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Abstract

Hybrid attention architectures have shown promising success in both equipping
self attention with inductive bias for long-sequence modelling and reducing the
computational burden of transformers without sacrificing quality. This paper intro-
duces Composite Attention, a theoretical framework for analyzing the combination
of sequence mixing primitives in modern deep learning architectures. Utilizing the
definition of sequence mixers as structured linear maps, we formalize the composi-
tion of sequence mixing primitives as either sequential or recurrent composition.

1 Introduction

The design space of sequence models has recently exploded due to the successful introduction of long
convolutions [17, 3, 8, 26], state-space models [12, 10, 11, 27], linear attention mechanisms [9, 4, 28,
15], and gating [24, 13]. Hybrid attention models [21, 22, 2] seek to make use of these advancement by
combining different sequence mixing primitives to improve efficiency and performance. In this work,
we examine the combination of sequence mixing primitives within hybrid attention architectures and
propose a framework for enhancing the understanding of composite sequence models through analysis
of their matrix structures. Specifically, we aim to: 1) Formalize the composition of sequence mixing
primitives, 2) Identify gating as a method for diversifying single-head attention, and 3) Recognize
convolution-equipped attention mechanisms as a means of encoding local context.

2 Background

Sequence Mixers Modern deep learning sequence mixers rely on the aggregation of information
as the weighted sum of tokens. Following [14], we can define any sequence mixer which performs
aggregation as a linear map y = Ax, where A ∈ RL×L is a matrix of attention weights and
x ∈ RL×L is an input sequence of length L and dimension d.

Definition 2.1 (Token Mixing as Linear Maps.). Let x ∈ RL×D be a sequence of tokens, of length L
and embedding dimension D. Let M ⊆ RL×L be a space of possible attention matrices. Let H be
the number of heads and P the head dimension such that HP = D. For each head h ∈ H , we define
a generating function fh

M : RL×D ×Θ → M, parameterized by Θ, that maps the input to a space
of possible attention matrices. Denoting the attention weight matrix Ah = fh

M(x,Θ) ∈ RL×L, we
define sequence mixing via aggregation as,

yh = Ahxh (1)

where xh ∈ RL×P is the input for a given head h, yh ∈ RL×P is the output for a given head h, and
y = Concat[y0, · · · ,yh−1] ∈ RL×D is the same shape as the input.
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Figure 1: Gated Attention Unit as Sequential Composition of Sequence Mixers. (Left) A gated
attention unit which consists of single-head attention (SHA) followed by an element-wise product ⊙,
where ϕ is an element-wise activation function. (Right) The equivalent compositional form, denoting
a sequential input dependency structure and their corresponding generating functions.

For notational ease, we define fM(·) = Concat[f0
M(·), · · · , fh−1

M (·)] as the generating function that
returns an attention matrix A ∈ RH×L×L for all heads H .

Hybrid Architectures There is a growing interest in designing compositional or hybrid architec-
tures that integrate different sequence mixing primitives to obtain a best-of-all-world solution. Gating
has proven a powerful method of enhancing a models input dependency [19, 13, 1, 7, 22]. Depthwise
separable convolutions placed before linear attention mechanisms have been shown to reduce the
quality gap to SoftMax attention [21, 2, 5, 9, 7, 20, 22]. Hybrid architectures which alternate between
SoftMax attention layers and simpler sequence mixers have proven to be more computationally
efficient and as performant [17, 2, 23, 25, 18].

3 Framework for Composition of Sequence Mixing Primitives

We introduce Composite Attention, a framework for analysing the combination of sequence mixing
primitives. We can combine input-dependent transformations in 2 different ways: via 1) the sequential
composition of linear maps where each map depends on the same input x and 2) the recurrent
composition of linear maps where each map depends on the output of the previous transformation.

Definition 3.1 (Sequential Composition of Sequence Mixers). Let x ∈ RL×d be a sequence of
tokens, of length L and embedding dimension d. Let {M(i)}N−1

i=0 be a set of classes of attention
matrices, where M(i) ⊆ RL×L. Let {f (i)

M}N−1
i=0 be a set of generating functions, where each

f
(i)
M : X × Φ(i) → M(i) is a function that maps from the input to the space of structured matrices
M(i). We define the sequential composition of Attention matrices as

y = g
(
f
(N−1)
M (x), · · · , f (1)

M (x), f
(0)
M (x)

)
· x (2)

= AS · x (3)

where g : M(0) ×M(1) × · · · ×M(N−1) → RL×L is a function that takes as input a set of N struc-
tured matrices and returns AS ∈ RL×L, denoted the compositional attention matrix corresponding
to the composition of attention matrices, which each depend on the input x, by the function g(·).
Remark. Typically we assume that g(·) is a composition of binary operations such as matrix additions
or matrix multiplications. For the case of matrix multiplications the sequential composition can be
constructed as

y =
(
f
(N−1)
M (x) · . . . · f (1)

M (x) · f (0)
M (x)

)
· x (4)

= A(N−1) · . . . ·A(1) ·A(0) · x (5)

where AS = A(N−1) · . . . ·A(1) ·A(0) is the compositional attention matrix. We stress though that
our definition is general and encompasses potentially non-linear functions of the input matrices.
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Figure 2: Silu Activation as Recurrent Composition of Sequence Mixers. (Left) A global
depthwise separable convolution followed by a silu activation function, where σ is the logistic
sigmoid applied element-wise. (Right) The equivalent compositional form, denoting a recurrent
input dependency structure and their corresponding generating functions.

Hierarchical gating, as used in gated attention units (GAU) (See Figure 1), is an example of sequential
composition whereby each sequence mixer depends upon the same input.
Definition 3.2 (Recurrent Composition of Sequence Mixers). Let x ∈ RL×d be a sequence of
tokens, of length L and embedding dimension d. Let {M(i)}N−1

i=0 be a set of classes of attention
matrices, where M(i) ⊆ RL×L. Let {f (i)

M}N−1
i=0 be a set of generating functions, where each

f
(i)
M : X × Φ(i) → M(i) is a function that maps from the input to the space of structure matrices
M(i). We define the sequential composition of Attention matrices as

yn = f
(i)
M (yn−1) · yn−1 (6)

y0 = x (7)

where the output yn is sequentially generated.

Recurrent composition is typically found in branches of a gated architecture such as a short convolu-
tion followed by a silu activation function [6] as used in Mamba [9] (see Figure 2).

4 Composite Attention

We will use our framework to analyze combinations of sequence mixing primitives, focusing on the
properties of their attention matrices, generating functions, and matrix products, especially looking at
gating and convolution-equipped attention.

4.1 Exploration of Composite Sequence Mixer Framework

We begin with a Gated Attention Unit (GAU), defined as,

u = ϕu(xWu), v = ϕv(xWv), g = ϕg(xWg) (8)
q = κq ⊙ u+ µq, k = κk ⊙ u+ µk (9)

a = SoftMax
(
qkT

√
d

)
v (10)

y = a⊙ g (11)

This structure can be described similarly to hierarchical gating as the sequential composition of
attention matrices, where both self-attention and gating correspond to input-dependent sequence
mixers whose generating function depends on the input sequence x as,

y = diag(ϕg(xWg)) · SoftMax
(
qkT

√
d

)
· ϕu(xWv) (12)

= fG(x) · fA(x) · ϕu(xWv) (13)
= AG ·AA · v (14)
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Figure 3: Left. Gating Heads Ablation on enwik8. Performance of GAU improves with increasing
head dimension on enwik8 language modelling task. Center. Outer product of unit impulse
convolved with an aggregation filter. Shows how convolution equipped attention mechanisms spread
token information across the attention matrix, encoding context. Right. Outer product of unit impulse
convolved with a shift filter. Demonstrates ability of local convolutions to perform local token shifts,
acting as a form of memory.

Gating Diversifies Single-Head Attention. As a sequence mixer gating can be represented as
an L× L diagonal matrix, with generating function fG(x) = diag(ϕ(xW )T ) ∈ RL×L×hg where
hg corresponds to the number of gating heads, which is typically set to the hidden dimension d.
We hypothesize that the effectiveness of gating is derived from its use of a very large number of
heads which when composed with single-head attention (SHA) or few-head attention diversifies the
attention layer into a multi-headed linear map over the sequence dimension

AG = fG(x) = diag(ϕ(xW )T ) ∈ RL×L×hg (15)

ASHA = fSHA(x) = SoftMax
(
qkT

√
d

)
∈ RL×L×1 (16)

AGAU = AG · Repeat(ASHA, hg) ∈ RL×L×hg (17)

We emphasize the importance of using many heads when gating by conducting an Ablation study
using the MEGA transformer [21]. Indeed, we find that increasing the number of gating heads
improves performance on the enwik8 dataset (see Figure 3)

Convolutions Encode Context. Placing convolutional layers prior to computing the q,k projections
has been proposed as an alternative to positional encodings [16, 21] as well as a means of introducing
locality which is required to capture long-range dependencies by means of a hierarchical combination
of local dependencies [4, 7, 3]. We examine the effect of convolution equipped attention by composing
together the convolution operator with the generating function for self-attention.
Definition 4.1 (Convolution Equipped Attention). Let x ∈ RL×d be an input of length L and
dimension d, kq = [α0, · · · ,αL−1] ∈ RL×d and kk = [β0, · · · ,βL−1] ∈ RL×d the query and key
convolution kernels of length L and Wq,Wk ∈ Rd×d dense linear projections over the channel
dimension d. Let the query and keys be defined as q = (kq ∗x)Wq and k = (kk ∗x)Wk respectively.
Hence,

SoftMax
(
qT
i kj√
d

)
= SoftMax

(
1√
d

i∑
n=0

j∑
m=0

(αi−n ⊙ xn)
TW T

q Wk(βj−m ⊙ xm)

)
(18)

corresponds to the convolution equipped attention matrix.

Here we can see how convolutions are able to spread the influence of tokens across the attention
matrix through the convolution weights α and β. We note that convolutions can do this in 2 ways:
1) by aggregating local tokens providing positional information and 2) by performing local token
shifts (e.g. [0, 1, 1] ∗ [a, b, c] = [0, a, b]) acting as a form of memory [7, 12]. We illustrate both of
these effects in Figure 3 by convolving a unit impulse with convolution kernels corresponding to
aggregations and shifts and plotting the outer product qkT .
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Further, we can see how the dot product between tokens in standard SoftMax attention has been
replaced by a sum of dot products that evaluate the similarity between tokens that appear before
the tokens of interest. Hence, convolution equipped attention amplifies attention weights for tokens
whose contexts are similar.

We define convolution equipped GAU by the following composition,

y = fG(fC1
(x)) · fA(fC0

(x)) · v (19)
= fG(T1 · x)) · fA(T0 · x)) · v (20)

where T0 and T1 correspond to Toeplitz matrices representing the non-input dependent convolutions,
which are followed by a linear projection and silu activation defined within the generating function
fA, corresponding to a recurrent composition.

5 Conclusion

We have developed Composite Attention, a framework for combining sequence mixing primitives
using both sequential and recurrent compositions of matrix structures. Through our framework,
we analyze the impact of gating and convolutions in a gated attention unit. We find that gating
enhances single-head attention by incorporating multiple heads, while convolutions encode context by
performing local aggregation and shifting. Looking ahead, we aim to utilize our framework to create
new sub-quadratic architectures, with a specific focus on improving linear attention mechanisms
using cost-effective sequence mixers.
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A Appendix

A.1 Convolutions Encode Context

Let x ∈ RL×d be an input. We define the queries and key vectors as,

q = (kq ∗ x)Wq = TqxWq (21)
k = (kk ∗ x)Wk = TkxWk (22)

where Tq,Tk ∈ RL×L×d are Toeplitz matrices which represent a depthwise separable convolution as
a matrix-vector product over the sequence length dimension L and Wq,Wk ∈ Rd×d are dense linear
projections over the channel dimension d.

Splitting the convolution matrix and input into d heads we compute the depthwise separable convolu-
tion for a single head i as

T i
qx

i =



αi
0 0 0 0 0 0

αi
1 αi

0 0 0 0 0
... αi

1 αi
0

. . . . . . 0
...

. . . . . . . . . . . . 0

αi
L−2

. . . . . . α1 αi
0 0

αi
L−1 αi

L−2 . . . . . . αi
1 αi

0





xi
0

xi
1
...
...
...

xi
L−1


=



αi
ox

i
0

αi
1x

i
0 + αi

0x
i
1

...

...

...∑L−1
l=0 αi

L−1−lx
i
l


∈ RL (23)

and hence for all heads,

Tqx =



αo ⊙ x0

α1 ⊙ x0 +α0x1

...

...

...∑L−1
l=0 αL−1−l ⊙ xl


∈ RL×d (24)

such that the queries and keys are represented as,

q =



Wq(αo ⊙ x0)
Wq(α1 ⊙ x0 +α0 ⊙ x1)

...

...

...∑L−1
l=0 Wq(αL−1−l ⊙ xl)


∈ RL×d, k =



Wk(βo ⊙ x0)
Wk(β1 ⊙ x0 + β0 ⊙ x1)

...

...

...∑L−1
l=0 Wk(βL−1−l ⊙ xl)


∈ RL×d (25)

Considering the case of single-head attention, the outer product qkT is defined as,

qT
i kj =

i∑
n=0

j∑
m=0

(αi−n ⊙ xn)
TW T

q Wk(βj−m ⊙ xm) (26)
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