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Abstract

The rapid growth of social media has led to the widespread dissemination of
misinformation across multiple content forms, including text, images, audio, and
video. Compared to unimodal misinformation detection, multimodal misinfor-
mation detection benefits from the increased availability of information across
multiple modalities. However, these additional features may introduce redundancy,
where overlapping or irrelevant information is included, potentially disrupting the
feature space and consequently impairing the model’s performance. To address
the issue, we propose a novel framework, Misinformation Detection Mixture of
Experts (MisD-MoE), which employs distinct expert models for each modality
and incorporates an adaptive feature selection mechanism using top-k gating and
Gumbel-Sigmoid. This approach dynamically filters relevant features, reducing re-
dundancy and improving detection accuracy. Extensive experiments on the FakeSV
and FVC-2018 datasets demonstrate that MisD-MoE significantly outperforms
state-of-the-art methods, with accuracy improvements of 3.45% and 3.71% on the
respective datasets compared to baseline models.

1 Introduction

In recent years, with the rapid growth of social media platforms, the spread of misinformation
has emerged as a significant global societal issue. On social media, users can rapidly disseminate
information through likes, shares, and comments, regardless of its veracity[1]. Such misinformation
can not only mislead public perception and influence social opinion[2], but it can also have severe
impacts on various domains, including politics, economics, and public health[3].

As a result, accurately detecting misinformation becomes crucial in helping individuals identify and
differentiate between authentic and false content[4]. Nowadays, misinformation on social media
appears in various forms, such as text, images, audio, and video, making unimodal detection methods
insufficient[5]. Text can be manipulated to bypass keyword filters[6], images and videos can be
altered, and audio can be synthesized or edited[7]. Thus, relying on unimodal detection often fails to
deliver ideal results[8].

To address these challenges, multimodal misinformation detection[9] has emerged. Multimodal
detection methods integrate information from multiple sources, such as text, images, audio, and
video, utilizing cross-modal feature fusion and correlation analysis to achieve a more comprehensive

∗Corresponding Author

4th NeurIPS Efficient Natural Language and Speech Processing Workshop (ENLSP-IV 2024).



identification of misinformation[10]. Song et al.[11] proposed a multimodal misinformation detection
framework based on Cross-modal Attention Residual and Multi-channel convolutional neural Network
(CARMN). However, these feature fusion methods often encounter the issue of losing information
at the shallow layers[12]. In response to this issue, Jing et al.[13] proposed a network that can
capture the representational information of each modality at different levels. Nevertheless, most
existing multimodal models have neglected certain modalities[14], which hinders their performance
improvement in misinformation detection[15]. Qi et al.[16] constructed China’s largest fake news
short video dataset FakeSV, which includes various contents such as titles, videos, keyframes, audios,
metadata, and user comments.

Figure 1: Architecture of the multimodal misinformation detection framework MisD-MoE

Although multimodal misinformation detection has made significant progress, existing frameworks
still face numerous challenges[17]. As the number of modalities increases, some modality features
may become redundant, failing to complement other modalities and thereby disrupting the feature
space[18]. Moreover, the issue of feature alignment between different modalities during the fusion
process has become increasingly complex and challenging. Ensuring the consistency and coordination
of modality features in fusion remains a pressing issue[19]. Additionally, current frameworks typically
employ only a single encoder for each modality, which limits the comprehensive extraction and
utilization of multi-level information within each modality[20]. This further hampers the framework’s
ability to capture complex and diverse information effectively. And simply increasing the number of
encoders would only lead to information redundancy, without ensuring the complementarity of the
features.

In response to these challenges, we have developed a novel framework for multimodal misinforma-
tion detection, called Misinformation Detection Mixture of Experts (MisD-MoE). This framework
incorporates an adaptive feature selection mechanism that minimizes feature redundancy during the
fusion phase, ensuring the complementarity between modality features. Additionally, by dynamically
adjusting the contribution weights of each expert model, our approach effectively captures the unique
characteristics of each modality, while also ensuring proper feature alignment and effective cross-
modal feature integration. Furthermore, the framework introduces distinct expert models for each
modality to fully capture the complete information within each, further improving detection accuracy
and robustness.

2 MisD-MoE Framework

2.1 Framework

To address the task of multimodal misinformation detection, we propose a novel framework MisD-
MoE, as shown in the Fig. 1.

In this framework, to tackle the widespread occurrence of various types of misinformation encountered
in real-world scenarios, we leverage multiple modalities within short video content—including text,
audio, image, and video to comprehensively extract relevant information. For each modality, we
employ distinct expert models to extract features and integrate the extracted modal information for
misinformation detection.
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Next, we apply cross-attention[21] between the features extracted by the expert models for each
modality pairwise, aiming to capture the complementary information across different modalities.
For example, given the audio features Fa = (a1, a2, . . . , an) extracted by an expert model for the
audio modality and the text features Ft = (x1, x2, . . . , xn) extracted by an expert model for the
text modality, we can calculate the attention weights and compute the attention-weighted sum of
audio-enhanced text features and text-enhanced audio features as follows.

Ft←a = Attention(Qt,Ka, Va) = softmax
(
QaK

T
t√

dk

)
Vt (1)

Fa←t = Attention(Qa,Kt, Vt) = softmax
(
QtK

T
a√

dk

)
Va (2)

where dk is the dimensionality of the feature vectors. Assuming there are N modality experts,
performing pairwise cross-attention on the N extracted features would yield

(
N
2

)
modality-enhanced

vectors. Subsequently, these modality-enhanced features undergo an adaptive feature selection
mechanism. This adaptive feature selection mechanism comprises an attention-based top-k gating
filter[22] and a Gumbel-Sigmoid-based[23] dynamic selection mechanism. This approach enables the
model to dynamically focus on the most relevant features, improving overall detection performance.
Finally, the selected features Ffinal are fed into a transformer layer, and the output of this layer is
classified into true or false categories by a classifier:

ŷ = Classifier(Transformer(Ffinal)) (3)

Table 1: The experimental results of the multimodal disinformation detection framework using
different models and combinations of modalities (text, audio, image, video ). E1-E7 represent a
series of experiments conducted within the SV-FEND framework, each utilizing different modalities
for feature extraction and fusion. E1 and E2 used different audio encoders, VGG and Wav2Vec2.0,
respectively. E7 used VGG and Wav2Vec2.0 encoders simultaneously.

Modality FakeSV FVC-2018
Method Text Audio Image Video Acc F1 Pre Rec Acc F1 Pre Rec

VGGish+SVM ✓ 61.25 61.31 61.24 61.33 58.44 58.61 58.48 58.63
VGG19+Att ✓ 68.53 68.51 68.53 68.50 65.79 65.81 65.49 66.08

C3D+Att ✓ 70.26 70.24 70.25 70.25 71.81 71.72 71.89 71.85
Bert+Att ✓ 74.31 74.35 74.30 74.39 76.37 76.35 76.39 76.33
TikTec ✓ ✓ ✓ ✓ 75.07 75.04 75.18 75.07 77.02 73.95 74.24 73.67

FANVN ✓ ✓ ✓ ✓ 75.04 75.02 75.11 75.04 85.81 85.32 85.20 85.44
SV-FEND ✓ ✓ ✓ ✓ 79.31 79.24 79.62 79.31 84.71 85.37 84.25 86.53

E1 ✓ ✓ 81.55 81.40 81.34 81.73 78.61 78.20 78.21 78.54
E2 ✓ ✓ 82.29 81.03 83.44 81.21 79.77 79.50 79.36 79.43
E3 ✓ ✓ ✓ 78.60 78.46 78.40 78.78 84.39 84.01 84.32 84.13
E4 ✓ ✓ ✓ 78.60 78.96 78.80 79.57 83.82 84.16 83.27 84.50
E5 ✓ ✓ ✓ 79.84 79.12 78.53 78.83 86.12 84.77 85.58 84.25
E6 ✓ ✓ ✓ 78.60 78.03 78.21 77.58 81.50 81.57 81.60 81.63
E7 ✓ ✓ ✓ ✓ 78.12 78.83 78.60 79.33 83.82 83.98 83.72 84.89

MisD-MoE ✓ ✓ ✓ ✓ 82.84 82.22 83.76 81.60 88.44 89.02 88.56 89.62

2.2 Expert Models

To extract valuable information from each modality, it is crucial to select appropriate expert models
based on the current modality.

In the text modality, BERT[24] is a mature and highly versatile text encoder. Therefore, we utilize
BERT as the expert model to extract textual features. For the audio modality, we employed two
expert models: the CNN-based VGG[25] and the transformer-based Wav2Vec2.0[26] for feature
extraction. This choice is motivated by VGG’s strength in capturing background audio features, while
Wav2Vec2.0[27] excels at extracting semantic information. By leveraging these complementary
models, we aim to achieve a comprehensive understanding of the audio content across different
levels. To detect the spatiotemporal and multi-granularity information in the video modality, we
used a pre-trained C3D[28] model to extract motion features. For the image modality, we extracted
a specific number of frames from each video and fed them into a pre-trained VGG19[25] model to
learn static visual features.
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Figure 2: Architecture of adaptive feature selection mechanism. The input set of
(
N
2

)
feature vectors

is processed through an attention gate, from which the top k vectors are selected based on their scores.
These k feature vectors are then passed through another attention gate, where the Gumbel-Sigmoid
function is applied to generate the final output.

3 Adaptive Feature Selection Mechanism

3.1 Gumbel-Sigmoid Technique

Gumbel-Sigmoid is a stochastic technique designed for differentiable sampling from discrete distri-
butions. It merges the Gumbel-Max trick, which is commonly used for categorical sampling, with the
Sigmoid function to enable continuous and differentiable approximations of binary decisions. This
makes it particularly well-suited for tasks such as feature selection, where we need to decide whether
to retain or discard a feature in a way that still allows backpropagation for model optimization during
training.

In this mechanism, a Gumbel noise is sampled from a Gumbel distribution, which is known for
modeling the maximum of a set of variables. By applying the noise to a logit (log-odds), followed
by a temperature-scaled Sigmoid function, the mechanism approximates a discrete decision in a
differentiable manner. Mathematically, the Gumbel noise is generated as:

gi = − log(− log(Ui)), Ui ∼ Uniform(0, 1) (4)

Then, the final decision for feature selection is computed as:

zi = σ

(
1

τ
(log(αi) + gi)

)
(5)

where σ is the Sigmoid function, and τ is the temperature parameter. By adjusting τ , we can fine-tune
the balance between exploration and exploitation in feature selection.

3.2 Adaptive Feature Selection Mechanism

Compared to unimodal misinformation detection, multimodal misinformation detection benefits from
an increased amount of available information due to the addition of multiple modalities. However,
these features may introduce redundancy, which can disrupt the feature space and potentially hinder
the model’s performance.
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Therefore, we designed an adaptive feature selection mechanism, which incorporates an attention-
based top-k gating filter and a Gumbel-Sigmoid-based dynamic selection mechanism.

First, we concatenate the N feature vectors obtained through the cross-attention mechanism: Fconcat =
[F1→2, F1→3, . . . , FN−1→N ]. Subsequently, these feature vectors are fed into a self-attention-based
feedforward layer, where each vector is assigned a score:

αi =
exp(score(Fi))∑N
j=1 exp(score(Fj)

(6)

The top k vectors, based on their scores, are then selected for retention

Ftop-k = TopK([Fconcat]) (7)

ensuring that only the most informative features are preserved for further processing.

At this point, the Gumbel-Sigmoid technique is applied to the selected top-k features. For each
feature, the Gumbel noise is added to the logit score, and the Sigmoid function is used to generate
a probability for retaining or discarding the feature. The outcome of this process is the final set of
features:

Ffinal = {fi | zi ≥ 0.5} (8)

This allows us to preserve the features that are most useful for misinformation detection while
excluding redundant features, thereby minimizing interference and improving the overall detection
accuracy.

4 Experiments

4.1 Datasets and Experiment Details

We conducted extensive experiments on two multimodal datasets, FakeSV and FVC-2018. The
details of the datasets are described as follows:

• FakeSV dataset, constructed by Qi et al.[16], comprises a large collection of Chinese news
short videos. This dataset includes multiple modalities such as text, video, audio, and social
context, which can cover various data in social media scenarios.

• The FVC-2018 dataset[29] contains real and fake videos on topics from YouTube like
politics, sports, and entertainment. It includes multiple modalities such as titles, videos,
comments, and URLs, making it valuable for misinformation detection.

In the experiments, the dataset was divided into training, validation, and test sets in a 70:15:15 ratio
following a chronological order. The model utilized the cross-entropy loss function and AdamW
optimizer, with a batch size of 64. The final results were obtained by evaluating this best model on
the test set.

Qi et al.[16] proposed a multimodal fake information detection framework, SV-FEND, which inte-
grates text, audio, image, and video modalities based on an attention mechanism. We conducted a
series of experiments on feature extraction and fusion based on SVFEND, investigating the model’s
performance when different modal information is included separately.

4.2 Performance Results

In this study, we first explore the impact of modal information on multimodal fake information
detection. Extensive experiments conducted on the baseline models using the FakeSV dataset and the
FVC-2018 dataset indicate that incorporating additional modal information is not always beneficial.
As the number of modalities increases, the information from these modalities can become redundant,
potentially disrupting the feature space.

First, it can be observed from Table 1 that multimodal fake information detection generally outper-
forms single-modal approaches by a significant margin. This indicates that the complementarity
between different modalities can, to a certain extent, enhance the model’s performance, as integrating
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multiple modalities enables a more comprehensive capture of the characteristics of multimodal
information.

The results also showed that, on the FakeSV dataset, the fusion of text features and audio features
extracted via the wav2vec encoder achieved the best results. Meanwhile, on the FVC-2018 dataset,
the optimal model performance was observed when text, video, and image features were fused.
It is worth noting that both of these optimal modality feature fusion methods only incorporate a
subset of the four available modalities. Other experiments presented in Table 1 further show that
adding more modal information to these fusion strategies results in a decline in performance. This
phenomenon highlights the redundancy of modal information and the lack of complementarity among
the modalities.

The above experiments demonstrate that in multimodal information fusion, the selection of appropriate
modalities and fusion strategies is crucial. Therefore, we incorporated an adaptive feature selection
mechanism while enriching the modal information, aiming to eliminate redundant information and
retain useful features. Extensive experiments have also demonstrated the effectiveness of our proposed
MisD-MoE model. Specifically, compared to the corresponding state-of-the-art methods, SV-FEND,
our MisD-MoE model achieved accuracy improvements of 3.45% on the FakeSV dataset and 3.71%
on the FVC-2018 dataset.

4.3 Ablation Study

We designed a series of ablation experiments to validate the effectiveness of the model. Specifically,
we compared the model’s performance under several different gating mechanisms.

First, we examined the differences in model performance and modality selectivity when using
sigmoid, softmax, and gumbel-sigmoid for the final output weighting. It was observed that the
model’s performance with softmax was inferior to that with Gumbel-Sigmoid. This is because the
softmax mechanism exhibited stronger continuity in modality selection, resulting in a smoother
weight distribution across modalities and a lack of clear selectivity. In contrast, when employing
the Gumbel-Sigmoid mechanism, the model demonstrated more discrete modality selection, effec-
tively distinguishing the contributions of different modalities, and thereby enhancing overall model
performance. This suggests that the Gumbel-Sigmoid mechanism is more advantageous for pro-
cessing multimodal information, as it strengthens the model’s sensitivity to critical modalities while
suppressing irrelevant or redundant information, ultimately improving decision-making performance.

Table 2: The performance comparison of the model when employing sigmoid, softmax, and Gumbel-
Sigmoid mechanisms

Mechanism Acc F1 Pre Rec
sigmoid 81.37 81.30 81.56 81.23
softmax 81.89 81.67 81.95 81.43

Gumbel-Sigmoid 82.48 82.04 82.30 81.60

To validate this modality selection capability, we specifically examined the weight values output by
the model when using these two mechanisms. As shown in the Fig.3, with the softmax mechanism, the
model’s output weights tend to follow a fixed pattern. In contrast, when using the Gumbel-Sigmoid
mechanism, the selected modalities exhibit no clear regularity in the model’s output. This is precisely
due to the more discrete nature of the Gumbel-Sigmoid mechanism, which allows the model to
dynamically adjust its reliance on different modalities under varying inputs, thus preventing any
single modality from disproportionately influencing the model’s decisions.

Next, we compared three selection mechanisms—top k, Gumbel-Sigmoid, and a combination of
top k and Gumbel-Sigmoid, based on attention gating. It is evident that the combination of top
k + Gumbel-Sigmoid yields the best performance. This is because the combination of top-k and
Gumbel-Sigmoid effectively leverages the strengths of both mechanisms. The top-k mechanism
ensures that only the most relevant modalities are considered by focusing on the top-ranked ones,
thereby reducing noise and irrelevant information. Meanwhile, the Gumbel-Sigmoid mechanism
introduces a level of stochasticity and discrete selection, allowing the model to explore different
modality combinations and prevent over-reliance on specific modalities. By combining these two
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Figure 3: The weight values output by the model when using two mechanisms.

mechanisms, the model not only filters out less important modalities but also dynamically adjusts its
modality selection, leading to improved robustness and overall performance.

Table 3: The performance comparison of the model when employing top k, Gumbel-Sigmoid, and a
combination of both mechanisms.

Mechanism Acc F1 Pre Rec
Top k 80.44 80.39 80.25 80.36

Gumbel-Sigmoid 82.48 82.04 82.30 81.60
Top k + Gumbel-Sigmoid 82.84 82.22 83.76 81.60

5 Conclusion

In this paper, we proposed a novel framework, MisD-MoE, for multimodal misinformation detection
that leverages expert models for each modality and an advanced feature fusion mechanism. Our
approach dynamically selects the most relevant modal features through a combination of top-k
gating and Gumbel-Sigmoid mechanisms, addressing the challenges posed by redundancy and
misalignment in multimodal information. Extensive experiments conducted on the FakeSV and
FVC-2018 datasets demonstrated that MisD-MoE outperforms state-of-the-art methods, achieving
significant improvements in accuracy. Future work could focus on further aligning modal features[30]
to enhance performance.
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