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Abstract

Speaker Verification has achieved significant progress using advanced deep learn-
ing architectures, specialized for speech signals as well as robust loss functions.
Recently, fusion of faces and voices received a lot of attention as they offer comple-
mentary relationship with each other, outperforming unimodal approaches. In this
work, we have investigated the potential of Vision Transformers (ViTs), pre-trained
on visual data, for audio-visual speaker verification. To cope with the challenges
of large-scale training, we introduce the Latent Audio-Visual Vision Transformer
(LAVViT) adapters, where we exploit the existing pre-trained models on visual
data by training only the parameters of LAVViT adapters, without fine-tuning the
original parameters of the pre-trained models. The LAVViT adapters are injected
into every layer of the ViT architecture to effectively fuse the audio and visual
modalities using a small set of latent tokens, thereby mitigating the quadratic
computational cost of cross-attention across the modalities. The proposed approach
further circumvents the need for modality-specific architectures by employing
the same ViT architecture with shared pretrained weights for audio and visual
modalities. The proposed approach has been evaluated by conducting extensive
experiments on the Voxceleb1 dataset and shows promising performance using
only a few trainable parameters.

1 Introduction

Speaker verification (SV) has been predominantly explored using speech signals, as the identity of the
speaker is often reflected in their voices. Voice-based biometrics is one of the key technologies, widely
used to verify the authenticity of a person in several applications such as customer authentication,
security applications, etc (1). SV can be classified as text-dependent and text-independent based
on whether the constraint is imposed on the lexical content of the utterances or not (2). In this
work, we have focused on text-independent SV, where there is no constraint on the text content
of speech utterances. Though the performance of SV has been drastically improved over the last
few years using advanced architectures such as ECAPA-TDNN (3), xi-vector (4), and transformers
(5), relying only on speech signals suffer from poor performance when the speech utterances are
corrupted due to external noise, noisy environments, etc. Another widely-explored paradigm to verify
the authenticity of the person is based on faces in the vision community. Face verification has also
achieved impressive performance with the advancement of deep learning architectures (6) and loss
functions (7). Although faces and voices have shown remarkable success individually, they fail to
retain their robust performance when the modalities get corrupted. Therefore, audio-visual fusion
based on face and voice is gaining a lot of attention as they often complement each other, leading to
better performance than that of individual modalities.
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Figure 1: Illustration of the Proposed Approach. LAVViT adapters are injected into every layer
of ViT and the pre-trained weights are shared across the modalities, where only the parameters of
LAVViT adapters are trained and pre-trained weights are frozen.

Audio-visual fusion has been successfully explored by capturing the complementary relationships
using cross-modal attention in several applications such as emotion recognition (8; 9; 10; 11), event
localization (12), and action localization (13). Conventionally, audio-visual fusion for SV has been
explored using a simple fusion of scores obtained from facial and speaker embeddings (14; 15)
or early feature-level fusion (16; 17). Although score-level fusion has achieved better results, the
full potential of audio-visual fusion for SV is not fully explored, leaving a lot of room for further
improvement. Recently, attention mechanisms have been exploited for effective fusion of audio and
visual modalities for SV (18; 19; 20). With the massive success of transformer models (21) in Natural
Language Processing (NLP), it is also explored successfully in other domains such as computer
vision (22) and speech processing (23). Recently, they have also been explored for SV using speech
signals (5). However, leveraging transformer models in the context of audio-visual learning for SV is
still at a rudimentary level.

Owing to the remarkable success of Vision Transformers (ViT) (24) for computer vision applications,
they have also been found to be promising in achieving better performance for multimodal learning
(25). However, one of the challenging aspects of exploiting ViTs for audio-visual learning is the
requirement of intense computational power for large-scale training. Moreover, different architectures
are often used for extracting the embeddings of the individual modalities, which further increases
the burden of additional computational support. Recently, Lin et al (26) investigated the prospect of
leveraging ViTs for parameter-efficient audio-visual learning and showed promising performance for
applications such as event localization and semantic segmentation. In this work, we have explored the
potential of ViTs to effectively extract the audio and visual embeddings, while deploying cross-modal
adaptation for audio-visual SV. By representing the speech signals as spectrograms, we have used
similar ViT architecture by sharing the weights pre-trained on image data as shown in Fig 1. Moreover,
the computational overhead of large-scale training has been drastically reduced by introducing latent
tokens in the LAVViT adapters in every layer of ViT architecture. The latent tokens help to compress
the large number of audio or visual tokens, thereby reducing the computational overhead of cross
attention across the modalities. The major contributions of this work can be summarized as follows.

• To the best of our knowledge, this is the first work to investigate the potential of ViTs in a
parameter efficient manner for audio-visual SV.

• The quadratic computational complexity of large-scale training of ViTs has been reduced by
introducing latent tokens at every layer of ViT using LAVViT adapters.

• The proposed approach relies on the same ViT architecture with shared pre-trained weights,
thereby circumventing the need for modality specific-architectures for audio and visual
backbones.
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• Extensive experiments are conducted on the voxceleb1 dataset and showed that the proposed
model achieves better performance using a few trainable parameters.

2 Related Work

Inspired by the close associations between faces and voices, several approaches have been proposed
for cross-modal SV using joint feature embeddings in a shared representation space (27; 28). Tradi-
tionally, audio-visual SV has been explored using early feature-level fusion (16; 17) or score-level
fusion (14; 15). Sari et al. (29) proposed a multi-view approach to map the audio and visual embed-
dings to a common space using a shared classifier for cross-modal SV. Shon et al. (18) explored
attention models to handle the problem of noisy modalities by emphasizing on the salient modal-
ity. Hormonn et al. (19) proposed a multiscale feature-fusion approach to obtain robust feature
representations by fusing the features at intermediate layers. Chen et al. (17) explored various
fusion strategies based on gating mechanisms and further analyzed the impact of the gating-based
fusion under extremely corrupted or missing modalities. Tao et al (30) attempted to exploit the
complementary relationships across the modalities to refine the noisy samples using a two-step deep
cleansing framework. Most of these methods endeavored to leverage the complementary relationships
across the modalities to handle the problem of noisy modalities.

Unlike prior approaches, Liu et al. (31) focused on leveraging the cross-correlation across the
modalities using co-learning approach by exploiting the knowledge of one modality to attend to
another modality. Sun et al. (32) introduced weight-enhanced attentive statistics pooling to focus
on keyframes by deploying cycle consistency loss and gated attention. Praveen et al. (20) explored
joint cross attention to effectively capture the intra- and inter-modal relationships simultaneously
by introducing joint representation in the cross attention framework. They further improved the
performance by incorporating recursive mechanism to refine the attended feature representations
(33). Recently, Praveen et al (34) proposed dynamic cross-attention to address the problem of weak
complementary relationships and showed further improvement over prior cross-modal attention
methods. Even though cross-attention has been explored to capture the complementary relationships,
they do not explore the potential of transformer models for audio-visual SV. Another recent approach
by Rajasekhar et al. (35) showed that transformers can be explored for effectively capturing the
cross-modal relationships, thereby improving the performance of audio-visual SV. Contrary to the
prior approaches, we have explored the potential of ViTs, pre-trained on visual data for effectively
fusing audio and visual modalities for SV.

3 Proposed Approach

3.1 Audio-Visual Inputs

Given an input video sequence, we extract the audio and visual streams. For the visual modality, we
randomly sample an image of size H ×W × 3 in the video sequence, where H and W denote the
height and width of the sampled image respectively. For audio modality, we compute the spectrogram
of the audio stream with size M×C where M and C denote the spatial dimensions of the spectrogram.
Since we use a similar ViT architecture for both audio and visual inputs, the number of channels of
the spectrogram is inflated from 1 to 3 to match the channels of visual input. As per the convention of
ViT (24), the sampled image and the spectrogram of the visual and audio inputs are divided into N
and K non-overlapping patches respectively. These patches are further flattened, and fed to a linear
projection layer to obtain the audio and visual tokens, where X(0)

a ∈ K × d and X(0)
v ∈ N × d

represent the audio and visual tokens respectively and d denote the dimension of the tokens.

3.2 LAVViT Adapters

This is the core module of the proposed approach, which helps to drastically reduce the computational
overhead of ViTs using the latent tokens and few trainable parameters. ViTs with adapters have been
recently attaining significant attention as they are found to be promising in achieving parameter-
efficient training with few trainable parameters (36; 37). In this work, we explore the potential of
LAVViT adapters for audio-visual SV. The proposed LAVViT adapter is composed of two modules:
(i) Latent Self Attention (LSA) and (ii) Cross Modal attention (CMA) as shown in Fig 2. In the LSA
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Figure 2: LAVViT adapter module of the proposed approach. Separate LAVViT adapters are used for
audio and visual modalities.

module, we attempt to compress the audio or visual tokens to a small number of latent tokens in
order to reduce the computational cost. These latent tokens help to efficiently represent the audio or
visual tokens for effective cross-modal attention across the modalities. The latent tokens are randomly
initialized and they are not shared across the modalities as well as across the ViT layers. By training
only the parameters of LAVViT adapters in each layer of ViT, we are able to efficiently condense
the information at every layer using a few trainable parameters, yet exploiting the pretrained frozen
models. Let M denote the number of latent tokens, which is chosen as significantly smaller than that
of the total number of audio or visual tokens (in our experiments, we use M = 2). The compressed
tokens of the LSA for audio and visual modalities can be expressed as:

Z(l)
a = LSA(L(l)

a ,X(l)
a ) (1)

Z(l)
v = LSA(L(l)

v ,X(l)
v ) (2)

where l denotes the lth layer, L(l)
a and L

(l)
v represents the latent tokens of audio and visual modalities,

Z
(l)
a and Z

(l)
v represents the compressed tokens of audio and visual modalities respectively.

The output of the LSA module helps to focus only on the most relevant information by compressing
into the latent tokens. Now the compressed tokens of the LSA module are fed to the CMA along with
the tokens of other modality to compute cross attention across the modalities, which is given by

X(l)
av = CMA(Z(l)

v ,X(l)
a ) (3)

X(l)
va = CMA(Z(l)

a ,X(l)
v ) (4)

where X(l)
va and X(l)

av are the cross-attended features of visual and audio modalities, respectively,
where audio modality is used to attend to visual modality and vice-versa. By using the compressed
latent audio tokens to attend to visual modality, the quadratic computational cost of the cross attention
module is eliminated, while still retaining the benefits of cross attention. Note that separate LAVViT
adapters are used for each modality, where the knowledge of one modality is exploited to attend to
the other modality.

3.3 ViT with LAVViT Adapters

3.3.1 Standard ViT layer

For the sake of completeness, we briefly review the ViT layer of the conventional ViT architecture
(24) as a preliminary to the proposed approach. Traditionally, the standard ViT layer has two modules:
(i) Multi-head Self-Attention (MSA) and (ii) Multilayer perceptron (MLP), where each module is
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Figure 3: (a) Standard ViT Layer (b) ViT Layer with the integration of LAVViT adapters.

followed by layer norm and residual connections as shown in Fig 3. Given the audio (X(l)
a ) and

visual inputs (X(l)
v ), the output of the MSA can be expressed as :

Y (l)
a = X(l)

a + LN(MSA(X(l)
a )) (5)

Y (l)
v = X(l)

v + LN(MSA(X(l)
v )) (6)

where LN denotes layer normalization, Y (l)
a and Y (l)

v denotes the output of MSA for audio and
visual modalities, respectively.

The output of the MSA is further fed to the MLP module, which is given by

X(l+1)
a = Y (l)

a + LN(MLP (Y (l)
a )) (7)

X(l+1)
v = Y (l)

v + LN(MLP (Y (l)
v )) (8)

Similar to the transformer encoder, these two modules of MSA and MLP are repeated in each ViT
layer.

3.3.2 ViT layer with LAVViT adapters

To effectively integrate the LAVViT adapters into the ViT layer, we have injected LAVViT adapters
in both the modules of MSA and MLP of each ViT layer. The audio or visual inputs are fed to
the LAVViT adapters and the output of the LAVViT adapters are then added to the output of MSA
module, which is given by

Y (l)
a = X(l)

a + LN(MSA(X(l)
a )) + LAV (X(l)

a ,X(l)
v ) (9)

Y (l)
v = X(l)

v + LN(MSA(X(l)
v )) + LAV (X(l)

v ,X(l)
a ) (10)

Similarly, another LAVViT adapter is integrated into the MLP module of each ViT layer, which is
expressed as

X(l+1)
a = Y (l)

a + LN(MLP (Y (l)
a )) + LAV (Y (l)

a ,Y (l)
v ) (11)

X(l+1)
v = Y (l)

v + LN(MLP (Y (l)
v )) + LAV (Y (l)

a ,Y (l)
v ) (12)

Separate LAVViT adapters are deployed for the audio and visual modalities in each ViT layer. By
integrating LAVViT adapters in both MSA and MLP modules of each ViT layer, we are able to
effectively capture the information using a few trainable parameters.
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3.4 Overview of the proposed approach

The audio and visual inputs are fed to parallel ViT architectures pre-trained on visual data independent
of each other. By deploying the same architecture with shared pre-trained weights, the need to train
the modalities separately with modality-specific backbones can be avoided. We have further deployed
bidirectional attention mechanisms where we have used separate LAVViT adapters for audio and
visual modalities. This helps in effectively deploying cross-attention to leverage the knowledge of
one modality to attend to another modality in a bidirectional fashion. By freezing the pre-trained
weights and training only the parameters of the LAVViT adapters injected into each ViT layer,
it helps to eliminate the large-scale training of fine-tuning all the parameters of ViT. Finally, the
trainable parameters of the LAVViT adapters are optimized using Additive Angular Margin Softmax
(AAMSoftmax) function (38).

4 Results and Discussion

4.1 Dataset

We have evaluated the proposed approach on the Voxceleb1 dataset (39), which consists of 1,48,642
videos, captured under challenging environments from Youtube videos. The videos are obtained
from 1251 speakers, which is gender balanced with 55% of speakers being male. Each video spans a
duration of 4 to 145 seconds, and the videos are chosen from a wide range of ethnicities, accents,
professions, and ages. For our experiments, we divided the Voxceleb1 development set of 1211
speakers by randomly selecting 1150 speakers for training and 61 speakers for validation. The results
of the proposed approach have been reported on both validation and test sets.

4.2 Evaluation Metrics

We have considered Equal Error Rate (EER) and minimum Detection Cost Function (minDCF) as
evaluation metrics to measure the performance of the proposed approach, whcih has been widely
explored in the literature of speaker verification (16; 33). EER provides the error rate at which the
false acceptance rate (FAR) and false rejection rate (FRR) are equal. So lower the EER, higher will
be the performance and reliability of the system. On the other hand, minDCF provides the control
over the costs associated with false positives (imposters) and false negatives (missed detections) (40).
By using these two metrics, we are able to comprehensively evaluate the performance of our model.

4.3 Ablation Study

It is worth mentioning that all the experiments are conducted only on the Voxceleb1 dataset. In order
to understand the impact of the latent tokens, we have conducted experiments without the latent
tokens in the LAVViT adapters i.e., performing cross attention on all the original audio and visual
tokens. In the LAVViT adapters, we have removed the LSA modules and computed the cross-attention
across the original tokens of the modalities. Note that the latent tokens helps in reducing the quadratic
computational cost of cross attention by compressing the audio or visual tokens not the parameters.
We can observe that directly applying the cross attention across the original audio and visual tokens
drastically increases the computational complexity due to the large number of audio or visual tokens.
We can also observe that the performance of the system without latent tokens slightly degrades
compared to that of the one with latent tokens as shown in Table 1. This can be attributed to the
fact that the latent tokens are able to act as an attention bottleneck, focusing on the most relevant
information using a few trainable parameters.

We have further evaluated the proposed approach using multiple variants of the ViT transformers
(ViT and Swin architectures) for both the scenarios of with and without latent tokens. We have
considered two variants of Swin transformers (41) (Swin-V2-B and Swin-V2-L) and two variants of
ViT transformers (ViT-B-16 and ViT-L-16). Since Swin transformers introduce the inductive bias of
images into the ViT architecture, we can observe Swin transformers outperform the standard ViT
architecture. Among the two variants of Swin transformers, Swin-V2-L exhibits the best performance
as it employs more number of parameters than that of Swin-V2-L.
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Table 1: Performance of the proposed approach w/ and w/o latent tokens on the validation set. We
also present the results with various architectures of ViTs in case of both w/ and w/o latent tokens.
Here w and w/o denotes with and without respectively.

ViT Total Trainable Validation Set
Architecture Params (M) Params (M) EER ↓ minDCF ↓

LAVViT (w/o latent tokens)
ViT-B-16 107.2 2.1 2.105 0.140
ViT-L-16 340.1 6.7 1.894 0.129
Swin-V2-B 114.2 2.3 1.903 0.121
Swin-V2-L 238.8 4.6 1.826 0.119

LAVViT (w/ latent tokens)
ViT-B-16 107.2 4.7 1.993 0.134
ViT-L-16 340.1 14.5 1.841 0.122
Swin-V2-B 114.2 5.0 1.735 0.115
Swin-V2-L 238.8 10.1 1.649 0.104

Table 2: Performance of the proposed approach in comparison to state-of-the-art models on the
validation and Vox1-O sets.

Fusion Validation Set Vox1-O Set
Method EER ↓ minDCF ↓ EER ↓ minDCF ↓
Visual 3.720 0.298 3.779 0.274
Audio 2.553 0.253 2.529 0.228
Deep Cleanse (30) 2.476 0.203 2.409 0.198
JCA (20) 2.173 0.126 2.214 0.129
DCA (34) 2.138 0.119 2.172 0.121
RJCA (33) 1.851 0.112 1.975 0.116
LAVViT (Ours) 1.649 0.104 1.785 0.110

4.4 Comparision to state-of-the-art

To have a fair comparison with the state-of-the-art (SOTA), we have used the same train and validation
set partitions as provided by the authors of (34). Similar to that of (34), we have used the deep audio-
visual cleansing framework of (30) to refine the noisy samples of the Voxceleb1 dataset. The results
of the proposed approach have been compared to the SOTA approaches on the validation and Vox1-O
test sets as depicted in Table 2. First, we evaluated the performance with the individual modalities
and found that the audio modality outperforms the visual modality. By deploying a simple score-
level fusion as in (30), the performance of the fusion model performs better than that of individual
modalities. (20) and (33) improved the performance of the system by employing sophisticated
cross attention models using Resnet-18 (42) for visual and ECAPA-TDNN (43) for audio modality
as backbones, respectively. (34) further improved the performance of cross-attention models by
addressing the problem of weak complementary relationships. In most of the SOTA approaches,
separate architectures are used for training the backbones, whereas the proposed approach does not
require separate modality-specific backbones. Unlike existing methods, we rely on the ViTs for a
unified training framework of audio and visual modalities, yet efficiently training with a few trainable
parameters using the LAVViT adapters. We can observe that the proposed approach demonstrates
better performance than SOTA models by leveraging the potential of ViT transformers.

5 Conclusion

In this work, we have explored the potential of Vision Transformers (ViTs) for audio-visual speaker
verification (SV) using Latent Audio-Visual Vision Transformer (LAVViT) adapters. By introducing
latent tokens in the LAVViT adapters, which are injected into every layer of the ViT, we demonstrate
that ViTs can be efficiently trained using a few trainable parameters. The latent tokens in each
LAVViT module help us to drastically reduce the original number of audio and visual tokens,
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thereby avoiding the quadratic computational cost of the cross-modal attention. By using the same
architecture with shared pre-trained weights, the proposed approach circumvents the need to train
separate modality-specific backbones. Extensive experiments were conducted to demonstrate that
exploring ViTs in a parameter-efficient way using LAVViT adapters is a promising line of research.
The proposed approach can be further enhanced by training with Voxceleb2 dataset as it can improve
the generalization ability of the model. We can also further investigate the integration of sophisticated
cross-attention models into the LAVViT adapters to further improve system performance.
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