
GEAR: An Efficient Error Reduction Framework for
KV Cache Compression in LLM Inference

Hao Kang∗†, Qingru Zhang∗†, Souvik Kundu⋄, Geonhwa Jeong†, Zaoxing Liu†,
Tushar Krishna†, Tuo Zhao†

†Georgia Institute of Technology, Atlanta ⋄Intel Labs, San Diego
{hkang342, qingru.zhang}@gatech.edu, {souvikk.kundu}@intel.com

Abstract

Key-value (KV) caching has become the de-facto technique to accelerate generation
speed for large language models (LLMs) inference. However, the growing cache
demand with increasing sequence length has transformed LLM inference to be a
memory bound problem, significantly constraining the system throughput. Existing
methods rely on dropping unimportant tokens or quantizing entries group-wise.
Such methods, however, often incur high approximation errors to represent the
compressed matrices. The autoregressive decoding process further compounds
the error of each step, resulting in critical deviation in model generation and
deterioration of performance. To tackle this challenge, we propose GEAR, an
efficient error reduction framework that augments a quantization scheme with
two error reduction components and achieves near-lossless performance at high
compression ratios. GEAR first applies quantization to majority of entries of
similar magnitudes to ultra-low precision. It then employs a low-rank matrix to
approximate the quantization error, and a sparse matrix to remedy individual errors
from outlier entries. By adeptly integrating three techniques, GEAR is able to fully
exploit their synergistic potentials. Our experiments show that GEAR can maintain
similar accuracy to that of FP16 cache with improvement up to 24.42% over the
SOTA baselines at 2-bit compression. Additionally, compared to LLM inference
with FP16 KV cache, GEAR can reduce peak-memory of up to 2.39×, bringing
2.1× ∼ 5.07× throughput improvement. Our code will be publicly available.

1 Introduction
Autoregressive large language models (LLMs) [4, 39, 27, 28] have marked a significant milestone in
natural language processing (NLP) and artificial intelligence (AI) [29, 3, 19], showcasing exceptional
performances across a wide range of applications, such as content creation and dialogue systems
[36, 26, 32]. When serving these LLMs for generative inference, KV cache-ing has become a routine
practice. It stores previously computed Key/Value tensors from attention calculation and reuses them
while generating next tokens [21], avoiding intensive recalculation to improve the generation speed.

Despite its prominence, the memory consumption of the KV cache grows rapidly with the model size
and sequence length, imposing significant constraints on system throughput. For instance, in the case
of a 30 billion-parameter LLM with an input length of 1024 and batch size of 128, the resulting KV
cache can occupy up to 180 GB of memory [40]. To alleviate this pressure on limited GPU memory
capacity, inference systems typically resort to offloading [1, 23] – transferring the KV cache to CPU
memory or NVMe storage. This, however, can still introduce non-trivial overhead due to the limited
PCIe bandwidth between GPUs and CPUs on many devices. Therefore, it is crucial to reduce the
intensive memory footprint of the emerging bottleneck of KV cache in generative inference.

∗Equal Contribution.

4th NeurIPS Efficient Natural Language and Speech Processing Workshop (ENLSP-IV 2024).

(a) Approx. error on GSM8k-CoT (b) Difference in prediction logits (c) Accuracy on GSM8k-CoT
Figure 1: (1a) compares the approximation error when compressing KV caches to 2-bit for LLaMA3-8B on
GSM8k (w. CoT). (1b) presents difference in prediction logits from FP16 baseline after compressing KV caches
of an GSM8k (w. CoT) example, indicating the approximation error can be severely compounded along steps
and critically divert model generations. (1c) shows reducing the error can significantly improve the performance.

To address this issue, token dropping methods have been proposed to compress the cache size
while maintaining the generative performance [40, 15, 10]. These approaches harness the sparsity
observed in attention scores to evict embeddings of less important tokens from the KV cache while
retaining frequently attended ones. For example, H2O [40] utilizes accumulated attention scores
to evaluate token importance and reduces cache size by dropping tokens with lower scores. In
addition, quantization is another widely-adopted compression scheme that maps full-precision tensor
values into discrete levels and store them at lower precision, e.g., INT4 or INT8 [37, 7, 23]. For
example, FlexGen [23] employs a fine-grained group-wise asymmetric quantization that groups KV
entries per-token, divides g contiguous entries as a group, and quantize the tensor group-wise. Two
concurrent works [16, 11] further study KV entry distribution and propose to quantize Key cache
per-channel and quantize Value cache per-token, compressing the cache size by a high ratio.

The existing methods can effectively compress the cache size to low-precision while achieving
near-lossless performance on natural language understanding tasks like multiple-choice QA, text
classification, or simple summarization task [40, 16]. However, a stark contrast emerges when
applying these methods to complex generative tasks that require models to generate longer responses
or involve reasoning, such as mathematical problem-solving [5] and chain-of-thought (CoT) reasoning
[33]. Their performance deteriorates under a high compression ratio2 (e.g., 4-bit/2-bit quantization
or dropping > 50% tokens [10]), which is noticeable in both types of methods3. This phenomenon
can be attributed to the non-trivial approximation error induced by them, i.e., difference between
original KV and the compressed ones. For simple tasks, models are required to generate only
few tokens where necessary information for correct prediction can often be derived from a small
set of important contextual tokens. Consequently, a relatively large approximation error does not
significantly hinder the generation of target tokens. In contrast, the complex tasks require models to
generate longer sequences conditioned on prompts that often contains densely correlated information
(e.g., CoT reasoning). The autoregressive decoding can compound the approximation error at every
step. Consequently, the negative effect of even a relatively small error can be magnified along
generation steps, adversely affecting subsequent generation. As an example, Figure 1 presents the
approximation error of various methods on GSM8k and illustrates the deviation in token generations
due to the accumulated error, which degrades the accuracy a lot. Therefore, the crux of the issue lies
in high approximation errors of these methods, especially under high compression ratios.

To address this challenge, we propose GEAR (GEnerative Inference with Approximation Error
Reduction), an efficient error reduction framework that augments existing KV cache quantization
schemes with two error-reduction techniques, and adeptly integrate them to exploit their full potentials.
Generally speaking, our framework consists of three components to decompose KV matrices: (i)
First, we apply an existing quantization method to efficiently quantize the majority (e.g., 98%) of
entries of similar magnitudes to ultra-low precision. (ii) Then, we introduce a low-rank matrix to
efficiently approximate the quantization residuals. (iii) Finally, we employ a sparse matrix consisting
of a negligible ratio of entries of large magnitudes to remedy the individual errors caused by these
outliers. Such a composite approximation decouples the coherent parts from incoherent parts of the
approximation error: the low-rank matrix captures the majority of coherent basis of quantization
error while the sparse matrix rectifies the incoherency existing in individual outliers. Meanwhile,
as shown by our empirical evidence in Section 4.2, these two lightweight components result in
negligible memory and computational overheads, demonstrating high efficiency. As such, GEAR can
effectively reduce the approximation error in a highly efficient way and achieve superior performance

2We define the compression ratio as tensor size in FP16 divided by that in compressed format.
3Please refer to Section 4 for our empirical evidence.

2

on both complex and relatively simple tasks at high compression ratios in a plug-and-play manner.
We find that using both sparse and low-rank components is necessary for GEAR to establish the
best performance, highlighting their complementary nature. Remarkably, for those prioritizing
efficiency, equipping low-rank approximation alone for quantization can still effectively reduce the
approximation error, yielding both significant efficiency and performance improvement. We refer to
this lite version of GEAR as GEAR-L. Additionally, we incorporate a streaming buffer strategy for
GEAR to further improve inference efficiency.

We conduct experiments on diverse tasks and models to demonstrate the effectiveness of GEAR.
Specifically, we evaluate compression performance with LLaMA2-7B/13B [28], Mistral-7B [12], and
LLaMA3-8B[17] on generative tasks including mathematical reasoning (GSM8k[5] and AQuA[14]),
symbolic reasoning (BigBench Hard[24]), and long-context understanding (LongBench[2]). We
show that GEAR consistently outperforms the baseline methods especially at high compression
ratios such as 2-bit precision. For example, when compressing KV caches to 2-bit, GEAR achieves
an remarkable average accuracy improvement of 14.95% over the best-performing baseline across
various models and datasets. Regarding the inference efficiency, compared to the FP16 baseline,
GEAR can reduce the peak memory up to 2.39×, bring 2.10× ∼ 5.07× throughput improvement.

2 Background
Multi-head attention. A typical transformer model consists of L stacked layers, where each layer
contains two submodules: a multi-head attention (MHA) and a feed-forward network (FFN). Given
the input token embeddings as X ∈ Rn×d, MHA performs attention function in parallel H heads:

MHA (X) = Concat(H(1), ...,H(H))W o, H(i) = Softmax
(
Q(i)K(i)⊤/

√
dH

)
V (i) (1)

where Q(i) = XW qi ,K
(i) = XW ki

,V (i) = XW vi are Query/Key/Value matrices, and
W qi ,W ki

,W vi ∈ Rd×dH are projection matrices of head i. dH is typically set to d/H .

Prefill and decoding. Suppose the model generates ng tokens. At the first generation step, the input
tokens X0 ∈ Rn×d are prefilled. Then K(i) and V (i) at every head and every layer are cached for sub-
sequent generation, resulting in initial KV caches of prefill phrase: K0 = Concat(K(1), . . . ,K(H)),
V 0 = Concat(V (1), . . . ,V (H)) and K0,V 0 ∈ Rn×d. At each step t (1 ≤ t ≤ ng) of autore-
gressive decoding, the model predicts a new token xt conditioned on the input and previously
generated tokens. At the following step, MHA only needs to compute the Query/Key/Value vec-
tors4 (qt,kt,vt ∈ Rd) for the newly generated token xt and appends kt,vt to the KV cache:
Kt = Kt−1∥kt, V t = V t−1∥vt. Then it performs the attention (1) between qt and Kt, V t only.

Group-wise Quantization. Group-wise quantization is widely applied to compress KV cache[23,
16, 11]. Given a tensor X ∈ Rn×d in full precision, the vanilla method groups entries per-token by
placing g consecutive entries of a token into one group, e.g., the i-th group XGi

contains entries
with indices Gi = {(ti, ci), . . . , (ti, ci + g)} where (ti, ci) is the beginning index of group i and g is
group size. Then, it quantizes X group-wise: X̂ = Quant(per-token)

b,g with

Quant(per-token)
b,g (X)Gi = ⌈(XGi −minXGi)/∆i⌋ , ∆i = (maxXGi −minXGi)/(2

b − 1) (2)

where b is the bit-width, X̂ is the quantized tensor in b-bit precision, and ⌈·⌋ is the rounding function.
∆i and minXGi are the scaling factor and zero-point of group i. Two concurrent works (KIVI [16]
and KVQuant [11]) explore the entry distribution of KV cache and show that some fixed channels
exhibit very large magnitudes, and propose to quantize Key cache per-channel while quantizing Value
cache per-token, achieving the start-of-the-art 2-bit compression.

Intuitively, more fine-grained grouping with smaller group size, such as g = 64 in KIVI [16], leads
to more accurate approximation and yields better performance. However, small group size induces
considerable memory overheads due to the increased number of scaling factors and zero-points stored
in full precision for each group. Meanwhile, fine-grained grouping for per-channel quantization
leads to maintaining a residual subset of KV tokens in full precision until they form a complete
group [16]. Hence, the residual length of this full-precision parts should be set as a multiple of
group size (e.g., 128 as set by KIVI), further resulting in additional considerable overheads. To
leverage the SOTA quantization scheme while minimizing overheads, we choose per-channel Key

4For simplicity, we concatenate multi-head embeddings here.

3

(a) Error of each method (b) Spectrum of the residual (c) LLaMA3-8B on GSM8k-CoT
Figure 2: (2a, 2b) We randomly sample a GSM8k example and analyze its KV caches by LLaMA2-7B. (2a):
the minimal approximation error of each individual technique when approximating the Value cache of the first
layer; (2b): spectrum of the residual Rh decays rapidly. (2c): As an efficient error-reduction framework, GEAR
is orthogonal to any off-the-shelf quantization and can augment them to achieve near-lossless accuracy.

and per-token Value quantization without fine-grained grouping as a lite quantization backbone. We
refer to it as KCVT, a variant of KIVI with coarse-grained per-vector grouping where all Key entries
of one channel forms a group of size n and all Value entries of one token forms a group of size d,
significantly reducing the scaling and zero point storage overhead.

3 Method
The GEAR framework consists of three important components to decompose and compress a KV
cache matrix: (i) a quantized matrix D̂ to serve as a compressed backbone; (ii) a low-rank matrix L
to approximate the quantization residual; (iii) a sparse matrix S to capture the individual outliers.

Outlier-aware quantization. Inspired by the recent study on weight quantization [13], we observe
that the quantized backbone D̂ and the sparse matrix S complement each other in the KV cache
compression. Specifically, the quantization scheme can result in non-trivial quantization errors within
each group due to the existence of outlier entries. Therefore, a straightforward strategy is to filter out
these outlier before quantization. To align with grouping of per-channel Key and per-token Value
quantization, we leverage a per-vector outlier filtering. Given an input tensor X = Kt (or V t), we
extract both s

2% of maximum and minimum entries of each channel (or token) vector and store them
in full precision with a sparse matrix S = Filters(X) where

Filters(X)ij =

{
Xij if X = Kt and Xij in top/bottom s

2% of the j-th channel X ·j ,
Xij if X = V t and Xij in top/bottom s

2% of the i-th token Xi·,
0 otherwise.

(3)

Then, we perform the quantization on the extracted matrix and obtain the quantized backbone:

D̂ = Quant(Selected scheme)
b (X − S). (4)

The outlier extraction technique has been applied by Kim et al. [13] to augment training-dependent
non-uniform weight quantization. In contrast to their application scenario, we explore the potential
of outlier extraction techniques in conjunction with tuning-free uniform quantization for KV caches.
It is important to note that, compared to weights, KV cache compression presents unique challenges
because KV caches can contain more outliers, making its accurate quantization more challenging
than weights [35]. Our empirical results in Section 4.3 also show that the outlier-aware quantization
faces challenges in achieving ultra-low precision compression such as 2-bit on complex generative
tasks. To achieve effective high-ratio compression, it is often necessary to extract a large portion of
outliers stored in a sparse matrix. However, representing such a sparse matrix with two index vectors
and one value vector in full precision results in considerable memory overheads. These suggest that,
while using S can reduce the error, it still falls short of fully remediating the error in an efficient way.

Low-rank approximation. To reduce the approximation error more efficiently, we resort to low-rank
approximation. As inspired by fact that various attention heads encode diverse contextual information
within different channel ranges [25, 31, 38], we propose to apply head-wise low-rank decomposition
on the residual R = X−(D̂+S) ∈ Rn×d. Specifically, we first reshape R along channel dimension
and obtain H multi-head sub-matrices {Rh = R[:, (h− 1)dH : hdH] ∈ Rn×dH |1 ≤ h ≤ H} where
Rh is the residual of head h. Suppose Rh has singular value decomposition as

∑k
i=1 σiuim

⊤
i ,

where σ1 ≥ · · · ≥ σk are singular values and ui,mi are the corresponding singular vectors. As
shown in Figure 2b, we empirically observe that the spectrum of residual matrices drops rapidly
at the beginning. This suggests the existence of a coherent component within the residual. This
component is represented by the top singular values/vectors, and shared among tokens, indicating the

4

Table 1: Results on CoT reasoning tasks, which are hard generative task. Here, KV Size is the average
% of the remaining size of compressed KV caches with respect to the size in FP16. The best results
are shown in bold. N.A. represents the extermely degenerated performance.

Model LLaMA3-8B LLaMA2-13B Mistral-7B All

Method Bit Ave. GSM8k AQuA BBH GSM8k AQuA BBH GSM8k AQuA BBH Ave.
b KV size Acc Acc Acc Acc Acc Acc Acc Acc Acc Acc

FP16 16 100% 54.21 38.19 53.66 30.34 21.65 40.79 42.84 35.04 47.92 40.52

Per-token Q.g = 64 4 34.2% 37.07 39.37 46.42 20.85 18.90 34.72 31.47 29.13 28.88 31.94
KCVT Quant 4 27.1% 45.59 36.61 51.67 21.14 21.05 36.71 30.31 24.37 46.86 34.92
KIVIg = 64, nb = 64 4 34.2% 46.25 36.22 48.03 22.14 21.65 37.76 32.83 25.98 44.56 35.05

GEAR-L(KCVT)
r=4 4 29.0% 53.44 38.98 52.23 30.25 23.23 38.52 43.06 33.07 47.42 40.02

GEAR(KCVT)
s=2%,r=4 4 31.0% 54.76 40.55 52.74 30.17 24.05 40.63 41.93 34.57 47.84 40.80

Per-token Q.g = 64 2 21.7% 3.56 9.84 4.72 N.A. 10.54 N.A. N.A. 11.42 5.93 7.67
KIVIg = 64, nb = 64 2 21.7% 30.17 25.36 30.92 16.60 17.72 29.43 23.35 22.44 31.28 25.25

GEAR-L(KIVI)
r=4 2 23.6% 52.62 38.19 51.44 26.61 20.87 39.44 39.27 29.92 46.36 38.34

GEAR(KIVI,g=64)

s=2%,r=4 2 27.6% 54.59 38.19 50.30 30.27 23.62 39.67 43.14 33.96 48.03 40.20

vector similarity. By these top singular values and vectors, we can efficiently capture and recover this
coherent information, leading to an effective approximation to the quantization residual. To this end,
we introduce a matrix L = Concat(L1, . . . ,LH), where Lh is a low-rank matrix:

Lh = AhB
⊤
h = SVDSolverr(Rh) (5)

Ah ∈ Rn×r,Bh ∈ RdH×r and r is much smaller than n, dH . For example, when n = 1024 and
dH = 128, r = 4 is sufficient to achieve near-lossless high-ratio compression. For SVDSolver(·),
we employ an efficient power iteration algorithm [30]. This algorithm calculates Ah,Bh rapidly
while ensuring that AhB

⊤
h accurately approximates the top-r singular values/vectors

∑r
i=1 σiuim

⊤
i

(please see Appendix B for the algorithm details). In the multi-batch setting, we apply low-rank
approximation to input tensors batch-wise and head-wise.

In summary, GEAR integrates three compression techniques to provide an efficient solution for
minimizing the approximation error. Specifically, the quantized backbone D̂ leverages the entry-wise
similarity and compresses the majority of entries to the ultra-low precision. The low-rank matrix
Lh capitalizes on vector-wise similarity to extract the commonly shared information within the
residuals. The sparse matrix S compensates for the extraction of sparse information existing in
individual outliers and compliments the quantization process. As such, GEAR effectively reduces
the approximation error, achieving high-ratio KV cache compression. We recommend to use GEAR
with all three components for the best performance – both near-lossless 4-bit and 2-bit performance
as an alternate to SOTA methods. However, to prioritize efficiency, one can resort to a lite version
of GEAR, namely GEAR-L, that equips only low-rank approximation to restore quantization error,
costing less memory-overhead while improving accuracy significantly. Finally, we highlight that, as
an efficient error-reduction framework, GEAR(-L) is orthogonal to any off-the-shelf quantization
scheme and can augment them to achieve near-lossless accuracy as shown in Figure 2c and Section 4.

Streaming Buffer. GEAR also introduces a streaming buffer strategy during decoding to significantly
boost its inference speed. Specifically, when serving the long-sequence generation, GEAR stores
KV vectors of newly generated tokens in full precision to a small buffer B of size nb (e.g., nb = 20).
When the buffer reaches its capacity every nb decoding steps, GEAR conduct the compression for
new tokens in B while the subsequent low-rank approximation is only performed on the new tokens.
The concurrent work, KIVI [16], introduces a similar buffering approach to cache residual tokens
until they complete a group. Hence, their residual buffer size should be set as a multiple of group
size. In the case of coarse-grained grouping of KCVT, the buffer size can be set arbitrarily and we
select a small size like nb = 20 to enhance the inference speed while avoiding the non-trivial memory
overheads. We summarize the detailed algorithm of GEAR in Algorithm 1 of Appendix A.

4 Experiments
We use GEAR as a plug-and-play KV cache compression for generative inference with various LLM
models (including LLaMA2-7B/13B [28], Mistral-7B [12] and LLaMA3-8B [17]) on generative
tasks including math reasoning (GSM8k [5] and AQuA [14]), symbolic reasoning (BigBench Hard
(BBH) [24]) with CoT prompting [33], and long-context understanding (LongBench [2]).

5

Table 2: Results on GSM8k 5-shot and LongBench evaluation. Here, KV Size is the average % of the remaining
size of compressed KV caches with respect to that in FP16 (i.e., the inverse of compression ratio). The best
results are shown in bold. Results marked as † are taken from other papers.

Dataset GSM8k 5-shot LongBench w. LLaMA2-7B

Method Bit Ave. KV 7B 8B QMSum SAMSum GovReport 21 Tasks Ave.
b size Acc Acc Rouge Rouge Rouge Ave. KV Ave. score

FP16 16 100% 13.50 49.89 21.28 43.57 26.06 100% 26.82

Per-token Q.g = 64 4 38.2% 10.54 45.64 20.91 39.15 28.50 31.6% 27.31
KCVT Quant 4 27.1% 12.51 43.14 20.91 33.89 24.32 25.7% 26.06
KIVIg = 64, nb = 64 4 38.2% 13.41 48.37 20.81 40.98 26.86 31.6% 27.58

GEAR-L(KCVT)
r=4 4 30.4% 12.51 47.23 21.18 41.39 26.93 27.3% 27.65

GEAR(KCVT)
s=2%,r=4 4 32.4% 13.19 49.43 21.28 41.32 26.97 29.3% 27.80

Per-token Q.g = 64 2 25.7% 0.08 0.83 19.78 40.31 25.50 17.5% 27.69
KIVIg = 32, nb = 128 2 34.9% 12.74† 42.54 20.50† 42.71† 25.72 19.7% 27.83

GEAR-L(KIVI,g=64)
r=4 2 27.5% 12.63 47.01 20.69 42.35 26.67 19.1% 27.90

GEAR(KIVI,g=64)

s=2%,r=4 2 31.5% 13.04 49.96 20.59 43.22 27.73 23.1% 25.48

Implementation optimization and details. To minimize the overheads, we demonstrate via GPU
kernel support and optimize the implementation for GEAR as follows. Firstly, we fuse the de-
quantization with matrix multiplication using CUDA to improve decoding latency. Secondly, we
integrate the streaming buffer for both the Key and Value such that newly generated Key/Value caches
are all compressed every nb steps. Moreover, due to streaming buffer during decoding, low-rank
approximation is performed every nb steps for only buffered tokens with ultra low rank (r = 2),
improving compression efficiency. Thirdly, we preform the forward pass of low-rank matrices on
a separate path where down projection (e.g., q⊤

hBh) is first computed, followed by up projection
(e.g., (q⊤

hBh)A
⊤
h), reducing computational complexity of their forward pass.

We apply GEAR and baseline methods to open-source pre-trained LLMs available at Huggingface
[34], using our inference framework written in PyTorch [20]. As we focus on evaluating the impact
of KV Cache compression, we keep all other tensors in FP16, unless otherwise stated. We focus on
ultra-low precision quantization and report the results of 4-bit and 2-bit quantization. For GEAR,
we fix the sparsity ratio s at 2%, set the rank r to 4 for inputs in prefill phase, and set the rank to 2
for each group of nb new tokens in decoding phase. We find that the efficient KCVT quantization
achieves effective 4-bit compression and hence leverage it as 4-bit quantization backbone for GEAR
due to its efficiency. However, in case of 2-bit compression, its performance degenerates a lot and the
quantization schemes have to resort to fine-grained grouping to establish acceptable accuracy. Hence,
we use KIVI as 2-bit quantization backbone for GEAR. As demonstrated by [16] that KIVI is not
sensitive to group size g and residual length nb (Table 5 in [16]), we thus select the group size as 64
and the residual length as 64 for both GEAR and KIVI in order to lower KV size overheads. The
superscript in bracket shown in Table 1 and 2 identifies the backbone quantization scheme.

Baselines. We compare GEAR with the following baseline methods:

• Per-token group-wise quantization (used in FlexGen [23]) is a widely-adopted method that quantizes
KV cache per-token with fine-grained grouping.

• KIVI [16] is a concurrent KV cache quantization method that achieves start-of-the-art 2-bit KV cache
compression. This method quantizes Key cache per-channel and quantizes Value cache per-token
with fine-grained grouping, and stored residual tokens of length nb in full precision.

• KCVT quantization is a variant of KIVI that quantize Key cache per-channel and Value cache per-
token without fine-grained grouping. This is a per-vector quantization that induces lower overheads.

• H2O [40] is a recent token dropping method evicting unimportant tokens with lower accumulated
attention scores, which we compare with in Table 10.

4.1 Main Results
Generative performance on hard CoT reasoning tasks. We compare different methods with
LLaMA3-8B, LLaMA2-13B, and Mistral-7B on three challenging CoT generative tasks: GSM8k,
AQuA, and BBH with 8-shot CoT demonstrations. GSM8k [5] and AQuA [14] are widely used

6

(a) Time breakdown analysis (b) Peak memory comparison (c) Throughput comparison
Figure 3: (3a) wall-clock time percentage of each component in GEAR. (3b): GEAR reduces the peak memory
and enable much larger batch size than FP16. (3c): GEAR improve throughput significantly over FP16.

math reasoning datasets that test models’ ability of arithmetic reasoning. BBH [24] is a suite of
language and symbolic reasoning problems consisting of 6.5k problems within 23 subsets. Given the
complexity of these tasks, we use the chain-of-thought prompts created by [9] to improve reasoning,
which contains 8-shot demonstrations of multi-step reasoning. With the CoT demonstrations, we
have the average prefill length of GSM8k, AQuA, and BBH as 900, 1304, 1021 respectively (see
Appendix E). We then prompt model to generate 256 tokens and extract answers from them. Therefore,
our experiments involve long-sequence generation. Notably, as mentioned in Section 1, CoT prompts
often contains densely correlated information across multiple reasoning steps and models need to pay
close attention across steps to derive answers correctly. Hence, a relatively small compression error
can be magnified along generation steps, resulting in significant deviation in model generations.

Table 1 presents experimental results on these hard CoT reasoning tasks. We see that GEAR and
GEAR-L achieves better or on par performance compared with baseline methods on all datasets and
all models in both 4-bit and 2-bit compression. For example, in the case of 2-bit compression, GEAR
achieves 47.83% average accuracy on LLaMA3-8B across three datasets, which is near-lossless
compared to FP16 baseline (48.69%) and significantly outperforms the best-performing baseline
(28.82%, KIVI). Notably, GEAR-L also establish remarkable performance – near-lossless 4-bit
compression and superior 2-bit performance compared to baselines, while demonstrating lower KV
size and higher inference efficiency. Meanwhile, as shown in Table 1 and Figrue 2c, regardless
quantization backbone we choose, our method can always improve upon them by integrating the error-
reduction techniques, showcasing its generalization ability as an efficient error-reduction framework.
Thus, we highlight that GEAR(-L) is orthogonal to any off-the-shelf quantization scheme and
can augment them in a plug-and-play manner to achieve near-lossless accuracy at minimal
memory overheads.

Generative performance on relatively easy tasks. We also compare different methods on relatively
easy tasks without CoT reasoning. Specifically, we evaluate the performance with LLaMA2-7B on
LongBench [2], which is a suit of 21 long-context understanding tasks including question answering,
summarization, code completion, etc. (please see Appendix E for task metrics and dataset statistics).
The average input length of LongBench is 3642. We follow the evaluation method in [2], apply
their evaluation metrics and report the average score across all 21 tasks. Besides, we also follow
[16] and compare the performance using LLaMA2-7B and LLaMA3-8B on GSM8k with standard
5-shot prompts. Such 5-shot demonstrations consists of 5 sampled questions and their one-step (or
two-step) answers and do not involve complex CoT. Models are prompted to answer the question
without multi-step reasoning, which is simpler than the setting of 8-shot CoT prompting.

Table 2 present the experimental results on these relatively simpler tasks. We see that quantization
methods can already achieve near-lossless 4-bit/2-bit compression on these tasks, showcasing their
effectiveness on simpler tasks. For example, for 2-bit compression, per-token group-wise quantization
and KIVI both yield around 27.7% average scores across 21 tasks of LongBench. Moreover, KIVI
establish near-lossless 2-bit performance on GSM8k with 5-shot standard examples for both LLaMA2-
7B and LLaMA3-8B models. After incorporating error-reduction techniques, GEAR and GEAR-L
can achieve better or on par performance compared to baseline quantization methods. For example,
GEAR achieves 49.96% accuracy on GSM8k (5-shot) when compressing KV caches of LLaMA3-8B
to 2-bit, which is 7.42% higher then KIVI.

4.2 Inference Efficiency Comparison
In this section, we evaluate wall-clock time, memory, and throughput of GEAR on a single NVIDIA
V100 GPU (16GB). Specifically, we set the input and generation length as 1000 and 500 respectively,
and evaluate with LLaMA2-7B. We increase the batch size until out of memory and report the peak
memory/throughput between FP16 KV caches and 2-bit quantization: KIVI, GEAR, and GEAR-L.

7

(a) Ablation study on s and r (b) Recover error for p% tokens (c) Acc. v.s. KV cache size
Figure 4: Analysis and ablation study with LLaMA3-8B on GSM8k-CoT under 2-bit compression.

We use the same hyperparameters as in Section 4.1. Here, to maximize the batch size for all methods,
we compress model weights to 8-bit, using bitsandbytes from Huggingface Transformers [34].

In this inference setting, we first provide a time breakdown analysis for GEAR that compares total
computational time of different components during generative inference: (i) quantization-related
time that consists of total quantization and dequantization time after equipping our CUDA kernel;
(ii) low-rank time that includes total time of SVD approximation by Algorithm 2 and forward pass
of low-rank matrices; (iii) sparsity time that contains total computational time of outlier extraction
and matrix multiplication involving S during forward pass; (iv) other time that is primarily about
model forward pass and obtained by subtracting total wall-clock time with time summation of
aforementioned three items. We use the maximum batch size here (which is 18) and report the
average over three trials. Figure 3a presents the time percentage of each component in GEAR and
GEAR-L during generative inference. It suggests that, while yielding significant performance gains,
low-rank and sparse components are lightweight and do not induce unacceptable overheads. The
primary complexity still stems from model forward pass. The additional latency by low-rank and
sparsity components can be negligible due to our optimized implementation and inference techniques.

Figure 3b present the peak memory comparison across different batch sizes under the same inference
setting. We see that, given the same batch size, GEAR significantly reduces the peak memory
compared to FP16 baseline, increasing the maximum severing number (i.e., batch size) from 3 to
18. Moreover, Figure 3c shows the throughput comparison across various batch sizes. The results
demonstrate that, compared to FP16 baseline, our method significantly improves the throughput by up
to 5.07×. Meanwhile, GEAR-L achieves slightly better throughput than KIVI due to our improved
streaming strategy. We persent the detailed results of Figure 3b and 3c in Appendix F.

4.3 Analysis and Ablation Study
Ablation study on sparsity ratio s and rank r. We study the sensitivity of GEAR to the sparsity
ratio s and rank r. Figure 4a shows 2-bit quantization of GEAR and GEAR-L using LLaMA3-8B
on GSM8k (w. CoT) when varying s or r. We see that GEAR does not require abundant sparse
either low-rank components – a small sparse ratio (s = 2% for GEAR) and a small rank (r = 4 for
GEAR and GEAR-L) is adequate to achieve near-lossless 2-bit compression, demonstrating high
efficiency of our method. Further increasing s or r may improve the accuracy but not significantly,
which however results in additional memory overheads. More importantly, discarding low-rank
component can significantly degenerate the performance of GEAR and GEAR-L, highlighting its
vital role in error reduction. On the other hand, discarding sparse matrices can hurt performance but
not significantly because the incoherent error from outlier entries can also be partially remedied by
entry grouping of quantization. Thus, we highlight GEAR-L for those prioritizing efficiency.

Applying error reduction to different amounts of tokens. To further demonstrate the effectiveness
of error reduction, we study the performance variation of GEAR-L when applying low-rank approxi-
mation to varying number of tokens with LLaMA3-8B on GSM8k and AQuA (w. CoT). Specifically,
we split tokens into (i) input tokens in prefill phrase and (ii) generated tokens in decoding phrase. By
default, we recover quantization errors for all of them. Alternatively, we can take p% most recent
prefill tokens and only apply low-rank approximation to them. Figure 4b presents the performance of
GEAR-L when changing p. We see that the performance of GEAR-L degenerates when decreasing
the number of token applied error reduction, validating the effectiveness of error-reduction technique.

Different compression ratios. Figure 4c compares the performance of various methods on GSM8k
(w. CoT) when compressing KV caches of LLaMA3-8B to different remaining size. We see that
GEAR and GEAR-L consistently outperform other quantization baseline methods, achieving near-
lossless accuracy across various compression ratios and showcasing their effectiveness as an efficient
error-reduction framework for KV cache quantization.

8

5 Conclusions
In this paper, we present GEAR, an efficient error-reduction framework that can augment any
off-the-shelf KV cache quantization scheme with two lightweight error reduction techniques in a plug-
and-play manner to achieve near-lossless accuracy at high-ratio compression. GEAR demonstrates the
SOTA performance on complex generative tasks involving reasoning, achieving an average accuracy
improvement of 14.95% at 2-bit KV quantization compared to the alternatives.

References
[1] R. Y. Aminabadi, S. Rajbhandari, M. Zhang, A. A. Awan, C. Li, D. Li, E. Zheng, J. Rasley,

S. Smith, O. Ruwase, and Y. He. Deepspeed inference: Enabling efficient inference of trans-
former models at unprecedented scale, 2022.

[2] Y. Bai, X. Lv, J. Zhang, H. Lyu, J. Tang, Z. Huang, Z. Du, X. Liu, A. Zeng, L. Hou, Y. Dong,
J. Tang, and J. Li. Longbench: A bilingual, multitask benchmark for long context understanding,
2023.

[3] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020.

[4] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,
R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,
M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei. Language models are few-shot learners. CoRR, abs/2005.14165, 2020. URL
https://arxiv.org/abs/2005.14165.

[5] K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek,
J. Hilton, R. Nakano, C. Hesse, and J. Schulman. Training verifiers to solve math word
problems, 2021.

[6] T. Dao, D. Y. Fu, S. Ermon, A. Rudra, and C. Ré. Flashattention: Fast and memory-efficient
exact attention with io-awareness, 2022.

[7] T. Dettmers, M. Lewis, Y. Belkada, and L. Zettlemoyer. Llm. int8 (): 8-bit matrix multiplication
for transformers at scale. arXiv preprint arXiv:2208.07339, 2022.

[8] E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh. Gptq: Accurate post-training quantization
for generative pre-trained transformers, 2023.

[9] Y. Fu, L. Ou, M. Chen, Y. Wan, H. Peng, and T. Khot. Chain-of-thought hub: A continuous
effort to measure large language models’ reasoning performance, 2023.

[10] S. Ge, Y. Zhang, L. Liu, M. Zhang, J. Han, and J. Gao. Model tells you what to discard:
Adaptive kv cache compression for llms, 2023.

[11] C. Hooper, S. Kim, H. Mohammadzadeh, M. W. Mahoney, Y. S. Shao, K. Keutzer, and A. Gho-
lami. Kvquant: Towards 10 million context length llm inference with kv cache quantization.
arXiv preprint arXiv:2401.18079, 2024.

[12] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot, D. de las Casas, F. Bressand,
G. Lengyel, G. Lample, L. Saulnier, L. R. Lavaud, M.-A. Lachaux, P. Stock, T. L. Scao, T. Lavril,
T. Wang, T. Lacroix, and W. E. Sayed. Mistral 7b, 2023.

[13] S. Kim, C. Hooper, A. Gholami, Z. Dong, X. Li, S. Shen, M. W. Mahoney, and K. Keutzer.
Squeezellm: Dense-and-sparse quantization, 2023.

[14] W. Ling, D. Yogatama, C. Dyer, and P. Blunsom. Program induction by rationale generation:
Learning to solve and explain algebraic word problems. ACL, 2017.

[15] Z. Liu, A. Desai, F. Liao, W. Wang, V. Xie, Z. Xu, A. Kyrillidis, and A. Shrivastava. Scis-
sorhands: Exploiting the persistence of importance hypothesis for LLM KV cache compression
at test time. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.
URL https://openreview.net/forum?id=JZfg6wGi6g.

9

https://arxiv.org/abs/2005.14165
https://openreview.net/forum?id=JZfg6wGi6g

[16] Z. Liu, J. Yuan, H. Jin, S. Zhong, Z. Xu, V. Braverman, B. Chen, and X. Hu. Kivi: A tuning-free
asymmetric 2bit quantization for kv cache. arXiv preprint arXiv:2402.02750, 2024.

[17] Meta. Introducing meta llama 3: The most capable openly available llm to date, 2024. URL
https://ai.meta.com/blog/meta-llama-3/.

[18] I. Mirzadeh, K. Alizadeh, S. Mehta, C. C. Del Mundo, O. Tuzel, G. Samei, M. Rastegari, and
M. Farajtabar. Relu strikes back: Exploiting activation sparsity in large language models. arXiv
preprint arXiv:2310.04564, 2023.

[19] OpenAI. Gpt-4 technical report, 2023.

[20] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style,
high-performance deep learning library. In H. M. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. B. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, pages 8024–8035, 2019.

[21] R. Pope, S. Douglas, A. Chowdhery, J. Devlin, J. Bradbury, A. Levskaya, J. Heek, K. Xiao,
S. Agrawal, and J. Dean. Efficiently scaling transformer inference, 2022.

[22] L. Ribar, I. Chelombiev, L. Hudlass-Galley, C. Blake, C. Luschi, and D. Orr. Sparq attention:
Bandwidth-efficient llm inference, 2023.

[23] Y. Sheng, L. Zheng, B. Yuan, Z. Li, M. Ryabinin, D. Y. Fu, Z. Xie, B. Chen, C. Barrett, J. E.
Gonzalez, P. Liang, C. Ré, I. Stoica, and C. Zhang. Flexgen: High-throughput generative
inference of large language models with a single gpu, 2023.

[24] M. Suzgun, N. Scales, N. Schärli, S. Gehrmann, Y. Tay, H. W. Chung, A. Chowdhery, Q. V. Le,
E. H. Chi, D. Zhou, and J. Wei. Challenging big-bench tasks and whether chain-of-thought can
solve them, 2022.

[25] I. Tenney, D. Das, and E. Pavlick. Bert rediscovers the classical nlp pipeline, 2019.

[26] R. Thoppilan, D. D. Freitas, J. Hall, N. Shazeer, A. Kulshreshtha, H.-T. Cheng, A. Jin, T. Bos,
L. Baker, Y. Du, Y. Li, H. Lee, H. S. Zheng, A. Ghafouri, M. Menegali, Y. Huang, M. Krikun,
D. Lepikhin, J. Qin, D. Chen, Y. Xu, Z. Chen, A. Roberts, M. Bosma, V. Zhao, Y. Zhou,
C.-C. Chang, I. Krivokon, W. Rusch, M. Pickett, P. Srinivasan, L. Man, K. Meier-Hellstern,
M. R. Morris, T. Doshi, R. D. Santos, T. Duke, J. Soraker, B. Zevenbergen, V. Prabhakaran,
M. Diaz, B. Hutchinson, K. Olson, A. Molina, E. Hoffman-John, J. Lee, L. Aroyo, R. Rajakumar,
A. Butryna, M. Lamm, V. Kuzmina, J. Fenton, A. Cohen, R. Bernstein, R. Kurzweil, B. Aguera-
Arcas, C. Cui, M. Croak, E. Chi, and Q. Le. Lamda: Language models for dialog applications,
2022.

[27] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,
E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lample. Llama: Open and
efficient foundation language models, 2023.

[28] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. C. Ferrer, M. Chen, G. Cucurull, D. Esiobu,
J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini,
R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann, A. Korenev, P. S. Koura, M.-A.
Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P. Mishra,
I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi, A. Schelten, R. Silva, E. M.
Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor, A. Williams, J. X. Kuan, P. Xu, Z. Yan,
I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic, S. Edunov, and
T. Scialom. Llama 2: Open foundation and fine-tuned chat models, 2023.

[29] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

10

https://ai.meta.com/blog/meta-llama-3/

[30] T. Vogels, S. P. Karimireddy, and M. Jaggi. Powersgd: Practical low-rank gradient compression
for distributed optimization. CoRR, abs/1905.13727, 2019. URL http://arxiv.org/abs/
1905.13727.

[31] E. Voita, D. Talbot, F. Moiseev, R. Sennrich, and I. Titov. Analyzing multi-head self-attention:
Specialized heads do the heavy lifting, the rest can be pruned, July 2019. URL https:
//aclanthology.org/P19-1580.

[32] J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama, M. Bosma,
D. Zhou, D. Metzler, E. H. Chi, T. Hashimoto, O. Vinyals, P. Liang, J. Dean, and W. Fedus.
Emergent abilities of large language models. Transactions on Machine Learning Research,
2022. ISSN 2835-8856. URL https://openreview.net/forum?id=yzkSU5zdwD. Survey
Certification.

[33] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q. Le, and D. Zhou.
Chain-of-thought prompting elicits reasoning in large language models, 2023.

[34] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf,
M. Funtowicz, et al. Huggingface’s transformers: State-of-the-art natural language processing.
arXiv preprint arXiv:1910.03771, 2019.

[35] G. Xiao, J. Lin, M. Seznec, H. Wu, J. Demouth, and S. Han. Smoothquant: Accurate and
efficient post-training quantization for large language models, 2023.

[36] A. Yuan, A. Coenen, E. Reif, and D. Ippolito. Wordcraft: Story writing with large language
models. In 27th International Conference on Intelligent User Interfaces, IUI ’22, page 841–852,
New York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450391443. doi:
10.1145/3490099.3511105. URL https://doi.org/10.1145/3490099.3511105.

[37] O. Zafrir, G. Boudoukh, P. Izsak, and M. Wasserblat. Q8bert: Quantized 8bit bert. In 2019
Fifth Workshop on Energy Efficient Machine Learning and Cognitive Computing - NeurIPS
Edition (EMC2-NIPS). IEEE, Dec. 2019. doi: 10.1109/emc2-nips53020.2019.00016. URL
http://dx.doi.org/10.1109/EMC2-NIPS53020.2019.00016.

[38] Q. Zhang, C. Singh, L. Liu, X. Liu, B. Yu, J. Gao, and T. Zhao. Tell your model where to attend:
Post-hoc attention steering for LLMs. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=xZDWO0oejD.

[39] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan, M. Diab, X. Li, X. V.
Lin, T. Mihaylov, M. Ott, S. Shleifer, K. Shuster, D. Simig, P. S. Koura, A. Sridhar, T. Wang,
and L. Zettlemoyer. Opt: Open pre-trained transformer language models, 2022.

[40] Z. Zhang, Y. Sheng, T. Zhou, T. Chen, L. Zheng, R. Cai, Z. Song, Y. Tian, C. Ré, C. Barrett,
Z. Wang, and B. Chen. H2o: Heavy-hitter oracle for efficient generative inference of large
language models, 2023.

[41] Y. Zhao, C.-Y. Lin, K. Zhu, Z. Ye, L. Chen, S. Zheng, L. Ceze, A. Krishnamurthy, T. Chen, and
B. Kasikci. Atom: Low-bit quantization for efficient and accurate llm serving, 2023.

11

http://arxiv.org/abs/1905.13727
http://arxiv.org/abs/1905.13727
https://aclanthology.org/P19-1580
https://aclanthology.org/P19-1580
https://openreview.net/forum?id=yzkSU5zdwD
https://doi.org/10.1145/3490099.3511105
http://dx.doi.org/10.1109/EMC2-NIPS53020.2019.00016
https://openreview.net/forum?id=xZDWO0oejD

A Detailed Algorithm of GEAR

Algorithm 1 GEAR

1: Input: The initial {K0,V 0} of each layer, the sparsity ratio s, the bit-width b, the rank for
prefill token rp, the rank for generated token rg , the buffer B.

2: (Prefill Phase):
3: for X ∈ {K0,V 0} do
4: Compute S = Filters(X);
5: Compute D̂ = Quantb(X − S);
6: Compute R = X − D̂ − S;
7: for h = 1, . . . ,H do
8: Compute Lh = SVDSolverrp(Rh);
9: end for

10: Concatenate L = Concat(L1, . . . ,LH);
11: Replace X with D̂ +L+ S.
12: end for
13: (Decoding Phase):
14: for t = 1, . . . , ng do
15: if t mod nb = 0 then
16: for X ∈ {KB,V B} do
17: Compute S = Filters(X);
18: Compute D̂ = Quantb(X − S);
19: for h = 1, . . . ,H do
20: Compute Lh = SVDSolverrg (X − D̂ − S);
21: end for
22: Concatenate L = Concat(L1, . . . ,LH);
23: Replace X with D̂ +L+ S.
24: end for
25: Append Kt = Kt−nb

∥KB,V t = V t−nb
∥V B.

26: else
27: Generate new token xt and Push kt to KB and Push vt to V B.
28: end if
29: end for

B Power Iteration Algorithm as SVDSolver
The power iteration algorithm is presented in Algorithm 2.

Algorithm 2 Low rank approximation of the error tensor

Require: Input matrix X ∈ Rn×d loop iteration L, low rank fraction r.
Output: A ∈ Rn×r,B ∈ Rd×r,AB⊤ = L
random_initialize(A),
random_initialize(B)
while l < L do

if l == L− 1 then
B ← QRdecompostion(B)

end if
A = XB
if l == L− 1 then

A← QRdecompostion(A)
end if
B = XTA
l← l + 1

end while

12

C More Analysis
The role of low-rank approximation. We compare GEAR with outlier-aware quantization to
highlight the importance of low-rank approximation. Specifically, we apply the same evaluation
settings as Section 4.1. Table 8 in Appendix G presents the 2-bit performance of outlier-aware
KIVI quantization. The results suggest that employing outlier extraction alone for quantization
can improve the performance but cannot achieve near-lossless 2-bit performance that GEAR does.
Outlier-aware quantization still faces challenges in achieving high-ratio compression. In contrast,
low-rank approximation plays a pivotal role in fully remedy approximation errors and achieving
near-lossless high-ratio compression.

D More Discussion on Related Works
LLM weights compression. LLM weight compression can significantly reduce the memory footprint
and data transfer cost. GPTQ [8] accelerated the optimal brain quantization for LLM weights by
orders of magnitude. SqueezeLLM [13] successfully compressed the model weights to 3 bits by
extracting the outlier values and quantize the remaining values according to hessian matrix within
10% perplexity increases. These algorithms are effective and could compress weights to 2 or 3
bits with acceptable loss of accuracy. However, these methods often require significant latency
overhead and gradient information to work. Thus their are not fit for KV cache compression since KV
cache does not have any trainable parameter and changes every generation stage, requiring efficient
light-weight method for online compression.

LLM KV cache compression. Activation and KV cache compression are harder than weight
compression since they are more sensitive and related to model inputs. SmoothQuant [35] achieved
8-bit compression both for activation (KV caches included) and weights by adjusting the scaling
factors to reduce outlier error and demonstrates near lossless performance on simple generative
tasks. Atom [41] successfully compressed KV Cache to 4 bits on simple generative tasks within
5% performance degradation by combining 4-bit and 8-bit channel-wise quantization. Another line
of work explored KV pruning via token dropping based on attention score analysis. In specific,
H2O [40] and FastGen [10] proposed to prune KV via dropping tokens based on attention score
to decrease the KV cache size. SparQ [22] not only dropped tokens according to attention score
sparsity but also incorporated the error of the pruned value cache. These pruning and quantization
algorithms often work well on summarizing tasks and zero-shot inference. However, for fine-tuned
models, CoT inference, and generative reasoning datasets, attention scores are denser and each token
contains important information that can not be ignored. Moreover, token dropping needs to weigh
each token based on attention score, which makes these methods hard to deploy with FlashAttention
[6]. Additionally, recent works have demonstrated the attention sparsity to be a function of the
non-linearity choice of the model [18], showing its vulnerability as a metric for KV compression.

E Dataset Statistics
Here, we show the statistics of all datasets including input length in prefill phrase, generation length
and the number of evaluation examples.

Table 3: Statistics of GSM8k, AQuA and BBH.
Evaluation Example Prefill Lenght Generation Length

GSM8k with 8-shot CoT 1319 900 256
AQuA with 8-shot CoT 254 1304 196
BBH with 3-shot CoT 6511 1021 196
GSM8k with 5-shot examples 1319 672 96

Table 4: Statistics of LongBench.
Evaluation Example Prefill Lenght Generation Length

LongBench (Ave.) 4750 3642 256

13

Table 5: An overview of the dataset statistics in LongBench from [2].

Dataset ID Source Avg len Metric Language #data

Single-Document QA
NarrativeQA 1− 1 Literature, Film 18,409 F1 English 200
Qasper 1− 2 Science 3,619 F1 English 200
MultiFieldQA-en 1− 3 Multi-field 4,559 F1 English 150
MultiFieldQA-zh 1− 4 Multi-field 6,701 F1 Chinese 200

Multi-Document QA
HotpotQA 2− 1 Wikipedia 9,151 F1 English 200
2WikiMultihopQA 2− 2 Wikipedia 4,887 F1 English 200
MuSiQue 2− 3 Wikipedia 11,214 F1 English 200
DuReader 2− 4 Baidu Search 15,768 Rouge-L Chinese 200

Summarization
GovReport 3− 1 Government report 8,734 Rouge-L English 200
QMSum 3− 2 Meeting 10,614 Rouge-L English 200
MultiNews 3− 3 News 2,113 Rouge-L English 200
VCSUM 3− 4 Meeting 15,380 Rouge-L Chinese 200

Few-shot Learning
TREC 4− 1 Web question 5,177 Accuracy (CLS) English 200
TriviaQA 4− 2 Wikipedia, Web 8,209 F1 English 200
SAMSum 4− 3 Dialogue 6,258 Rouge-L English 200
LSHT 4− 4 News 22,337 Accuracy (CLS) Chinese 200

Synthetic Task
PassageCount 5− 1 Wikipedia 11,141 Accuracy (EM) English 200
PassageRetrieval-en 5− 2 Wikipedia 9,289 Accuracy (EM) English 200
PassageRetrieval-zh 5− 3 C4 Dataset 6,745 Accuracy (EM) Chinese 200

Code Completion
LCC 6− 1 Github 1,235 Edit Sim Python/C#/Java 500
RepoBench-P 6− 2 Github repository 4,206 Edit Sim Python/Java 500

F More Inference Analysis Comparison
F.1 Detailed results on a single V100 GPU
Table 6 shows detailed results of inference efficiency comparison in Section 4.2, which is on a single
NVIDIA V100. Also, to measure the peak memory save-up, we measure the memory consumption
under the same batch size for both GEAR and FP16 KV cache baseline, which is 18 (the maximum
batch size of GEAR on V100 GPU). Then, we apply the same inference setting and batch size for
FP16 KV cache baseline and test its corresponding memory consumption on a GPU with larger GPU
memory that accommodate more batches. The results shows that GEAR can reduce the memory up
to 2.39× compared to FP16 KV cache baseline.

F.2 Inference Efficiency Comparison on a RTX Titan GPU
To futher evaluate the thoughput and memory usage of GEAR, we only apply GEAR-L,GEAR-L
Prefill and GEAR on a RTX Titan GPU with 24GB memory. We choose LLaMA2-7b as our base
model. GEAR-L Prefill is an lite version of GEAR-L that only apply error reduction algorithm
to prefill tokens. In Section 4.3, we discuss the accuracy improved by GEAR-L Prefill compared
with KIVI. Here we present the Peak Memory and throughputs comparison in Figrue 5. With larger
GPU memory, GEAR-L Prefill, GEAR-L and GEAR add acceptable latency and achieves 2.10×
throughput improvement compared to Fp16 baseline.

14

Table 6: Detailed results in Section 4.2 using a single NIVIDA V100 GPU.
Method Batch Size Time (s) Peak Memory (GB) Throughputs (token/s)

1 117 8.44 4.27
FP16 2 118 9.94 8.47

3 (max) 120 11.44 12.5

1 142 7.28 3.52
4 148 8.49 13.51

KIVI-2bit 8 153 10.10 26.14
12 155 11.71 38.71
16 157 13.32 50.96

18 (max) 159 14.11 56.6

1 122 7.28 4.1
4 128 8.53 15.63

GEARL-2bit 8 134 10.13 29.85
12 137 11.76 43.8
16 140 13.37 57.14

18 (max) 142 14.16 63.38

1 126 7.31 3.97
4 139 8.64 14.38

GEARL-2bit 8 146 10.53 27.4
12 153 12.06 39.22
16 157 14.07 50.95

18 (max) 163 14.63 55.21

(a) Memory Usage Comparison (b) Throughput Comparison
Figure 5: Peak memory and throughput comparison with LLaMA2-7b on an RTX Titan 24GB GPU.

F.3 KV Cache Component
Here we discuss the components of KV Cache. Every quantization backbone at least contains
quantized integer and scale&zero point (we refer this as SZ FP16 in Figure 6). The size of former one
is decided by quantization bit-width and the latter one is decided by group number of quantization
algorithm. Another component is from the streaming buffer of FP16 residual tokens. When GEAR or
GEAR-L combine with KCVT quantization, buffer size can be small. When combining with KIVI,
buffer size should be larger than group size. GEAR and GEAR-L also have overheads stemming from
sparsity and low rank components. From Figure 6, we can tell that, KCVT induces small streaming
buffer overheads due to its large group size. In contrast, due to small group size of KIVI, it induces
larger residual overheads and memory consumption from scaling factors and zero-points.

Figure 6: KV Cache memory distribution for Mistral-7B on GSM8K-CoT task

15

F.4 Comparison on Maximum Sequence Length
In this section, we compare the maximum sequence length for different methods under the same
inference setting as in Section 4.2. We use a LLaMA2-7B, set the batch size as 1, and test the
maximum sequence length n for different methods. Similarly, we compress model weights to 8-bit as
in Section 4.2 and apply FlashAttention to save the memory usage and allow longer sequence length.
The hyperparameters are the same as Section 4.2. Table 7 presents the maximum length for FP16 and
GEAR and we can see that GEAR can increase the maximum sequence length by around 2k, making
previously impossible long-sequence generation feasible.

Table 7: Maximum sequence length comparison.
Method Bit b Max Length
FP16 KV Cache 16 5319
GEAR(KIVI)

s=2%,r=4 2 7291

G Comparison between GEAR and Outlier-Aware Quantization
In this section, we present the comparison between GEAR and outlier-aware quantization to further
demonstrate the importance of low-rank approximation. Specifically, we apply the same evaluation
settings as Section 4.1. Table 8 present the results.

Table 8: Comparison of GEAR with outlier-aware quantization on CoT reasoning tasks.

Model LLaMA3-8B LLaMA2-13B Mistral-7B

Method Bit KV GSM8k AQuA BBH GSM8k AQuA BBH GSM8k AQuA BBH
b size Acc Acc Acc Acc Acc Acc Acc Acc Acc

FP16 16 100% 54.21 38.19 53.66 30.34 21.65 40.79 42.84 35.04 47.92

KIVIg = 64, nb = 64 2 21.5% 30.17 25.36 30.92 16.60 17.72 29.43 23.35 22.44 31.28
Outlier-A.(KIVI)

s=2% 2 24.5% 36.01 36.22 36.59 18.19 18.90 33.21 37.64 22.44 36.29

GEAR-L(KIVI)
r=4 2 23.4% 52.99 38.19 51.44 26.61 20.87 39.44 39.27 29.92 46.36

GEAR(KIVI,g=64)

s=2%,r=4 2 27.4% 54.59 38.19 50.30 30.27 23.62 39.67 43.14 33.96 48.03

H KV Cache Average Size for Different Datasets
Table 9 presents the detailed KV cache size comparison across different methods, models and datasets
as shown in Table 1.

Table 9: Average KV Cache size for different datasets and differet models.

Model LLaMA3-8B KV Cache LLaMA2-13B KV Cache Mistral-7B KV Cache

Method Bit Ave. GSM8k AQuA BBH GSM8k AQuA BBH GSM8k AQuA BBH
b KV

FP16 16 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Per-token Q.g = 64 4 34.2% 35.2% 33.0% 34.4% 35.2% 33.0% 34.4% 35.2% 33.0% 34.4%
KCVT Quant 4 27.1% 26.7% 27.2% 27.2% 27.5% 26.7% 27.2% 27.5% 26.7% 27.2%
KIVIg = 64, nb = 64 4 34.2% 35.2% 33.0% 34.4% 35.2% 33.0% 34.4% 35.2% 33.0% 34.4%

GEAR-L(KCVT)
r=4 4 29.0% 29.7% 28.9% 29.4% 29.3% 28.4% 29.0% 29.3% 28.5% 29.0%

GEAR(KCVT)
s=2%,ρ=2% 4 31.0% 31.7% 30.9% 31.4% 31.3% 30.4% 31.0% 31.3% 30.5% 31.0%

Per-token Q.g = 64 2 21.7% 22.7% 20.5% 21.9% 22.7% 20.5% 21.9% 22.7% 20.5% 21.9%
KIVIg = 64, nb = 64 2 21.7% 22.7% 20.5% 21.9% 22.7% 20.5% 21.9% 22.7% 20.5% 21.9%

GEAR-L(KIVI)
r=4 2 23.6% 25.0% 22.7% 24.1% 24.5% 22.2% 23.7% 24.5% 22.2% 23.7%

GEAR(KIVI)
s=2%,r=4 2 27.6% 29.0% 26.7% 28.1% 28.5% 26.2% 27.7% 28.5% 26.2% 27.7%

16

I Comparison with token dropping.
We evaluate the performance of H2O [40] for reducing KV cache size on GSM8k with LLaMA2-7B.
Table 10 presents its accuracy when dropping 50% tokens, which suggests H20 cannot effectively
preserve the performance nor achieve high compression ratio. For complex tasks involving reasoning
or long-sequence generation (such as GSM8k), models need to closely attend to most contextual infor-
mation to generate correct answers. Token dropping methods, however, can make some information
directly invisible, resulting in deviation in generation and degradation of performance.

Table 10: Accuracy of H2O on GSM8k with LLaMA2-7B.

Method Bit b KV size CoT Acc.
FP16 16 100% 16.33
H2O 16 50% 6.82

GEAR(KCVT)
s=2%,r=4 4 32.4% 16.14

J Discussion on the Prompts

Figure 7: Example of GSM8k-CoT prompt. The Red, Green, and Blue colored portions correspond
to the example question, a common preceding prompt, and the example answer prompt, respectively.
Here, we use the common prompt to improve the reasoning of the LLM.
For the GSM8k dataset, there is a fixed prompt for all evaluations. The prompt contains 8 examples
with clear guidance step by step. For the MMLU and BBH dataset, there are individual prompts for
each sub dataset. Figure 7 shows one of the example in GSM8K dataset.

17

	Introduction
	Background
	Method
	Experiments
	Main Results
	Inference Efficiency Comparison
	Analysis and Ablation Study

	Conclusions
	Detailed Algorithm of GEAR
	Power Iteration Algorithm as SVDSolver
	More Analysis
	More Discussion on Related Works
	Dataset Statistics
	More Inference Analysis Comparison
	Detailed results on a single V100 GPU
	Inference Efficiency Comparison on a RTX Titan GPU
	KV Cache Component
	Comparison on Maximum Sequence Length

	Comparison between GEAR and Outlier-Aware Quantization
	KV Cache Average Size for Different Datasets
	Comparison with token dropping.
	Discussion on the Prompts

