
S2D: Sorted Speculative Decoding For More Efficient
Deployment of Large Language Models

Parsa Kavehzadeh
Huawei Noah’s Ark Lab

parsa.kavehzadeh@huawei.com

Mohammadreza Pourreza
Huawei Noah’s Ark Lab

Mojtaba Valipour
University of Waterloo

Tianshu Zhu
Huawei Noah’s Ark Lab

Haoli Bai
Huawei Noah’s Ark Lab

Ali Ghodsi
University of Waterloo

Boxing Chen
Huawei Noah’s Ark Lab

Mehdi Rezagholizadeh
Huawei Noah’s Ark Lab

Abstract

Deployment of autoregressive large language models (LLMs) is costly, and as
these models increase in size, the associated costs will become even more con-
siderable. Consequently, different methods have been proposed to accelerate the
token generation process and reduce costs. Speculative decoding (SD) is among
the most promising approaches to speed up the LLM decoding process by verifying
multiple tokens in parallel and using an auxiliary smaller draft model to generate
the possible tokens. In SD, usually one draft model is used to serve a specific
target model; however, in practice, LLMs are diverse, and we might need to deal
with many target models or more than one target model simultaneously. In this
scenario, it is not clear which draft model should be used for which target model,
and searching among different draft models, or training customized draft models,
can further increase deployment costs. In this paper, we first introduce a novel
multi-target scenario for deployment of draft models for faster inference. Then,
we present a novel more efficient sorted speculative decoding mechanism that
outperforms regular baselines in multi-target setting. We evaluated our method on
Spec-Bench in different settings including base models such as Vicuna 7B, 13B,
and LLama Chat 70B. Our results suggest that our draft models perform better than
baselines for multiple target models at the same time.

1 Introduction

Large language models (LLMs) have advanced very quickly and become popular in different academic
and industrial domains Brown et al. [2020]. As the size of these models increases Narayanan
et al. [2021], accelerated inference is becoming more popular to reduce the overhead costs of their
deployment. There are an increasing number of publications in the literature trying to achieve faster
inference Stern et al. [2018], Chen et al. [2023a], Leviathan et al. [2023a], Chen et al. [2023b]. These
different approaches include, but are not limited to, reducing redundant layers Men et al. [2024],
quantization , early exiting Varshney et al. [2023], optimizing the KV-caching of transformers Zhang
et al. [2023a], and speculative decoding Leviathan et al. [2023b], Chen et al. [2023a]. In this paper,
we focus on speculative decoding (SD) as one of the most prominent solutions (due to its simplicity
and widespread usage) for improving the decoding speed of LLMs.

4th NeurIPS Efficient Natural Language and Speech Processing Workshop (ENLSP-IV 2024).

layer 1

layer 32

LM head

layer 1

layer 40

LM head

layer 1

layer 80

LM head

S2D (Ours)

 Medusa 7B

 Eagle 7B

 Medusa 13B

 Medusa 70B

 Eagle 13B

 Eagle 70B

VICUNA
7B

VICUNA
13B

LLAMA
70B

TARGET MODELS

SPECULATIVE DECODING
SUPPORT

Figure 1: This figure illustrates which target models are compatible with which draft models. Our proposed
solution is the only one capable of supporting multiple target models using a single, nested draft model.

While SD is pretty popular in the literature and we have many of its variants available, there are a few
bottlenecks in SD, which we will focus on in our paper: 1-“search problem” we can have target
models with different sizes and it is not clear how to obtain the proper draft model for each target
model. Moreover, target models can be trained on different downstream tasks, and using a single draft
model to serve all the tasks might not yield the best results. This might lead to a distribution mismatch
between the target and the draft model unless both the target and the draft model are updated. 2-
“minimal training” We prefer not to train or modify the target model received from the users. This
means that most of the solutions in the category of self-speculative solutions are not within our scope.

To address the mentioned problems, we propose our solution called sorted speculative decoding
(S2D). Sorted refers to the sorted-training Valipour et al. [2023] approach in which a model and its
selected sub-models can be trained on single or multiple tasks at the same time. Inspired by sorted
training, our S2D trains multiple draft models in one model to be able to serve more than just one
target model at a time (without needing to maintain multiple draft models) to take care of the search
problem. In this regard, the initial draft model is extracted from the target model and after designing
the sub-models, they are trained together. Moreover, in contrast to the self-speculative solutions, our
approach is just applied to the draft side and we do not need to train the target model. Finally, to make
an efficient use of the trained sorted draft models, we use an adaptive draft selection mechanism.

The contributions of this paper are listed as follows: 1- Introduction of Multi-Target Draft Models:
We pioneer the concept of employing a single draft model that can simultaneously accommodate
multiple target models, reducing deployment complexity and costs. 2- Development of a Sorted
Speculative Decoding Mechanism: Our S2D mechanism leverages sorted fine-tuning, enabling
the creation of sub-models within a draft model, without the necessity of maintaining separate draft
models for each target LLM. 3- Adaptive Draft Selection Strategy: We introduce an adaptive
draft selection mechanism that optimally chooses sub-models based on confidence thresholds. 4-
Comprehensive Evaluation on Spec-Bench: We rigorously evaluated our S2D method on the
Spec-Bench. We discuss the literature and related work in A.

2

layer 1

layer 2

 layer 12

 layer 32

LM head

layer 1

layer 2

layer 12

LM head

layer 1

layer 6

FIRST
SUBMODEL

layer 9

layer 12

LM head

layer 1

layer 6

layer 9

layer 12

layer 1

layer 2

layer 12

layer 32

LM head

DRAFT MODEL TRAINING

VICUNA
7B

SFT
TRAINING

TRAINING
DATASET

SOFT
TRAINING

TRAINING
DATASET

SECOND
SUBMODEL

CONFIDENCE BASED DRAFTING

<S> I GO TO

I

0.9 > 0.75 ✅

NEED

0.6 < 0.75 ❌

GO

0.8 > 0.7 ✅

IN

0.55 > 0.7 ❌

THE

0.6 > 0.75 ❌

TO

SCHOOL

0.8 > 0.75 ✅

PARALLEL VERFICATION

<S> I GO TO SCHOOL

VICUNA
7B

I ✅ GO ✅ TO ✅
SCHOOL ❌
CINEMA ✅

Figure 2: The figure on the left illustrates the draft model training process, comparing supervised fine-tuning
(SFT) with Sorted fine-tuning (SoFT) using two sub-models with 6 and 9 layers. The figure on the right
demonstrates the confidence-based drafting process, where the SoFT draft model is utilized to generate candidate
tokens. The confidence thresholds for the two sub-models are set at 0.75 and 0.7, respectively.

2 Methodology

2.1 Background

Speculative Decoding: Speculative decoding is a two-step process involving drafting and verifi-
cation. At each decoding step, a draft model efficiently generates multiple potential future tokens,
which are then verified in parallel by the target model at inference time. Specifically, during the
drafting step, given an input sequence {x1, . . . , xn} and the target LLM Mt, a faster drafter model
Md decodes the next K drafted tokens as a speculation of the target LLM’s output Xia et al. [2024]:

p1, . . . , pK = DS(x ≤ k,Md),

x̂i ∼ pi, i = 1, . . . ,K
(1)

where DS(·) represents the drafting strategy, p is the conditional probability distribution calculated
by Md, and x̂i is the token sampled from the draft model’s probability distribution pi. The tokens
generated by the draft model are then verified by the target LLM Mt. Given the input sequence
{x1, . . . , xn} and the drafted tokens {x̂1, . . . , x̂K}, the Mt model is used to measure K+1 probability
distributions simultaneously as follows:

qi = Mt(x | x ≤ t, x<i), i = 1, . . . ,K + 1 (2)

Each drafted token x̂i is then verified using a specific verification criterion using x̂i, qi, and pi. Only
the tokens that meet this criterion are selected as final outputs.

Sorted Fine-tuning: Sorted Fine-tuning Valipour et al. [2023], Kavehzadeh et al. [2024] is a
recently proposed approach for training many-in-one models by forming sub-models from a larger
model. In the case of LLMs, sub-models are the sub-layers of the existing LLM. Each sub-model’s
output is predicted using the shared output prediction head from the last layer (original LLM head).
To train the network, we define the loss as the summation of the losses of all the sub-models:

L =

∑
n∈B Ln(x; θn)

|B|
(3)

3

GSM8K

Model Auto-regressive Decoding
Speedup Accuracy

SFT (Llama2 13B) 1× 48.97

Model Self Sorted speculative decoding (Sorted Target)
Speedup Accuracy

Layers 12:40 (SoFT) 1.21× 33.51

Draft Model Sorted Speculative Decoding (Sorted Draft)
Speedup Accuracy

Layer 6:12 (SoFT 6,9,12 13B) 1.53× 48.97

Table 1: Performance comparison between self sorted speculative decoding (sorted target) and adaptive
speculative sampling (sorted draft) proposed in this paper on GSM8K dataset.

where Ln(x; θn) is the loss for the n-th sub-model for input batch x and B denotes the number of
sub-models.

2.2 Why sorted draft instead of sorted target?

In this paper, we introduce a method that involves Sorted fine-tuning (SoFT) of a draft model and
using sub-models for sorted speculative decoding to increase the inference speed of multiple target
models. An alternative method, is to use SoFT to train the target model, instead of the draft model,
similar to the approach proposed in Kavehzadeh et al. [2024]. To evaluate these two methods,
we fine-tuned the Llama2 13B Touvron et al. [2023] on the GSM8K dataset using both standard
supervised fine-tuning (SFT) and Sorted fine-tuning (SoFT) as described in Kavehzadeh et al. [2024].
The results are provided in Table 1, where we compare our sorted speculative decoding with sorted
draft model training with self sorted speculative decoding.

According to Table 1, the sorted target model training method has three significant disadvantages.
Firstly, it decreases accuracy by 16% in final task performance and offers lower speed improvements
because the sub-models used are larger than those in the sorted draft model training. Secondly, this
method is not suitable for scenarios with multiple target models as it requires each target model to
undergo SoFT training for self-speculative decoding to be applicable. Lastly, SoFT training of the
target model incurs considerably higher costs compared to our method of SoFT training a smaller
draft model.

2.3 Sorted speculative decoding

In this section, we introduce our approach which utilizes multiple draft models in the same architecture
in an adaptive way to address multi-target inference acceleration problem. To reach this goal, we first
introduce a new sorted draft architecture that can incorporate multiple draft sub-models in the same
architecture. Then we explain the adaptive draft generation algorithm that we devise in order to use
the draft sub-models efficiently in speculative decoding paradigm.

Training SoFT Draft Supposed we have a pre-trained large language model f(x; θN) with the
parameters θ, input x and N number of layers. Also consider f(θn) as the sub-model with the
parameters of first n layers of the LLM (n ≤ N). To reach our draft architecture, we first extract
a sub-model with f(θNd

), where Nd < N . Then we also determine three different sub-models in
the extracted draft architecture as f(x; θNds

), f(x; θNdm
) and f(x; θNd

), where Nds < Ndm < Nd.
We utilize the sorted fine-tuning approach Kavehzadeh et al. [2024] to fine-tune the whole draft on
the downstream dataset to reach three draft models with different sizes in the same architecture. In
this paper, we use Vicuna 7B as the pre-trained language model with 32 layers. To define our draft
sub-models, we set Nds to 6, Ndm to 9, and Nd to 12 in our experiments. Figure 2 (Left) shows the
two SFT and SoFT methods to train an extracted draft model from the target Vicuna 7B.

Draft Generation In order to make most out of the speculative decoding algorithm, we need
to have both low latency draft models and high acceptance ratio compared to target model. To
generate each token, we employ a confidence-based early-exiting approach in f(x; θNd

) architecture.
Supposed the draft sub-model layers LD = {Nds, Ndm, Nd}, we have the set of confidence thresholds
TD = {τds, τdm, τd}. To generate one draft token given input sequence S, we start iterating over

4

Method
Greedy (T = 0) Non-Greedy (T = 1) Avg

SpeedupVicuna 7B Vicuna 13B LLaMA Chat 70B Vicuna 7B Vicuna 13B LLaMA Chat 70B
Speedup MAT Speedup MAT Speedup MAT Speedup MAT Speedup MAT Speedup MAT

Eagle Li et al. [2024] 2.62× 3.84 ✗ ✗ ✗ ✗ 2.05× 3.42 ✗ ✗ ✗ ✗ N/A
Eagle (No Attention Tree) 2.04× 3.11 ✗ ✗ ✗ ✗ 1.72× 2.73 ✗ ✗ ✗ ✗ N/A

Medusa Cai et al. [2024] 1.74× 2.51 ✗ ✗ ✗ ✗ 1.93× 2.80 ✗ ✗ ✗ ✗ N/A
Medusa (No Attention Tree) 1.34× 1.76 ✗ ✗ ✗ ✗ 1.48× 1.92 ✗ ✗ ✗ ✗ N/A

Hydra Ankner et al. [2024] 2.14× 2.70 ✗ ✗ ✗ ✗ 2.36× 4.01 ✗ ✗ ✗ ✗ N/A
Hydra (No Attention Tree) 1.78× 2.65 ✗ ✗ ✗ ✗ 2.03× 3.11 ✗ ✗ ✗ ✗ N/A

SFT + SD 1.19× 3.19 1.21× 3.05 1.94× 2.46 1.16× 3.44 1.10× 3.16 1.94× 2.54 1.42
SFT + EarlyExit L6 + SD 0.98× 1.51 1.00× 1.51 1.32× 1.46 0.96× 1.52 1.03× 1.51 1.37× 1.53 1.11
SFT + EarlyExit L9 + SD 1.08× 1.99 1.05× 1.98 1.54× 1.80 0.99× 2.04 1.12× 2.04 1.57× 1.86 1.22

SoFT L6 + SD 1.38× 2.43 1.38× 2.40 1.83× 2.05 1.30× 2.53 1.35× 2.87 1.87× 2.14 1.51
SoFT L9 + SD 1.16× 3.00 1.31× 2.78 1.92× 2.27 1.26× 3.05 1.32× 2.87 1.94× 2.34 1.49
SoFT L12 + SD 1.17× 3.11 1.23× 3.01 1.91× 2.39 1.07× 3.22 1.20× 3.17 1.96× 2.53 1.42
SoFT + S2D (ours) 1.34× 2.86 1.38× 2.76 1.95× 2.36 1.27× 3.01 1.38× 2.89 1.98× 2.44 1.55

Table 2: Overall Speedup and Mean Accepted Tokens lenght (MAT) on MT-Bench dataset in Multi-target
inference acceleration setup. The speedups reported for Eagle, Medusa and Hydra are based on the publicly
available checkpoints of these methods for Vicuna 7b target model and since these checkpoints cannot be applied
to other targets, we denoted that by ✗ in the table.

draft sub-models, starting from Nds. For each sub-model Ni ∈ LD, we have:

t, c ∼ f(S; θNi) (4)

Where t and c are the draft token and its confidence sampled from draft sub-model Ni. We accept the
token t as the final draft token if c ≥ τi. Algorithm 1 explains the draft generation mechanism of S2D
algorithm in more details. Figure 2 (Right) also shows how draft generation works in S2D algorithm.

3 Experiments

3.1 Experimental Setup

We selected the first 12 layers of Vicuna 7b checkpoint to build the architecture of our draft model.
Then, we trained the draft model in both SFT and SoFT paradigms on the ShareGPT 1 dataset
for 3 epochs. We used the Spec-bench Xia et al. [2024], which is a benchmark for speculative
decoding-based methods, to evaluate our draft models and the S2D algorithm. More details about the
experimental setup and memory consumption can be found in B.1 and B.2.

3.2 Baselines

We categorize the baselines based on the dependency of draft training procedure on target models:

Target-Dependent Baselines

• Eagle Li et al. [2024]: An approach proposing a single layer draft model trained with two
feature alignment and cross-entropy losses based on target output.

• Medusa Cai et al. [2024]: A method for generating multiple draft candidates for future
tokens by training multiple language model heads for each future token position.

• Hydra Ankner et al. [2024] A draft model based on recurrent neural architectures on top
of the target model, which generates multiple draft candidates.

Target-Independent Baselines We have different scenarios for our draft generation as baselines:

• SFT Checkpoint + Speculative Decoding: We use the SFT checkpoint of first 12 Vicuna
7b layers as draft model in the speculative sampling algorithm.

• EarlyExit of small sub-model of SFT Checkpoint (6 Layers) + Speculative Decoding:
We fine-tune only the classifier head of draft SFT checkpoint for the smallest sub-model
(Layer 6) and use the first 6 layers and classifier head as draft in speculative decoding.

1https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered

5

https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered

0.5, 0.5, 0 0.75, 0.7, 0 0.9, 0.85, 0
Thresholds

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Sp
ee

du
p

Ra
tio

1.34x
1.38x

1.92x

1.24x

1.35x

1.94x

1.2x

1.32x

1.93x
Speedup Ratios based on Different Confidence Thresholds

Vicuna 7b
Vicuna 13b
LLaMA Chat 70b

Figure 3: Speedup ratios based on difference confidence thresholds in multiple targets on MT-Bench. In the
thresholds axis labels, the first, second and third numbers represent the thresholds for the first draft sub-model
(layer 6), the second draft sub-model (layer 9) and the last one (layer 12). The temperature was set to 0.0 in
these experiments.

• EarlyExit of Medium sub-model of SFT Checkpoint (9 Layers) + Speculative Decoding:
We fine-tune only the classifier head of draft SFT checkpoint for the medium sub-model
(Layer 9) and use the first 9 layers and classifier head as draft in speculative decoding.

• Small sub-model of SoFT Checkpoint (6 Layers) + Speculative Decoding: We use the
smallest sub-model (Layer 6) of the SoFT checkpoint of first 12 Vicuna 7b layers as draft
model in the speculative decoding algorithm.

• Medium sub-model of SoFT Checkpoint (9 Layers) + Speculative Decoding: We use the
medium sub-model (Layer 9) of the SoFT checkpoint of first 12 Vicuna 7b layers as draft
model in the speculative decoding algorithm.

• Full SoFT Checkpoint (12 Layers) + Speculative Decoding: We use the full SoFT
checkpoint of first 12 Vicuna 7b layers as draft model in the speculative decoding algorithm.

• Full SoFT Checkpoint (12 Layers) + S2D: We use the full SoFT checkpoint of first
12 Vicuna 7b layers as draft model in the S2D algorithm. We set the thresholds of the
intermediate sub-models from the ablations in section 3.4.1.

3.3 Results

In this section, we will discuss the results of the experiments we conducted to evaluate our SoFT
draft model and S2D approach compared to other baselines.

Multi-Target Draft and S2D Performance: Table 2 and Figure 4 illustrate the performance of our
S2D method and other baselines on multiple targets, including the MT-Bench dataset in Spec-Bench.
Fine-tuning an extracted network from Vicuna 7b enables speedup across multiple target models of
varying sizes without requiring pre-training. Our SoFT draft sub-models consistently outperform
SFT early-exiting baselines across all target models. In smaller targets like Vicuna 7b, where latency
is critical, S2D adjusts the draft generation process by favoring intermediate layers, optimizing the
balance between speed and performance. For larger targets like LLaMA Chat 70b, the mean accepted
tokens length (capacity) becomes more crucial than draft latency, as shown by the higher speedups
gained by the 12-layer draft compared to the 6-layer SoFT draft checkpoint. Even in these scenarios,
S2D optimally adjusts the exiting layers to maintain top performance.

S2D consistently outperforms or matches the performance of normal speculative decoding (SD)
across almost all target sizes. On targets like Vicuna 7b and 13b, S2D achieves significantly better
speedup compared to SD with SFT and SoFT full draft models (12 layers). It also shows better

6

Model / Metric GSM8K EM GSM8K Speedup Ratio

Autoregressive 48.90 1.00x

EAGLE
w_cls=0.1, w_reg=1.0 48.67 2.73x
w_cls=0.0, w_reg=1.0 48.90 2.70x
w_cls=1.0, w_reg =0.0 48.82 1.61x

Table 3: Comparison of GSM8K exact match (EM) and speedup ratios for different decoding configurations.
With Llama2 13B target model and 1-layer Eagle draft model.

speedup than SD with medium-size SoFT drafts (Layer 9) in tasks such as MT-Bench and GSM8K.
However, SD with the smallest SoFT draft (Layer 6) outperforms S2D in most tasks due to its
substantially lower latency, which contributes to the overall speedup in speculative decoding. On
larger targets like LLaMA Chat 70b, S2D maintains similar speedup to SD with SFT and SoFT full
model architectures. Using SD with smaller draft models, particularly the 6-layer SoFT sub-model,
results in a notable speedup drop, highlighting the importance of draft model capacity and mean
accepted tokens length in accelerating inference for large targets.

Overall, depending on the necessity of lower draft latency or higher accepted token ratio, S2D
performance demonstrates that our proposed approach can choose the sub-models accordingly to
have the optimum speedup compared to other draft options in the architecture. The more details
about the baselines performance on Spec-Bench can be found in Appendix. Also the details about
how SoFT draft is more efficient in training compared to a target-dependent approach, Medusa, can
be found in Appendix.

3.4 Ablation Studies

3.4.1 Thresholds

To find the optimum confidence thresholds for SoFT draft sub-models in S2D algorithm, we assess
different thresholds sets to see the algorithm’s performance in each scenario. Figure 3 shows the
performance comparison of different confidence thresholds. While in smaller target models, there
is a tendency to choose the smaller draft sub-models by lowering their corresponding confidence
thresholds to increase speedup, in the largest target model there is a need for higher draft model
capacity therefore higher confidence thresholds result in optimum speedup. We fixed the best
thresholds of each target model in all other experiments conducted with S2D algorithm in this paper.

3.4.2 Impact of Attention Tree

Unlike speculative decoding and sorted speculative decoding methods, recent approaches such
as EAGLE Li et al. [2024], Medusa Cai et al. [2024], and Hydra Ankner et al. [2024] employ
tree attention to simultaneously verify multiple candidate tokens. This addition complicates direct
comparisons with other methods. Therefore, we also evaluated these methods without tree attention
and provided the results in Table 2. As expected, the speedup ratio significantly decreased for
all. Interestingly, when tree attention is removed, Medusa’s performance even falls below that of
speculative decoding, specifically using layer 6 of the SoFT-trained sub-models.

3.4.3 Impact of Feature Alignment

Using the last layer hidden state representation of the target model to train a draft model has become a
common approach in recent works Cai et al. [2024], Ankner et al. [2024]. More specifically, EAGLE
Li et al. [2024] employs both features and tokens generated by the target model to train an one-layer
draft. Supposed ti and fi are the token and hidden state feature generated by target LLM and t̂i and
f̂i are the token and hidden state features generated by draft at position i, Eagle aligns hidden state
features of draft and target by using L1 regression loss:

Lreg = SmoothL1(fi+1,Draft_Model(t2:i+1, f1:i)).

They also employ classification loss to directly optimize towards alignment of tokens:

pi+2 = Softmax(LM_Head(fi+1)),

p̂i+2 = Softmax(LM_Head(f̂i+1)),

7

Method
Greedy (T = 0)

Vicuna 7B Vicuna 13B LLaMA Chat 70B
Speedup MAT Speedup MAT Speedup MAT

Vicuna 160m + SD 1.05× 2.75 1.13× 2.66 1.93× 2.24
SoFT L6 + SD 1.20× 2.10 1.26× 2.06 1.68× 1.76
SoFT L9 + SD 1.10× 2.33 1.21× 2.29 1.79× 1.96
SoFT L12 + SD 1.00× 2.67 1.07× 2.58 1.90× 2.19
SoFT + S2D 1.17× 2.54 1.28× 2.44 1.91× 2.16

Table 4: Overall Speedup and Mean Accepted Tokens lenght (MAT) on MT-Bench dataset. The SoFT training
in this experiment was initialized with Vicuna 160m checkpoint.

GSM8K

Model Auto-regressive Decoding
Trained Target Speedup Accuracy

Llama2 13B ✓ 1× 48.97
Llama2 13B ✗ 1× 28.7

Draft Model Sorted Speculative Decoding
Trained Target Speedup Accuracy

S2D - SoFT ✓ 1.53× 48.97
S2D - SoFT ✗ 1.38× 28.7

Table 5: Comparison of speedup between two different settings: 1) training the target model on the downstream
task 2) using the vanilla pre-trained model

Lcls = CrossEntropy(pi+2, p̂i+2).

By integrating feature alignment (regression loss) and token alignments (classification loss), EAGLE’s
autoregression head is trained using the combined loss function: L = wregLreg + wclsLcls.

We conducted experiments studying the affects each feature and token alignment cause by setting
different combination of wreg and wcls (Table 3). We train eagle draft model based on a LLaMA2 13b
target model fine-tuned on GSM8K train data. We found out that canceling the token alignment loss
(wcls = 0) would not have a significant impact on the draft performance compared to the original
setup used in Eagle paper (wreg = 1 and wcls = 0.1). On the other hand, setting wreg to 0 would
cause a noticeable impact on the draft performance, dropping speedup from 2.73x to 1.61x. As we
can see, feature alignment plays the main role in improving the Eagle draft performance while this
is impractical in multi-target setting where the draft model needs to serve multiple target models
anytime.

3.4.4 Impact of Pre-training

Using pre-training draft models can be a possible direction to increase the acceptance ratio of draft
tokens in speculative decoding algorithm. In this way, we repeated our experiments in a new setup
where we replaced the first 12 layers of Vicuna 7b with Vicuna 160m, which is a LLaMA 160m
checkpoint fine-tuned on ShareGPT dataset. LLaMA 160m is a small 12 decoder layer architecture
pre-trained on C4 corpus. We also sorted fine-tuned the Vicuna 160m on ShareGPT with the same
sub-models (Layer 6, 9 and 12). Table 4 shows the benefit of using S2D instead of regular SD for
smaller target models (Vicuna 7b and 13b). Based on the results in Table 2, fine-tuning an extracted
12-layer draft model can result in higher speedup compared to employing a similar pre-trained
architecture, which can demonstrate the efficiency of our approach in terms of training resources.

3.4.5 Target Model Training

Foundation models like GPT-4, Gemini [Team et al., 2023], and the Claude family [Anthropic,
2024] are trained on vast datasets, enabling them to perform well across various tasks. Nonetheless,
for specialized tasks where the model has limited exposure during pre-training, domain adaptation
through fine-tuning leads to superior performance in downstream tasks [Liu et al., 2024]. This section
evaluates the impact of fine-tuning both the target and draft models for specific tasks on the speed
gains achievable using our proposed sorted speculative decoding method. In this way, we fine-tune a
Llama 13B model and also sorted fine-tuned the extracted 12-layer draft on GSM8k, a mathematical

8

reasoning dataset. Results shown in Table 5 demonstrate that fine-tuning both target and draft on the
same dataset, due to their improved alignment, results in a 1.14× speed increase at inference time.

4 Conclusion

In this paper, we present a method based on the SoFT training of a draft model to overcome a signifi-
cant limitation of traditional speculative decoding methods, where each target model necessitates a
uniquely trained draft model. Through comprehensive experimentation, we demonstrate that by using
a same SoFT-trained draft model with varying thresholds for sub-models, we achieve an average
speedup ratio of 1.55 for target models with parameters ranging from 7B to 70B. Moreover, our
method surpasses vanilla speculative decoding across all target models, highlighting its effectiveness.

References
Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, Vijay
Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro, et al.
Efficient large-scale language model training on gpu clusters using megatron-lm. In Proceedings of
the International Conference for High Performance Computing, Networking, Storage and Analysis,
pages 1–15, 2021.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep autore-
gressive models. Advances in Neural Information Processing Systems, 31, 2018.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023a.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pages 19274–19286. PMLR, 2023a.

Ziyi Chen, Xiaocong Yang, Jiacheng Lin, Chenkai Sun, Jie Huang, and Kevin Chen-Chuan Chang.
Cascade speculative drafting for even faster llm inference. arXiv preprint arXiv:2312.11462,
2023b.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
arXiv preprint arXiv:2403.03853, 2024.

Neeraj Varshney, Agneet Chatterjee, Mihir Parmar, and Chitta Baral. Accelerating llama inference by
enabling intermediate layer decoding via instruction tuning with lite, 2023.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, Zhangyang Wang, and Beidi Chen. H2o: Heavy-
hitter oracle for efficient generative inference of large language models, 2023a.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast Inference from Transformers via Speculative
Decoding, May 2023b. URL http://arxiv.org/abs/2211.17192. arXiv:2211.17192 [cs].

Mojtaba Valipour, Mehdi Rezagholizadeh, Hossein Rajabzadeh, Marzieh Tahaei, Boxing Chen, and
Ali Ghodsi. Sortednet, a place for every network and every network in its place: Towards a
generalized solution for training many-in-one neural networks. arXiv preprint arXiv:2309.00255,
2023.

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and
Zhifang Sui. Unlocking efficiency in large language model inference: A comprehensive survey of
speculative decoding. arXiv preprint arXiv:2401.07851, 2024.

9

http://arxiv.org/abs/2211.17192

Parsa Kavehzadeh, Mojtaba Valipour, Marzieh Tahaei, Ali Ghodsi, Boxing Chen, and Mehdi Reza-
gholizadeh. Sorted llama: Unlocking the potential of intermediate layers of large language models
for dynamic inference. In Findings of the Association for Computational Linguistics: EACL 2024,
pages 2129–2145, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
rethinking feature uncertainty. arXiv preprint arXiv:2401.15077, 2024.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri Dao.
Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024.

Zachary Ankner, Rishab Parthasarathy, Aniruddha Nrusimha, Christopher Rinard, Jonathan Ragan-
Kelley, and William Brandon. Hydra: Sequentially-dependent draft heads for medusa decoding.
arXiv preprint arXiv:2402.05109, 2024.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Anthropic. Model card claude 3. https://www-cdn.anthropic.com/
de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf, 2024.

An Liu, Zonghan Yang, Zhenhe Zhang, Qingyuan Hu, Peng Li, Ming Yan, Ji Zhang, Fei Huang, and
Yang Liu. Panda: Preference adaptation for enhancing domain-specific abilities of llms. arXiv
preprint arXiv:2402.12835, 2024.

Xin Sun, Tao Ge, Furu Wei, and Houfeng Wang. Instantaneous grammatical error correction with
shallow aggressive decoding. arXiv preprint arXiv:2106.04970, 2021.

Heming Xia, Tao Ge, Furu Wei, and Zhifang Sui. Lossless speedup of autoregressive translation with
generalized aggressive decoding. arXiv preprint arXiv:2203.16487, 2022.

Heming Xia, Tao Ge, Peiyi Wang, Si-Qing Chen, Furu Wei, and Zhifang Sui. Speculative decoding:
Exploiting speculative execution for accelerating seq2seq generation. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages 3909–3925, 2023.

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen, Gang Chen, and Sharad Mehrotra. Draft &
verify: Lossless large language model acceleration via self-speculative decoding. arXiv preprint
arXiv:2309.08168, 2023b.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen Lai,
Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, et al. Layer skip: Enabling early
exit inference and self-speculative decoding. arXiv preprint arXiv:2404.16710, 2024.

Joud Chataoui, Mark Coates, et al. Jointly-learned exit and inference for a dynamic neural network.
In The Twelfth International Conference on Learning Representations, 2023.

Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, Ion Stoica, Zhijie Deng, Alvin Cheung, and Hao Zhang.
Online speculative decoding. arXiv preprint arXiv:2310.07177, 2023.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the sequential dependency of llm inference
using lookahead decoding. arXiv preprint arXiv:2402.02057, 2024.

Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ahmad Beirami, Himanshu Jain, and Fe-
lix Yu. Spectr: Fast speculative decoding via optimal transport. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neu-
ral Information Processing Systems, volume 36, pages 30222–30242. Curran Associates,
Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
6034a661584af6c28fd97a6f23e56c0a-Paper-Conference.pdf.

10

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/6034a661584af6c28fd97a6f23e56c0a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/6034a661584af6c28fd97a6f23e56c0a-Paper-Conference.pdf

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Rae Ying Yee Wong,
Zhuoming Chen, Daiyaan Arfeen, Reyna Abhyankar, and Zhihao Jia. Specinfer: Accelerating
generative llm serving with speculative inference and token tree verification. arXiv preprint
arXiv:2305.09781, 1(2):4, 2023.

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee, and Di He. Rest: Retrieval-based speculative
decoding. arXiv preprint arXiv:2311.08252, 2023.

Hanling Yi, Feng Lin, Hongbin Li, Peiyang Ning, Xiaotian Yu, and Rong Xiao. Generation meets
verification: Accelerating large language model inference with smart parallel auto-correct decoding.
arXiv preprint arXiv:2402.11809, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Alpaca: A strong, replicable instruction-following model.
Stanford Center for Research on Foundation Models. https://crfm. stanford. edu/2023/03/13/alpaca.
html, 3(6):7, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

11

Algorithm 1 Sorted Speculative Decoding

Require: Sorted draft layers L, Target model f(θN), Input context C, Draft thresholds T , Draft
candidates verification function VerifyTokens

Ensure: Generated sequence S
0: function GENERATECANDIDATES(S)
0: candidates← []
0: while not end of draft generation do
0: {Adaptively generate draft candidates}
0: for n, threshold in zip(L, T) do
0: pS ← f(S; θn)
0: {Sample from draft sub-model distribution}
0: x, c ∼ pS
0: if threshold ≤ c then
0: append (x, c) to candidates
0: break {Exit from intermediate draft}
0: end if
0: end for
0: end while
0: return candidates
0: end function
0: Initialize S ← C
0: while not end of sequence do {Initialize generation}
0: {Draft generation}
0: Cands← GENERATECANDIDATES(S)
0: {Verify draft tokens}
0: Matches← VerifyTokens(f(θN), S, Cands)
0: append Matches to S
0: end while
0: return S

=0

A Related Works

For LLMs to perform more efficiently, efficient decoding/sampling methods Leviathan et al. [2023a],
Li et al. [2024] are essential. As LLMs grow in complexity and size, the need for innovative
techniques to enhance their speed and accuracy becomes even more pressing. Various methodologies
are discussed in this literature review, including parallel sampling, speculative decoding, and early
exit strategies, alongside their contributions and advancements.

Parallel Decoding The first mechanism aiming to accelerate the inference process of large language
models was presented in Stern et al. [2018]. This paper introduced a blockwise parallel decoding
strategy, aiming to generate the next k tokens simultaneously in a single forward pass using a set of
auxiliary models. Then they proposed to use the same language model to verify the generated tokens
in parallel. This simple draft-then-verify mechanism, as discussed in the paper, can potentially reduce
the number of forward passes from m to m/k+1 Stern et al. [2018].

Speculative Decoding Inspired by Sun et al. [2021], Xia et al. [2022] proposed a draft-then-verify
mechanism to aggressively generate a fixed number of tokens in parallel without the new tokens
depending on the previous ones, and then verify the generated tokens in one forward pass.

Later, they Xia et al. [2023] proposed a more advanced attention mechanism to generate independent
tokens in parallel by using distinct attention queries instead of using a shared attention query, or
simply adding more language model heads as done in the past. In addition, for the verification process,
they also relaxed the top-1 greedy decoding. Instead, they proposed to accept any token from the
top-β candidates as long as their score gap is not far from the most likely token Xia et al. [2023].

Speculative Sampling Other methods, such as Chen et al. [2023a], Leviathan et al. [2023a],
generalized speculative decoding to the stochastic non-greedy setting. As these methods are just a

12

Method/Target Model Vicuna 7b Vicuna 13b LLaMA2 Chat 70b

SoFT Draft (12 Layers) 92,744 MB 92,744 MB 92,744 MB
Medusa 113,416 MB 152,616 MB OOM

Table 6: Comparison of speedup between two different settings: 1) training the target model on the downstream
task 2) using the vanilla pre-trained model

variant of the draft-then-verify mechanism with a modified rejection sampling algorithm for ensuring
sampling quality, we will leave the integration of these methods with our proposed method as future
work.

Self-Speculative Decoding Other methods, such as Zhang et al. [2023b], introduced self-
speculating, which tries to get rid of the auxiliary models by selectively skipping certain intermediate
layers during the drafting phase. As we can use the full LLM to validate the generated tokens, without
any additional model we can enjoy accelerated inference. This is also aligned with approaches like
Elhoushi et al. [2024], Chataoui et al. [2023], Kavehzadeh et al. [2024], and Valipour et al. [2023].

Other Methods More recently, new techniques Liu et al. [2023], Chen et al. [2023b], Li et al.
[2024], Cai et al. [2024], Fu et al. [2024], Sun et al. [2023], Miao et al. [2023], Varshney et al.
[2023], Ankner et al. [2024], He et al. [2023], Yi et al. [2024] have emerged that trying to incorporate
sophisticated mechanisms to further improve the speculative sampling speedup gain.

For simplicity, this paper will focus on the Self-Speculative Decoding setting, but our method is also
applicable to other speculative sampling methods with minor adjustments, without loss of generality.

Benchmarks In addition, to evaluate these different algorithms, several benchmarks Zheng et al.
[2024], Taori et al. [2023], Chen et al. [2021] can be used to measure performance and speed up
gains. One of the most comprehensive benchmarks, however, is Spec-Bench, specifically designed
to evaluate speculative decoding methods Xia et al. [2024]. Spec-Bench comprises 6 sub-tasks:
translation, multi-turn conversation (MT-Bench), retrieval-augmented generation, mathematical
reasoning, question answering, and summarization, each with 80 instances. In this paper, we will
focus mainly on Spec-Bench.

B Experiments

B.1 Hyperparameters

The batch size during the ShareGPT training experiments (SFT and SoFT) was 8 and gradient
accumulation steps was set to 16. We used 4 NVIDIA V100 GPUs for training experiments. Each
inference experiment on Spec-bench was done on 2 NVIDIA V100 GPUs, except the experiments for
LLaMA Chat 70b where we used 8 GPUs to avoid memory issues.

B.2 Memory Consumption

We conducted an experiment to measure the memory footprint of training our target-independent S2D
draft model compared to Medusa, a target-dependent inference acceleration method. The results are
presented in Table 6. As indicated in the table, our nested draft model requires only a single training
session to apply to multiple target models, maintaining a consistent memory footprint of 92,744 MB
across all three target models. In contrast, Medusa necessitates loading the target model each time to
train the attached classifier heads as drafters, resulting in a significantly larger and variable memory
footprint depending on the target model. This underscores the efficiency of our approach in terms of
memory usage.

B.3 Spec-bench Results

Figure 4 shows the speedup ratios of S2D versus speculative decoding with different draft options,
including Vicuna 160m pre-trained. As S2D demonstrate superior performance than speculative

13

Multi-turn
 Conversation

TranslationSummarization

Question Answering

Math Reasoning Retrieval-augmented
 Reasoning

0.8
1.0

1.2
1.4

Vicuna 7b Target (Temperature=0.0)

SFT+SD
SFT+EE L6+SD
SFT+EE L9+SD
SoFT L12+SD
SoFT L9+SD
SoFT L6+SD
SoFT+S2D

Multi-turn
 Conversation

TranslationSummarization

Question Answering

Math Reasoning Retrieval-augmented
 Reasoning

0.8
1.0

1.2
1.4

Vicuna 7b Target (Temperature=1.0)

SFT+SD
SFT+EE L6+SD
SFT+EE L9+SD
SoFT L12+SD
SoFT L9+SD
SoFT L6+SD
SoFT+S2D

Multi-turn
 Conversation

TranslationSummarization

Question Answering

Math Reasoning Retrieval-augmented
 Reasoning

0.8
1.0

1.2
1.4

Vicuna 13b Target (Temperature=0.0)

Multi-turn
 Conversation

TranslationSummarization

Question Answering

Math Reasoning Retrieval-augmented
 Reasoning

0.8
1.0

1.2
1.4

Vicuna 13b Target (Temperature=1.0)

Multi-turn
 Conversation

TranslationSummarization

Question Answering

Math Reasoning Retrieval-augmented
 Reasoning

1.2
1.4

1.6
1.8

2.0

LLaMA2 Chat 70b Target (Temperature=0.0)

Multi-turn
 Conversation

TranslationSummarization

Question Answering

Math Reasoning Retrieval-augmented
 Reasoning

1.2
1.4

1.6
1.8

2.02.1

LLaMA2 Chat 70b Target (Temperature=1.0)

Figure 4: Comparison among Speedup ratios of speculative and S2D methods on different domains
on multiple targets.

decoding with the same size draft models (12 layers) in smaller target sizes (Vicuna 7B and 13B),
once we get to larger target sizes, larger drafts outperform smaller ones (Layer 6 and 9) in speculative
decoding algorithm. This can demonstrate the importance of capacity and accepted tokens length in
larger target sizes. However, S2D can maintain a similar performance to speculative decoding with
the same draft size even in case of using a target with 70B size.

14

	Introduction
	Methodology
	Background
	Why sorted draft instead of sorted target?
	Sorted speculative decoding

	Experiments
	Experimental Setup
	Baselines
	Results
	Ablation Studies
	Thresholds
	Impact of Attention Tree
	Impact of Feature Alignment
	Impact of Pre-training
	Target Model Training

	Conclusion
	Related Works
	Experiments
	Hyperparameters
	Memory Consumption
	Spec-bench Results

