAMM (BAM, s2) 7.08 (0.68) 12.70 (0.99) 22.21 (0.98) 21.50 (1.01) 9.94 (0.95) 12.21 (0.96) 7.13 (0.95) 20.34 (0.79) 28.87 (0.98) 23.84 (1.00) 0.92 (1.00) 3.94 (1.48)

NAMM (BAM, s3) 9.14 (0.88) 12.63 (0.99) 21.94 (0.97) 21.34 (1.00) 9.71 (0.93) 11.63 (0.92) 6.98 (0.93) 20.58 (0.80) 28.78 (0.98) 24.39 (1.02) 1.04 (1.13) 3.63 (1.36)

Model/Task id Few-shot Learning Synthetic Code Overall
4-1 4-2 4-3 4-4 5-1 5-2 5-3 6-1 6-2 All tasks Test tasks Cache size

Base model 73.00 (1.00) 89.45 (1.00) 46.54 (1.00) 40.00 (1.00) 1.48 (1.00) 12.18 (1.00) 28.80 (1.00) 69.09 (1.00) 65.17 (1.00) 28.86 (1.00) N/A 32768 (1.00)

NAMM (MLP, s1) 73.00 (1.00) 89.48 (1.00) 46.80 (1.01) 37.50 (0.94) 2.46 (1.66) 23.98 (1.97) 28.46 (0.99) 69.75 (1.01) 66.40 (1.02) 28.83 (1.05) 1.01 7639 (0.23)

NAMM (MLP, s2) 74.00 (1.01) 88.64 (0.99) 46.04 (0.99) 41.50 (1.04) 1.53 (1.03) 25.94 (2.13) 29.78 (1.03) 69.80 (1.01) 65.23 (1.00) 29.22 (1.07) 1.02 8475 (0.26)

NAMM (BAM, s1) 73.00 (1.00) 89.81 (1.00) 46.70 (1.00) 38.75 (0.97) 2.19 (1.48) 25.14 (2.06) 28.51 (0.99) 69.50 (1.01) 66.51 (1.02) 28.91 (1.05) 1.00 7951 (0.24)

NAMM (BAM, s2) 73.00 (1.00) 90.03 (1.01) 46.85 (1.01) 42.00 (1.05) 2.35 (1.59) 24.69 (2.03) 28.46 (0.99) 69.65 (1.01) 66.57 (1.02) 29.25 (1.07) 1.04 8267 (0.25)

NAMM (BAM, s3) 73.00 (1.00) 89.81 (1.00) 46.35 (1.00) 40.00 (1.00) 3.04 (2.05) 27.55 (2.26) 28.60 (0.99) 69.53 (1.01) 66.35 (1.02) 29.33 (1.11) 1.07 8155 (0.25)

Table 13: NAMMs evaluation on InfiniteBench [17]. The normalized overall performance (in brackets) is
calculated using the average performance of the base model with full cache.

Model/Task name Retrieval Dialogue Novel Math Code Overall
Ret.PassKey Ret.Number Ret.KV En.Dia En.Sum En.MC En.QA ZH.QA Math.Find Code.Run Code.Debug All tasks Cache size

Base model 0.00 0.00 0.00 1.00 7.73 0.00 1.05 1.79 0.00 0.00 0.00 1.05 (1.00) 32747 (1.00)

NAMM (MLP, s1) 0.00 10.00 0.00 3.00 7.27 3.93 1.57 4.26 0.57 0.00 3.30 3.08 (2.93) 11329 (0.35)

NAMM (MLP, s2) 10.17 11.86 0.00 2.50 7.48 3.06 1.58 4.10 1.71 0.00 1.52 4.00 (3.80) 13031 (0.40)

NAMM (BAM, s1) 9.49 9.83 1.80 0.50 14.36 37.12 8.95 16.20 5.71 1.50 6.09 10.14 (9.63) 11173 (0.34)

NAMM (BAM, s2) 11.86 11.86 1.80 1.00 14.62 35.37 8.96 15.45 0.57 1.75 4.31 9.78 (9.29) 12789 (0.39)

NAMM (BAM, s3) 11.86 11.86 1.80 1.00 14.91 36.24 8.78 17.67 10.57 1.75 4.57 11.00 (10.45) 13192 (0.40)

C Additional results

C.1 Performance across incremental stages and architectures

We provide additional results to the ones provided in Section 4, evaluating a fully-trained NAMM with
our BAM architecture design. Here, we compare performance across different NAMMs, evaluating
the best checkpoints after each stage of incremental training stage, and ablating the BAM architecture
with an MLP.

Extended language modeling results. We report our results for LongBench, InfiniteBench, and
ChouBun in Tables 12, 13, 14. First, we note that even training on a single task with our simple MLP
architecture impressively improves performance across all benchmarks. Additionally, performance
across benchmarks sees near-monotonic further improvements with each stage of our incremental
evolution recipe. Comparing our implementations, we note that the performance benefits from the
memory models with backward attention are consistently superior to the fully connected variant in
both initial stages of incremental training, empirically validating our hypothesis about the importance
of global KV cache information for determining the importance of each token. Lastly, on ChouBun.
we observe that the performance with BAM sees a notable upswing after the second stage of
incremental training, which might be associated with the introduction of another ideogram-based
language in the training set.11 The same improvement not occurring with the MLP-based NAMMs
might be further evidence of architectural performance saturation, highlighting once again the
effectiveness of our main implementation design.

Extended zero-shot transfer results. We report our extended zero-shot transfer results for the 70B
model and the offline RL setting in Tables 16 and 15. We see the benefits from NAMMs again
increase as we incorporate backward attention, and with each stage of incremental training to a similar
extent as with the language modeling tasks. These results further highlight the potential benefits of
scaling up the architecture of our memory model and increasing the number of incremental stages.
To this end, given the generality of our parameterization, an interesting unexplored approach could

11The DuReader task, used in the second stage of incremental training, uses the Chinese language.
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Table 14: NAMMs evaluation on the new ChouBun benchmark. The normalized performance (in brackets) is
calculated using the base model with full cache.

Model/Task name Extractive QA Summarization Overall
JA.WikiQA JA.EdinetQA JA.CorpSecQA JA.CorpSecSum All tasks Cache size

Base model 22.91 (1.00) 28.34 (1.00) 11.83 (1.00) 21.75 (1.00) 21.21 (1.00) 12099 (1.00)

NAMM (MLP, s1) 21.60 (0.94) 26.81 (0.95) 10.34 (0.87) 29.60 (1.36) 22.09 (1.04) 9525 (0.79)

NAMM (MLP, s2) 20.76 (0.91) 26.30 (0.93) 11.86 (1.00) 29.32 (1.35) 22.06 (1.04) 9815 (0.81)

NAMM (BAM, s1) 19.19 (0.84) 28.85 (1.02) 14.36 (1.21) 28.51 (1.31) 22.73 (1.07) 9569 (0.79)

NAMM (BAM, s2) 20.75 (0.91) 28.46 (1.00) 14.55 (1.23) 32.45 (1.49) 24.05 (1.13) 9867 (0.82)

NAMM (BAM, s3) 21.34 (0.93) 28.61 (1.01) 14.64 (1.24) 33.15 (1.52) 24.44 (1.15) 9895 (0.82)

Table 15: NAMMs evaluation on D4RL [31] using a Decision Transformer model [30, 44]. The normalized
overall performance (in brackets) is calculated using the average performance of the base model with full cache.

Model/Task name Hopper-v3 Walker2d-v3 HalfCheetah-v3 Overall
Medium Med-Replay Expert Medium Med-Replay Expert Medium Med-Replay Expert All tasks Cache size

Base model 33.36 (1.00) 18.37 (1.00) 44.62 (1.00) 68.21 (1.00) 7.18 (1.00) 38.98 (1.00) 34.91 (1.00) 5.06 (1.00) 10.64 (1.00) 29.04 (1.00) 3000 (1.00)

NAMM (MLP, s1) 33.01 (0.99) 18.39 (1.00) 38.09 (0.85) 70.82 (1.04) 7.25 (1.01) 44.61 (1.14) 35.64 (1.02) 5.05 (1.00) 10.87 (1.02) 29.30 (1.01) 1993 (0.66)

NAMM (MLP, s2) 33.48 (1.00) 19.24 (1.05) 30.07 (0.67) 73.22 (1.07) 7.95 (1.11) 48.21 (1.24) 33.59 (0.96) 5.81 (1.15) 14.67 (1.38) 29.58 (1.02) 2834 (0.94)

NAMM (BAM, s1) 35.02 (1.05) 18.24 (0.99) 45.95 (1.03) 69.33 (1.02) 7.91 (1.10) 44.45 (1.14) 34.25 (0.98) 5.12 (1.01) 13.68 (1.29) 30.44 (1.05) 2009 (0.67)

NAMM (BAM, s2) 35.18 (1.05) 18.79 (1.02) 48.08 (1.08) 71.97 (1.06) 7.70 (1.07) 49.74 (1.28) 35.67 (1.02) 5.78 (1.14) 10.82 (1.02) 31.53 (1.09) 2534 (0.84)

NAMM (BAM, s3) 36.10 (1.08) 18.86 (1.03) 49.39 (1.11) 70.87 (1.04) 7.53 (1.05) 50.02 (1.28) 34.56 (0.99) 5.90 (1.17) 12.34 (1.16) 31.73 (1.09) 2434 (0.81)

be to incorporate different base models and input modalities during evolutionary training, something
that would substantially increase problem diversity to obtain an even more robust transfer behavior.

C.2 Training curves with fully-connected NAMMs

Figure 9: Mean and standard deviation over the CMA-ES popula-
tion batch performance (left), together with the performance of the
learned mean parameter on each task (right) for the training of the MLP
NAMM.

In Figure 9, we provide
training curves of our
Neural Attention Memory
Model using a simple
MLP architecture rather
than backward attention,
evaluated in Section 4. In
the left sub-plot, we show
the average and standard
deviation of the normalized
batch performance across
the population, while in the
right sub-plot, we show the
normalized per-task and
average performance on all
samples of the optimized
mean from CMA-ES.
When compared with the
BAM training curve from
Figure 4, we note a few interesting differences, although its evaluation performance on the full
LongBench benchmark is lower across both incremental phases (see Table 2), both its population
batch performance and the CMA-ES full-task performance on the training sets are either comparable
or slightly higher than BAM’s. This dichotomy appears to indicate that cross-token interactions
might provide a better inductive bias, mitigating the overfitting potential of NAMMs.
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Table 16: NAMMs evaluation on LongBench [16] with a Llama 3 70B model. The normalized performance (in
brackets) is calculated using the base model with full cache. The aggregate test task performance of NAMMs
models is taken by averaging the normalized scores on the tasks not used for incremental evolution. The tasks
on which NAMMs are trained are highlighted with a gray background.

Model/Task id Single-Doc QA Multi-Doc QA Summarization
1-1 1-2 1-3 1-4 2-1 2-2 2-3 2-4 3-1 3-2 3-3 3-4

Base model 9.38 (1.00) 13.84 (1.00) 24.99 (1.00) 17.78 (1.00) 11.73 (1.00) 14.26 (1.00) 8.11 (1.00) 26.43 (1.00) 13.13 (1.00) 24.55 (1.00) 23.20 (1.00) 10.08 (1.00)

NAMM (MLP, s1) 6.94 (0.74) 13.82 (1.00) 24.27 (0.97) 17.60 (0.99) 10.83 (0.92) 14.17 (0.99) 7.89 (0.97) 20.81 (0.79) 13.09 (1.00) 23.30 (0.95) 23.28 (1.00) 8.66 (0.86)

NAMM (MLP, s2) 7.88 (0.84) 13.71 (0.99) 23.27 (0.93) 18.18 (1.02) 11.41 (0.97) 14.11 (0.99) 8.07 (0.99) 21.75 (0.82) 14.28 (1.09) 24.48 (1.00) 22.00 (0.95) 8.99 (0.89)

NAMM (BAM, s1) 7.31 (0.78) 13.75 (0.99) 24.51 (0.98) 17.78 (1.00) 10.82 (0.92) 14.08 (0.99) 7.59 (0.94) 19.27 (0.73) 13.89 (1.06) 23.71 (0.97) 23.41 (1.01) 8.87 (0.88)

NAMM (BAM, s2) 3.57 (0.38) 13.86 (1.00) 23.02 (0.92) 18.71 (1.05) 4.94 (0.42) 13.32 (0.93) 1.90 (0.23) 17.74 (0.67) 10.39 (0.79) 20.45 (0.83) 23.18 (1.00) 8.13 (0.81)

NAMM (BAM, s3) 9.13 (0.97) 13.53 (0.98) 24.25 (0.97) 17.82 (1.00) 11.45 (0.98) 13.76 (0.96) 8.34 (1.03) 21.79 (0.82) 12.66 (0.96) 24.21 (0.99) 23.56 (1.02) 8.62 (0.86)

Model/Task id Few-shot Learning Synthetic Code Overall
4-1 4-2 4-3 4-4 5-1 5-2 5-3 6-1 6-2 All tasks Test tasks Cache size

Base model 78.00 (1.00) 92.43 (1.00) 48.67 (1.00) 45.50 (1.00) 22.50 (1.00) 75.37 (1.00) 33.89 (1.00) 74.60 (1.00) 71.19 (1.00) 35.22 (1.00) N/A 10107 (1.00)

NAMM (MLP, s1) 78.00 (1.00) 92.28 (1.00) 48.37 (0.99) 43.50 (0.96) 20.76 (0.92) 68.66 (0.91) 33.89 (1.00) 74.58 (1.00) 71.68 (1.01) 34.11 (0.97) 0.99 7930 (0.78)

NAMM (MLP, s2) 77.00 (0.99) 91.93 (0.99) 48.60 (1.00) 44.75 (0.98) 17.17 (0.76) 70.21 (0.93) 36.18 (1.07) 74.72 (1.00) 71.30 (1.00) 34.29 (0.97) 0.99 8445 (0.84)

NAMM (BAM, s1) 77.50 (0.99) 92.46 (1.00) 48.24 (0.99) 45.00 (0.99) 17.32 (0.77) 69.87 (0.93) 33.89 (1.00) 74.58 (1.00) 72.40 (1.02) 34.11 (0.97) 0.99 7947 (0.79)

NAMM (BAM, s2) 74.50 (0.96) 51.45 (0.56) 39.73 (0.82) 15.00 (0.33) 5.86 (0.26) 13.35 (0.18) 34.29 (1.01) 73.81 (0.99) 61.91 (0.87) 25.20 (0.72) 0.79 8276 (0.82)

NAMM (BAM, s3) 78.50 (1.01) 92.36 (1.00) 48.49 (1.00) 45.50 (1.00) 19.07 (0.85) 74.19 (0.98) 34.28 (1.01) 74.71 (1.00) 72.42 (1.02) 34.70 (0.99) 0.99 8365 (0.83)

C.3 Evolution of memory size during training

Figure 10: Final memory size of NAMM parameterized by the learned
mean of CMA-ES for both the BAM (left) and the MLP implementa-
tions (right).

In Figure 10, we provide
training curves for the evo-
lution of the memory size
collected at the end of
each task prompt of our
NAMMs. On the left and
right subplots, we provide
results for the BAM and
MLP implementations, re-
spectively. For both ar-
chitectures, we find that
the memory size gener-
ally increases with train-
ing. This result suggests
that NAMMs might learn
to recognize additional valu-
able tokens as training pro-
gresses, enabling the corre-
sponding performance improvements on the training tasks. Hence, they might indicate that there
is some degree of a trade-off between the efficiency and performance of NAMMs. However, we
note that both models are trained only for performance maximization, without any incentive to
be more conservative. To this end, exploring regularization strategies to make NAMMs aware of
deployment costs is an interesting direction for future work to obtain tailored sweet spots to cater to
instance-specific resource constraints.

C.4 Incremental training ablation

We provide a full set of ablations results for our incremental training strategy, training a Neural
Attention Memory Model with the BAM architecture from scratch on both the PassageRetrieval-en
and DuReader tasks, as employed during the second stage of incremental learning. We evolve this
Neural Attention Memory Model for 360 consecutive generations and provide training curves in
Figure 11. In the left sub-plot, we show the average and standard deviation of the normalized batch
performance across the population, in the center sub-plot, we show the normalized per-task and
average performance on all samples of the optimized mean from CMA-ES, and on the right subplot
we show the corresponding memory size. Furthermore, in Table 17, we provide the full LongBench
evaluation results for this baseline, also showing our original incremental model’s performance for
ease of comparison. Interestingly, the non-incremental NAMM obtained a notably higher score on
the training tasks with a normalized performance of 1.57, in contrast to the normalized performance
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Figure 11: Mean and standard deviation over the CMA-ES population batch performance (left),
together with the performance of the learned mean parameter on each task (center) and its final
memory size for the NAMM trained without incremental evolution.

Table 17: NAMMs incremental learning (IL) ablation evaluation on LongBench [16]. The No IL baseline is
trained from scratch on both the PassageRetrieval-en and DuReader tasks, the same employed during the second
stage of incremental learning.

Model/Task id Single-Doc QA Multi-Doc QA Summarization
1-1 1-2 1-3 1-4 2-1 2-2 2-3 2-4 3-1 3-2 3-3 3-4

Base model 10.38 (1.00) 12.79 (1.00) 22.60 (1.00) 21.31 (1.00) 10.41 (1.00) 12.67 (1.00) 7.54 (1.00) 25.86 (1.00) 29.34 (1.00) 23.93 (1.00) 0.92 (1.00) 2.66 (1.00)

NAMM (BAM, s1) 5.77 (0.56) 12.76 (1.00) 22.94 (1.02) 21.55 (1.01) 9.47 (0.91) 12.21 (0.96) 6.51 (0.86) 18.73 (0.72) 28.06 (0.96) 23.97 (1.00) 1.01 (1.10) 4.00 (1.50)

NAMM (BAM, s2) 7.08 (0.68) 12.70 (0.99) 22.21 (0.98) 21.50 (1.01) 9.94 (0.95) 12.21 (0.96) 7.13 (0.95) 20.34 (0.79) 28.87 (0.98) 23.84 (1.00) 0.92 (1.00) 3.94 (1.48)

NAMM (BAM, s3) 9.14 (0.88) 12.63 (0.99) 21.94 (0.97) 21.34 (1.00) 9.71 (0.93) 11.63 (0.92) 6.98 (0.93) 20.58 (0.80) 28.78 (0.98) 24.39 (1.02) 1.04 (1.13) 3.63 (1.36)

NAMM (BAM, no IL) 6.46 (0.62) 12.72 (0.99) 22.87 (1.01) 21.22 (1.00) 9.91 (0.95) 11.77 (0.93) 5.61 (0.74) 18.94 (0.73) 27.63 (0.94) 22.60 (0.94) 0.91 (0.99) 1.75 (0.66)

Model/Task id Few-shot Learning Synthetic Code Overall
4-1 4-2 4-3 4-4 5-1 5-2 5-3 6-1 6-2 All tasks Test tasks Cache size

Base model 73.00 (1.00) 89.45 (1.00) 46.54 (1.00) 40.00 (1.00) 1.48 (1.00) 12.18 (1.00) 28.80 (1.00) 69.09 (1.00) 65.17 (1.00) 28.86 (1.00) N/A 10107
NAMM (BAM, s1) 73.00 (1.00) 89.81 (1.00) 46.70 (1.00) 38.75 (0.97) 2.19 (1.48) 25.14 (2.06) 28.51 (0.99) 69.50 (1.01) 66.51 (1.02) 28.91 (1.05) 1.00 8205
NAMM (BAM, s2) 73.00 (1.00) 90.03 (1.01) 46.85 (1.01) 42.00 (1.05) 2.35 (1.59) 24.69 (2.03) 28.46 (0.99) 69.65 (1.01) 66.57 (1.02) 29.25 (1.07) 1.04 8521
NAMM (BAM, s3) 73.00 (1.00) 89.81 (1.00) 46.35 (1.00) 40.00 (1.00) 3.04 (2.05) 27.55 (2.26) 28.60 (0.99) 69.53 (1.01) 66.35 (1.02) 29.33 (1.11) 1.07 8409
NAMM (BAM, no IL) 73.00 (1.00) 89.28 (1.00) 46.43 (1.00) 38.75 (0.97) 2.49 (1.68) 29.28 (2.40) 28.46 (0.99) 69.80 (1.01) 64.77 (0.99) 28.79 (1.03) 0.98 8457

of 1.41 achieved by the best checkpoint from the second incremental training stage. Yet, outside
the PassageRetrieval-en and DuReader tasks, its performance is notably inferior and very close to
the original performance of the base model. These results appear to indicate that the usefulness of
incremental training goes beyond the faster evolution provided by reducing the number of evaluation
prompts to assess performance and that this strategy plays an important role in regularizing evolution
and making Neural Attention Memory Models effectively generalize to new tasks.
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Figure 12: Qualitative inspection of the text from decoding the retained tokens in the KV cache after
applying NAMMs. We compare the behavior of NAMMs across the layers with the highest (left) and
lowest average retained tokens (right), for tokens from either a natural language (top) or coding task
(bottom).

D Additional analysis

D.1 Selected qualitative examples

We analyze the effects of layer depth and task structure on the kinds of tokens being forgotten
by NAMMs by inspecting a few selected prompts. In particular, we compare the layers with the
highest and lowest average retained tokens (15 and 24), for tokens from either a natural language or
coding task (PassageRetrieval-en and RepoBench-P). As exemplified in Figure 12, we see that for
early-middle layers, NAMMs tend to focus on retaining global information such as the task preamble
and key words throughout the text. Instead, for later layers, NAMMs seem to learn to forget many
of these tokens, whose information has likely been already incorporated into the other higher-level
latents by the previous layers, allowing the transformer to focus more on tokens associated with more
detailed local information. Furthermore, we find that, in coding tasks, the pruned tokens are mostly
contiguous, corresponding to whitespace, comments, and whole segments of boilerplate code. This is
in contrast with the behavior we observed for natural language, where NAMMs often appear trying
to exploit some of the grammatical redundancies of the English syntax often dropping specific tokens
mid-sentences.

D.2 Sensitivity to attention frequencies and positional encodings

We analyze the magnitudes of the gradients of the token scores si with respect to each dimension
in the token feature vectors. This procedure quantifies how varying each dimension in our attention
spectrogram representation locally affects the output score of NAMMs, thus, providing a heuristic
measure of its relevance (since scores determine which tokens get discarded). In Figure 13, we
plot the distribution of magnitudes for all the seventeen features up to the Nyquist frequency (0 to
16) in the attention spectrogram. All frequency distributions seem to cover a wide range of values,
with each mean being close to the global mean, seemingly indicating NAMMs learn to make use
of all available spectrogram information for at least some of the tokens. Additionally, we note that
many of the higher frequencies have distributions with higher means and larger tails than the ‘ground
frequency’ at dimension 0. Furthermore, as shown in the rightmost-lower subplot, NAMMs appear
visibly less sensitive to recency information provided by the concatenated positional embeddings,
with a lower total influence than frequency information on token scores. Overall, these observations
seem to further validate the importance of going beyond simple hand-designed methods solely based
on token recency and the sum of the attention values, which has so far been considered a strong
established recipe for KV cache management [25, 26, 35, 36].
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Figure 13: Distribution of gradient magnitudes for the token scores with respect to all the seventeen
features in our attention spectrogram representations. In the rightmost-lower subplot, we also compare
the total magnitudes of the frequency information with the recency information in the positional
embeddings.

D.3 InfiniteBench results comparison

On the InfiniteBench tasks, our NAMM achieve particularly outstanding improvements over the base
model and other baselines, with an over ten-fold score increase (from 1.05% to 11%). However,
we note that even with NAMMs, the performance of Llama 3 8B still lags considerably behind the
performance of powerful LMs designed specifically for long-context problems, as reported in Zhang
et al. [17]. Nonetheless, on the En.Sum task, concerned with the summarization of fictitious novels,
we find our main NAMM brings the performance of the context-extended Llama 3 from 7.73 to
14.91 even slightly beyond GPT4’s (14.73). While this performance is still low in absolute terms12,
such a result appears quite notable and suggests that improvements from NAMMs are orthogonal in
nature to the ones brought by architectural improvements and scaling, which, by themselves, might
be insufficient to address the challenges brought by long and noisy contexts.

We qualitatively inspect the effects of NAMMs on En.Sum by comparing example answers generated
by Llama 3 with and without our memory models, together with examples generated by GPT4. As
illustrated in Figure 14, we find both the Llama and GPT models to incur several failure modes,
producing answers that entirely miss the objective of the original task. For instance, the context-
extended Llama 3 often gets stuck in generation loops continuously repeating part of sentences
without coherent structure. Instead, the GPT answers appear to forego summarizing the text and
rather attempt to continue the provided passage, by generating end-of-text tokens or even roleplaying
some of the characters. However, while introducing NAMMs appears to avoid many instances of
these failure modes, we find the summarization of the memory-augmented Llama 3 still displays
many imperfections such as misspelling character names (left) or lacking much depth by being
extremely concise (right).

12InfiniteBench tasks are scored in a range between 0 and 100.
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Figure 14: Qualitative examples comparing the ground produced responses by Llama3 with and
without our NAMM memory, together with GPT4, on two prompts from the En.Sum task part of
InfiniteBench.

E Extended related works

Similar to our NAMMs implementation, memory management through token eviction has been
explored mostly to reduce memory constraints and enable querying LMs with longer contexts [9].
Commonly, strategies entail simply cropping input prompts to a shorter length, often more effective
when done from the middle rather than the ends [39, 40]. More advanced, several heuristic strategies
have been proposed to identify and evict the least important tokens in the KV cache, selectively
pruning it to a fixed size for each layer. These strategies assess token relevance using metrics like
L2 magnitude [26] or entropy [33], or analyze statistics from the attention matrix, such as value
magnitude or cumulative sums [25, 34, 35]. Building on these ideas, Ge et al. [36] and Li et al. [37]
apply multiple strategies simultaneously, choosing the best fit for each layer by matching them with
specific attention patterns. However, unlike previous work, our approach uniquely employs a black-
box model to learn KV cache management, aiming to enhance efficiency and boost performance.

Many other methods to reduce memory consumption, affecting the KV cache, are mostly orthogonal
and likely complementary to our approach. For instance, MQA [45] and GQA [46] propose merging
different attention heads during the training of LLMs, either fully or partially, to improve deployment-
time throughput. Brandon et al. [47], pushed these strategies further, attempting to merge heads even
across different layers. GQA is commonly employed in many modern LMs, including the LLama 3
family of models which we use to train and evaluate NAMMs on language tasks [15]. Furthermore,
several methods have looked at KV cache compression through either quantization of the keys and
values [48–50] or even the whole hidden states [51]. Similarly to the aforementioned prior work
concerning KV cache pruning, these methods considered mainly hand-designed strategies, such
as employing different quantization rates based on heuristically recognizing important tokens. We
note that using evolution to optimize for which channels to merge or compress could also yield new
interesting unexplored approaches, combining these orthogonal directions with some of the principles
introduced by NAMMs.

There has also been much research interest in exploring new architectures to explicitly model
components of a memory system or to address key challenges of reasoning over longer contexts. For
instance, past work has looked at incorporating neural models of memory within neural networks
by implementing different reading and writing operations - either directly replacing their layers [52,
53], or introducing new auxiliary components [54, 55]. In relation to transformers, more recent
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works have been proposed rethinking the ingredients of the self-attention operation, mostly in the
context of LMs. These works looked at either efficient linear approximation to self-attention to
overcome quadratic costs [56–59], or introducing new kinds of persistent tokens and storage to extend
information propagation [60–62]. However, as also noted by Dao et al. [41], none of these methods
and approximations have managed to replace standard approaches so far. We take a different approach
that can be integrated in a zero-shot manner even without any fine-tuning.

Lastly, methodologically related to NAMMs, there have been other prior methods making use of
evolution for or with transformer models. For example, Tang and Ha [63] also trained a small
attention-based model through evolution, exploiting the inherent parameter efficiency behind these
operations. Furthermore, So et al. [64] proposed using evolution to meta-optimize the basic building
of transformers via neural architecture search, while Akiba et al. [65] focused on evolving different
merging strategies across layers belonging to LMs with different capabilities. As for these works,
we note that evolution plays a critical role for NAMMs, allowing us to directly optimize for target
performance and overcome the inherent non-differentiability underlying our new framework.
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Table 18: NAMMs evaluation on the canonical Needle In A Haystack task [66]. The normalized performance
(in brackets) is calculated using the base model with full cache.

Model/Task name Needle prompt length Overall
0-10000 10001-20000 20001+ All prompt lengths Cache size

Base model (full cache) 8.87 (1.00) 7.53 (1.00) 3.50 (1.00) 6.32 (1.00) 32768
NAMM (BAM) 9.00 (1.02) 4.80 (0.64) 3.05 (0.87) 5.36 (0.85) 10208
NAMM (BAM), γ = 0.9999sw 9.00 (1.02) 5.33 (0.71) 3.45 (0.99) 5.68 (0.90) 10347

F Limitations and future extensions

F.1 Exploring the design space of Neural Attention Memory Models

In this work, we introduced Neural Attention Memory Models and showed their efficacy and potential
to improve the performance and efficiency of transformers, even when evaluated zero-shot for unseen
architectures and domains. However, given the novelty of our framework, we note that our design
choices were mostly motivated by simplicity and practicality rather than quantitative empirical
evidence. Thus, there is an extremely large design space in terms of the implementation, training,
and deployment of these models that should be explored beyond this work, which is likely to yield
further improvements.

For instance, while our current feature extraction, based on computing the spectrogram of the attention
matrix, enables capturing global frequency information about the attention values of each token, it
might fall short of modeling local information with enough granularity. This hypothesized limitation
inherently comes from a few design choices we made with the purpose of limiting the input size
and corresponding parameter count of our memory models. In particular, our spectrogram features
only consider the real components of a short-time Fourier transform with a small Hann window of
size thirty-two. Thus, we only provide NAMMs information about a relatively limited number of
thirty-two frequencies, losing any notion of the phase of the attention matrix that would be captured
by the full complex-valued Fourier coefficients. Consequently, the representations of tokens with
high attention values for entirely non-overlapping queries occurring with the same frequency would
be indistinguishable to our models. Moreover, our exponentially moving average reduction over the
time dimension of the spectrograms provides an additional layer of heavy compression inevitably
trading off expressivity for simplicity.

To partially address these concerns, an alternative design we explored entailed delaying the initial
element-wise exponentially moving average reduction. Concretely, this involved computing T differ-
ent scores, feeding mϕ all feature vectors ωt

i for t = 1, 2, . . . , T , across the attention spectrogram’s
compressed time axis, only then reducing the resulting scores s1:Ti via EMA. While, in principle, this
alternative ordering would allow for additional expressivity without adding to the parameter count,
in practice, when evaluated with an initial version of the simple 2-layer MLP model, we found no
significant performance difference and opted for the former lighter option. However, introducing
cross-token interactions with the improved BAM design and further scaling is likely to introduce a
need of re-evaluating this choice.

One further limitation comes from the current reliance on the exact values of the attention matrix.
This reliance precludes NAMMs training from making use of fast kernel algorithms developed to
accelerate inference by foregoing materializing attention values [41]. While the main focus of this
work has been to introduce NAMMs and display its potential to improve transformers across different
domains, more scalable parameterizations and efficient backend integrations remain exciting open
challenges for future research.

F.2 Improving long-context sparse retrievals

One notable example exemplifying some of the aforementioned limitations, comes from the canonical
Needle In A Haystack task [66], which has been used to qualitatively evaluate LLMs for their ability to
remember sparse information over long noisy horizons. We provide results on this task using the best-
performing NAMM after three stages of incremental training with the BAM architecture, averaging
evaluation scores provided by a GPT-4 model [1] across different prompt ranges, consistently with Bai
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et al. [67]. As shown in Table 18, while NAMMs do not manage to exceed the overall performance
of the base model, they still provide some notable efficiency gains. However, looking more closely at
the score distribution across different prompt length ranges we observe an unexpected trend that is in
contrast with the rest of our results on other benchmarks. In particular, while our NAMM obtains
slightly higher than the base model for prompts with a size less than 10000, it seems to increasingly
struggle with longer prompts.

After comparing the spectrogram features extracted for the different prompts, our explanation for
these results highlights one current failure mode of the current implementation. In particular, the
Needle In a Haystack task is constructed such that the model is tasked to remember some important
information introduced at the beginning of the prompt, and later followed by completely unrelated
‘filler’ text. Hence, the attention scores and the corresponding spectrogram features for the tokens
containing the relevant information are forcibly sparse, being high only at the very beginning of the
prompt. Yet, since the evaluated NAMM reduces these features over the time axis of the spectrogram
with an EMA coefficient of γ = 0.99sw , all the frequency information regarding these tokens will be
inevitably overwritten. To empirically validate our theory we provide results simply raising the EMA
coefficient from γ = 0.99sw to γ = 0.9999sw . Since our NAMMs was never actually trained with
this higher coefficient, we note that this change effectively brings the input features out-of-distribution.
Nonetheless, as shown in the final row of Table 18, the larger coefficient still manages to improve
performance on the longer prompts by enabling the preservation of the frequency components from
the target ‘needle’ over a longer horizon. These findings suggest that future NAMM designs should
consider higher EMA reduction coefficients or, potentially, even directly learning this parameter with
evolution in addition to the NAMM’s network weights.
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