
Approximations may be all you need: Towards
Pre-training LLMs with Low-Rank Decomposition

and Optimizers

Namrata Shivagunde1,2 ∗

zshivagu@amazon.com
Mayank Kulkarni1
maykul@amazon.com

Giannis Karamanolakis1

karamai@amazon.com

Jack FitzGerald1

jgmf@amazon.com
Yannick Versley1

yversley@amazon.com
Saleh Soltan1

ssoltan@amazon.com

Volkan Cevher1,3

volkcevh@amazon.com
Jianhua Lu1

jianhual@amazon.com
Anna Rumshisky1,2

arrumshi@amazon.com

1Amazon AGI 2University of Massachusetts Lowell 3EPFL (LIONS)

Abstract

Large language models (LLMs) have achieved remarkable performance on var-
ious natural language processing tasks, but training LLMs at scale is extremely
resource-intensive, requiring substantial computational power, memory, and energy
consumption. This has motivated research into efficient training methods, particu-
larly during the pre-training phase. There are two main approaches to approximate
full-rank training which have emerged to address this challenge: low-rank model
decomposition (e.g., ReLoRA) and memory-efficient optimizers (e.g., GaLore). In
this work, we systematically evaluate both lines of research on a range of metrics,
including validation perplexity, memory usage and throughput. Additionally, we
propose improvements on both low-rank decomposition methods, by improving
the low-rank matrices decomposition and initialization, and memory efficient opti-
mizer methods via the introduction of error feedback and dynamic update steps.
Our comprehensive evaluation under the same experimental setting shows that
our proposed optimizations outperform all previous methods, achieving almost
same throughput as full-rank training, saving 9% in memory traded off for a 1.5%
increase in validation perplexity.

1 Introduction

Large language models (LLMs) have achieved remarkable performance on a wide range of natural
language processing tasks. However, training large-scale LLMs is extremely resource-intensive and
expensive, requiring substantial computational power, memory, and energy consumption. As a result,
there is a pressing need for efficient training methods that can reduce the computational burden while
maintaining model performance. One promising line of research focuses on efficient fine-tuning
techniques [Hu et al., 2022, Liu et al., 2024, Meng et al., 2024, Lialin et al., 2023, Xu et al., 2023,
Han et al., 2024b], which have demonstrated significant gains in training efficiency. However, a
question remains: can similar efficiency be realized during the pre-training phase of LLMs?
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To address this question, two main approaches to approximate full-rank training have emerged, namely
low-rank decomposition and memory-efficient optimizers. The first approach involves decomposing
the LLM’s weights into low-rank matrices and training these low-rank matrices. Methods like
ReLoRA [Lialin et al., 2024] have shown promising results in this direction, requiring fewer trainable
parameters and better throughput during pre-training. The second approach aims to improve the
optimization algorithms such as GaLore [Zhao et al., 2024] which project the gradient into low-rank
and reduce the memory requirements for optimizer states but has reduced throughput than full-rank
training.

In this work, we aim to systematically evaluate both lines of research across a wide range of
practical dimensions, namely validation loss, memory usage and throughput and propose efficient
enhancements to better balance their trade-off. Specifically, we propose three novel low-rank
decomposition methods ReDoRA, RePiSSA and ReLoQRa which show improvement over ReLoRA.
On the optimizer side, we introduce two novel techniques, GaLore with error feedback (GaLore-error-
feedback) and GaLore with dynamic update steps (GaLore-dynamic). We further improve GaLore by
combining these two techniques and call the new method GaLore-dynamic-error-feedback.

Our experiments demonstrate that ReLoQRa with reset frequency of 10k and warm start yields the
best performance among low-rank decomposition method whereas GaLore-dynamics-error-feedback
with weight of 0.2 is the best method overall, having the lowest validation perplexity of 20.66, which
is 1.5% less than full-rank training (with AdamW). GaLore-dynamics-error-feedback also has a
throughput of 141.4 examples per second, which is almost same as full-rank training while it reduces
the memory footprint by 9% when compared against full-rank training.

2 Related work

Low-rank model decomposition methods: Earlier work shows huge potential to pre-train LLMs
using low-rank model decomposition methods [Lialin et al., 2024, Jiang et al., 2024, Han et al., 2024a,
Loeschcke et al., 2024]. ReLoRA [Lialin et al., 2024] decomposes weight matrix into low-rank LoRA
Hu et al. [2022] matrices and uses merge and reinit technique to attain higher rank during training
LLMs. MoRA [Jiang et al., 2024] uses a compression and decompression operator on inputs and
a single square matrix of higher rank than two low-rank lora matrices to improve over LoRA and
introduce ReMoRA which improve over ReLoRA, however it is only compared against ReLoRA and
trained for 10k with rank 128 and do not discuss throughput. SLTrain [Han et al., 2024a] parameterize
the weights as a sum of low-rank and sparse matrices achieve memory efficiency during pre-training.
However, SLTrain throughput is lower than Full-rank training. LoQT [Loeschcke et al., 2024] is
an low-rank training method for quantized LLMs. In this method, LoRA matrices are initialized
with gradients of the dequantized weight using SVD and quantization error. Except ReLoRA, all
of these methods suffer from lower throughput than full-rank training. There are various improved
low-rank fine-tuning methods which have not been explored for pre-training. Methods like DoRA
[Liu et al., 2024] decomposes the weight into magnitude and direction and applies LoRA only to
the direction component. On the other hand, PiSSA [Meng et al., 2024] decomposes the weight
matrix into primary and residual component and only trains primary component using LoRA matrices.
DoRA and PiSSA is shown to perform better than LoRA for fine-tuning and have not been explored
for pre-training LLMs.

Memory-efficient optimizers: Recent work shows how various memory efficient optimizer can
help in saving memory during pre-training LLMs [Zhao et al., 2024, Zhang et al., 2024, Modoranu
et al., 2024, Muhamed et al., 2024]. GaLore [Zhao et al., 2024] projects the gradient into a low-rank
subspace, updates it using Adam and projected back to the original space, thereby using less memory
for optimizer states. However, it suffers from lower throughput than Full-rank training. On the
other hand, Adam-mini [Zhang et al., 2024] is a less adaptive version of AdamW, which saves on
memory by adopting a single learning rate for blocks of parameters in attention and MLP layers,
while giving comparable performance to AdamW. Adam-mini has been implemented and compared
against AdamW for float32 and it is still not known how well it performs for reduced precision like
bfloat16. MicroAdam [Modoranu et al., 2024] compresses the gradients via TopK sparsification and
uses quantized error feedback to correct for the gradient but it is used for fine-tuning only. Grass
[Muhamed et al., 2024] uses product of selection and scaling matrix based on row-norm of gradient
as projection matrix. On 350M scale, Grass achieves memory saving and higher throughput however
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have a higher validation perplexity than GaLore. Grass mentions throughput for rank 64 whereas
validation perplexity is for higher ranks (e.g. 128, 256). Most of the optimizers are compared only
against other optimizers and lacks analysis on how they compare against other efficient pre-training
techniques under same experiment set-up.

In our study, we compare and advances both low-rank model decomposition techniques and optimizers
to attain efficient pre-training of LLMs.

3 Background

We provide background on the methods we are evaluating in this study, namely full-rank training,
low-rank decomposition (ReLoRA, DoRA, PiSSA), and memory-efficient optimizers (GaLore, Adam-
mini).

Full-rank training: Following previous work [Lialin et al., 2024, Zhao et al., 2024], in full-rank
training, we train the entire weight matrix using AdamW as optimizer.

ReLoRA: ReLoRA [Lialin et al., 2024] approximates the weight W ∈ Rm×n matrix by LoRA
matrices A ∈ Rm×r and B ∈ Rr×n where r ≪ min(m,n). During training, the original weights W
are kept frozen, and A and B are trained. The LoRA matrices are merged back to the W after every
reset step T . This brings the total updates to the W to the given ∆W .

∆W =

T1∑
t=0

δWt +

T2∑
t=T1

δWt + · · ·+
TN∑

t=TN−1

δWt = sW 1
AW

1
B + sW 2

AW
2
B + · · ·+ sWN

A WN
B (1)

DoRA: In DoRA [Liu et al., 2024], the weight matrix W ∈ Rm×n is decomposed into a magnitude
vector m ∈ R1×m and a directional matrix V ∈ Rm×n as follows:

W = m
V +∆V

∥V +∆V ∥c
= m

W0 +BA

∥W0 +BA∥c
(2)

where ∥.∥c represents the vector-wise norm across each column. W0 is kept frozen and m and
directional component LoRA matrices A and B are trained.

PiSSA: PiSSA [Meng et al., 2024] decomposes the weight matrix W ∈ Rm×n into principal and
residual singular values and vectors. The principal singular values and vectors are used to initialize
the low-rank matrices A ∈ Rm×r and B ∈ Rr×n, which are trained and the residual singular values
and vectors are used to construct a residual matrix Wres, which remains frozen during training. The
weight matrix W can be stated as:

W = Wres +B (3)

GaLore: GaLore [Zhao et al., 2024] is an optimizer where the gradients Gt are projected into a
subspace using a projection matrix Pt which is derived from the SVD decomposition of the gradient,
updated using AdamW (ρt) and projected back to the original space using transpose of the same
projection matrix Pt, after every update frequency T steps. GaLore has the following gradient update
rules where η is the learning rate:

WT = W0 + η

T−1∑
t=0

G̃t, G̃t = Ptρt(P
⊤
t GtQt)Q

⊤
t (4)

where Pt ∈ Rm×r and Qt ∈ Rn×r are projection matrices.

Adam-mini: Adam-mini [Zhang et al., 2024] reduces the memory footprint of the Adam optimizer
by partitioning the model parameters into blocks and using a single learning rate for each block.
Adam-mini partitions all Queries and Keys by heads and uses the default PyTorch partition for the
rest of the model. For each parameter block outside the embedding layers, a single learning rate is

3



used. To compute this learning rate, Adam-mini uses the square root of the mean of the second-order
momentum values within that block. Adam-mini results were shown for float32 [Zhang et al., 2024],
we show the results for bfloat16.

All of the low-rank methods are applied on attention and MLP layers and other layers are trained
using AdamW.

4 Method

We introduce three novel low-rank model decomposition methods, ReDoRA, RePiSSA and ReLoQRa
and two techniques, dynamic projection matrix update frequency and error feedback to improve
GaLore.

4.1 Low-rank model decomposition methods

We propose a new method, namely ReLoQRa, where we initialize LoRA matrices A and B with the
QR decomposition of the current weight. We use this technique as this allows better initialization of
LoRA matrices than ReLoRA and allow exploration of orthogonal spaces. We provide more detail in
next section.

Earlier work [Liu et al., 2024, Meng et al., 2024] show that DoRA and PiSSA are better than LoRA
for fine-tuning. We investigate when these methods are combined with re-initialization and merge
technique similar to ReLoRA, how much improvement we can achieve for pre-training. We call these
methods ReDoRA and RePiSSA.

ReLoQRa: We observe in Figure 1 that matrix norm of memory efficient optimizer GaLore
increases gradually whereas the low-rank model decomposition method ReLoRA suffers from huge
drop after each reset step. This is due to re-initialization of LoRA matrices i.e. A with kaiming
initialization and B with zeros. We hypothesize that re-initializing LoRA matrices with this strategy
doesn’t allow ReLoRA to explore sub spaces optimally. Note that completely removing the LoRA
matrices resets is equivalent to LoRA and it perform worse than ReLoRA [Lialin et al., 2024].

Therefore, we introduce ReLoQRa where we initialize LoRA matrices A and B with QR decomposi-
tion of the weight. This allows to have a better starting state for A and B after each reset and allows
to explore orthogonal spaces. This results in a much higher matrix norm, likely resulting in better
exploration of spaces through larger steps and thus potentially finding better local minima. Our result
shows that ReLoQRa perform better than ReLoRA.
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Figure 1: Matrix norm of LLM training methods.

In ReLoQRa, we initialize the LoRA matrices A and B using QR decomposition of the current weight
matrix W. Specifically, we decompose W ∈ Rm×n into an orthogonal matrix Qt ∈ Rm×n and an
upper triangular matrix Rt ∈ Rn×n. We pick the top “r” rank components from Q and R to initialize
LoRA matrices and train them keeping the original weight frozen. Similar to ReLoRA, the LoRA
matrices are merged back to original matrix after T steps and reinitialized using ReLoQRa technique.

W = W +Q[:, : r]R[r :, :] (5)
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ReDoRA: ReDoRA is a variant of the DoRA method, where it incorporates the merging and
re-initialization strategy from the ReLoRA approach. During the re-initialization step, ReDoRA takes
the current weight matrix W and decomposes it using the DoRA method to initialize the magnitude
parameter m and the low-rank matrices A and B of the direction component. The LoRA matrices are
trained and merged back to W similar to ReLoRA.

RePiSSA: RePiSSA uses the PiSSA matrix decomposition technique on Weight matrix and use
the principal component to initialize LoRA matrices keeping residual component frozen. Similar to
ReDoRA, we incorporates the ReLoRA style merging and re-initialization strategy to use PiSSA for
pre-training and call this method as RePiSSA.

4.2 GaLore improvement methods

GaLore maintains momentum for only the top SVD subspace of the gradients [Zhao et al., 2024].
The residual gradient still occupies memory and is not used. Inspired by [Vyas et al., 2024], we
use this residual gradient as error feedback to the gradient for next step. We call this method
GaLore-error-feedback.

Following Loeschcke et al. [2024], we hypothesize that GaLore need not learn all sub-spaces equally.
We observe that it learns more spaces at the start of the training as compared to the end of the training.
We also note that GaLore uses SVD operations which may contribute towards the lower throughput
compared to the baseline [Zhao et al., 2024, Muhamed et al., 2024]. To address these points, we
introduce Galore-dynamics, where we use a dynamically changing projection matrix update frequency
in GaLore. This method reduces SVD operations in GaLore from 400 to 15.

GaLore-Error-Feedback. As GaLore uses Adam on top “r” gradient components, we use the
residual gradient as a feedback to the gradient in the next iteration. The residual gradient is computed
similar to Vyas et al. [2024]. Rt is the low-rank gradient and St is the residual gradient which is
added to the gradient in the next iteration.

St = Gt − Pt ∗Rt, Rt = Project(Gt) (6)

Gt+1 = Gt+1 + St (7)

GaLore-dynamics. Loeschcke et al. [2024] work with a quantized model and use exponential
increase in the update frequency. Instead, we start from 200th step and follow a simpler update rule
update_step = update_steps + 0.5 * update_steps, the maximum update frequency is set to 2500
Loeschcke et al. [2024]. For our update rule, starting earlier than 200 steps led to worse performance
than GaLore. The dynamic update frequency allows to have faster updates in the initial part of the
training and slower updates as training progresses.

GaLore-dynamics-error-feedback. To combine the benefits of both dynamics steps and error
feedback, we combine GaLore-dynamics with error-feedback and call this method GaLore-dynamics-
error-feedback.

5 Experiment setup

Following [Lialin et al., 2024] experiment set up, we use a 350M parameter LLaMA-based archi-
tecture model which uses RMSNorm and SwiGLU activations [Zhang and Sennrich, 2019, Shazeer,
2020, Touvron et al., 2023]. We train the model on C4 (only en) for 4.5B tokens across all methods.
For each method, we use a total batch size of 1152, micro-batch size of 48, a rank of 256, maximum
sequence length of 256 and train for 20k iterations. We keep the hyperparameters same across all
methods other than learning rate. The learning rate is set to 1.5e-3 for all low-rank decomposition
methods and optimizers, except for the baseline AdamW and Adam-mini, which use 5e-4. This choice
aligns with the recommendations from [Lialin et al., 2024] and [Zhang et al., 2024]. Additionally,
we include baselines with float32 and bfloat16 precision. For computing memory usage, we follow
[Muhamed et al., 2024] methodology. All experiments are conducted on 8 V100 GPUs. Note that
V100 GPU does not provide native bf16 instructions and the throughput and memory requirement for
the methods may vary when executed on GPUs with native bf16 support such as A100 or H100.
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For ReLoRA-style methods, we employ a reset frequency of 2500 and warmup steps of 100 as
recommended by [Lialin et al., 2024]. In the warm-start runs, we initially train the full-rank model
with AdamW until 5k steps, and then switch to low-rank decomposition methods for the remaining
steps from 5k to 20k.

For the GaLore optimizer, we explore learning rates of 1e-2, 5e-3, and 1.5e-3, projection weight
update frequencies of 200, 100, and 50, and GaLore scales of 0.25, 0.5, and 1. We select the
configuration with showed best results i.e. learning rate of 1.5e-3, projection matrix update frequency
of 50, and a GaLore scale of 1. We keep these GaLore hyperparameters same across all experiments
which are conducted using GaLore which includes GaLore-error-feedback, GaLore-dynamics and
GaLore-dynamics-error-feedback.

Galore-error-feedback and GaLore-dynamics-error-feedback have an additional error-feedback weight
hyperparameter. We show results for error-feedback weights of both 0.1 and 0.2 as we found 0.1
works better for Galore-error-feedback and 0.2 for GaLore-dynamics-error-feedback.

6 Results

Table 1 shows validation perplexity, memory usage and throughput for baselines and all efficient
training methods included in this study.

ReLoQRa is best among low-rank model decomposition methods. Among the low-rank model
decomposition methods, we found ReLoQRa to be better than ReLoRA, RePiSSA and ReDoRA by a
perplexity of 2.16, 1.17 and 0.55 respectively. We observed that the reset frequency of the LoRA
matrices was set for ReLoRA initialization technique. As we observed different reset pattern for
ReLoQRa in Figure 1, we increased the reset frequency from 2.5k to 10k, this not only improved the
throughput but also the perplexity improved from 25.43 to 23.50.

ReLoRA originally uses warm start to obtain optimal performance, hence we also experiment with
warm-start with our best method of ReLoQRa with reset frequency 10k. We demonstrate a 0.19
perplexity improvement when compared to using ReLoRA with similar warm start and 10k reset
frequency. Even though ReLoQRa with reset frequency 10k is better than all low-rank decomposition
methods, it still lags behind the baseline Full-rank with AdamW where both weight and optimizer
states are in bfloat16, by 0.68.

In terms of memory consumption, all ReLoRA-style methods, including ReLoRA, ReDoRA,
RePiSSA, and their variants, exhibit a significantly lower memory footprint compared to the baseline
full-rank methods. These low-rank methods require approximately 2.31 GB of memory when con-
sidering all parameters and 1.75 GB when considering only trainable parameters (see Table 3 in the
Appendix B). Compared to the 3.11 GB required for all parameters in full-rank training.

We found that the throughput for low-rank decomposition methods of 120 examples/second to be
lower than baseline which is 141.5 examples/sec. This is contradicts the findings in [Lialin et al.,
2024] and we show an analysis on this in the next section. We show training loss and evaluation
loss for baselines and all low-rank model decomposition methods in Figures 4 and 5 respectively in
Appendix A.

Why ReLoRA style methods have lower throughput than Full-rank training? The key factor
contributing to the lower throughput of ReLoRA methods is the additional computation required
during the forward pass. For the full-rank AdamW method, the forward pass involves only Wx where
W is weight matrix and the x is the input. However, in ReLoRA, the forward pass needs an additional
forward pass of ABx, where A and B are the low-rank decomposition matrices. This additional
forward pass introduces overhead, leading to a lower throughput for ReLoRA style methods. Table 2
shows that for a micro-batch size of 24 and rank 256, the baseline achieves a throughput of 137.3
examples/sec, while the ReLoRA has a lower throughput of 115.2 examples/sec.

As we decrease the ReLoRA rank from 256 to 128 and 64 keeping the micro-batch same, we see
that the throughput increases from 115.2 to 129.0 and 135.2 respectively. The throughput further
increases if we double the micro-batch size from 24 to 48. With hidden dimension to rank ratio as
16 and double the micro-batch, we can achieve better throughput than baseline for low-rank model
decomposition methods. Lialin et al. [2024] mentions that for 1B scale, with ReLoRA rank as
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128, which is 16 times less than full-rank and with a double micro-batch size, we can get higher
throughput than full-rank training. This aligns with our analysis that in order to get higher throughput
with low-rank model decomposition methods, we need atleast 16 times less rank and double the
micro-batch size as compared to full-rank training.

GaLore-dynamics-error-feedback is best among optimizers. We find that GaLore outperforms
Adam-mini being lower on perplexity by 0.15 points. We further improve this performance by using a
dynamics projection matrix update frequency (GaLore-dynamics) resulting in a 0.75 point improved
perplexity. Orthogonal to this, we also found that the Weighted Error Feedback (GaLore-EF) also
improved upon GaLore’s validation perplexity by a more conservative 0.03. We combined both these
methods as GaLore-dynamics-error-feedback and with a weighted error-feedback of 0.2, we were
able to achieve the lowest validation perplexity of 20.66, outperforming GaLore and Adam-mini by
0.35 and 0.5. However, while its throughput is comparable to full rank AdamW, it lags behind in
perplexity by 0.31.

GaLore-dynamics-error-feedback has a memory footprint of 2.83 GB which is higher than Adam-mini
and GaLore by 0.28 and 0.57 GB respectively but lower than Full-rank AdamW by 0.28 GB. GaLore
and GaLore-dynamics uses 2.26 GB memory which is the least memory among all optimizers.

GaLore variants surpasses all methods. Among low-rank model decomposition methods, ReLo-
QRa with reset at 10k and warm-start method achieves the lowest validation perplexity of 20.82 with
a memory requirement of 2.31 GB and throughput of 120 examples per sec. Even though ReLoQRa
has a lower memory footprint, it has a reduced throughput when compared against full-rank training
and requires a warm start. ReLoQRa with reset step 10k with warm start is better than Adam-mini
and GaLore by a perplexity of 0.34 and 0.19 respectively, however has a reduced throughput by 14%.
GaLore variants GaLore-dynamics, GaLore-error-feedback and GaLore-dynamics-error-feedback
surpasses all low-rank model decomposition methods, Adam-mini and vanilla GaLore. GaLore-
dynamics-error-feedback with error-feedback weight of 0.2 is found to be the best method overall,
with a validation perplexity of 20.66, memory usage of 2.83 GB and throughput of 141.4 examples
per second. We show training loss and evaluation loss for baselines and best methods in each of the
low-rank model decomposition method and optimizers categories in Figure 2 and 3 respectively. Full
training loss curve is shown in Figure 8 in Appendix A.
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Figure 2: Training loss curves for overall best
methods and baselines.
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Figure 3: Validation loss curves for overall best
methods and baselines.

7 Conclusion

In this study, we conducted a comprehensive evaluation of low-rank model decomposition techniques
and memory-efficient optimizers for efficient LLMs pre-training under the same experiment setting.
We introduce three novel low-rank model decomposition methods, ReDoRA, RePiSSA and ReLoQRa
which improves on the ReLoRA. We also improve the GaLore by using dynamic steps and error
feedback. Our results revealed that ReLoQRa with reset at 10k and warm-start emerged as the
best-performing low-rank decomposition method, achieving a validation perplexity of 20.82 while
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Methods Perplexity Memory in GB Thru.
Param Grad OS Act Extra Total put

Baselines

FT + AdamW (w 32, os 32) 17.24 1.37 1.37 2.74 0.58 0.12 6.18 160.5*
FT + AdamW (w 32, os 16) 18.34 1.37 1.37 1.37 0.30 0.12 4.54 156.2*
FT + AdamW (w 16, os 16)† 20.35 0.69 0.69 1.37 0.30 0.06 3.11 141.5

Low-rank model decomposition methods

ReLoRA† 27.61 0.91 0.35 0.69 0.30 0.06 2.31 120.0
ReDoRA 27.06 0.91 0.35 0.69 0.30 0.06 2.31 118.0
RePiSSA 26.44 0.91 0.35 0.69 0.30 0.06 2.31 120.2
ReLoQRa 25.43 0.91 0.35 0.69 0.30 0.06 2.31 120.5
ReLoQRa with reset at 10k 23.50 0.91 0.35 0.69 0.30 0.06 2.31 122.0

ReLoRA + warm start 21.50 0.91 0.35 0.69 0.30 0.06 2.31 120.0
ReLoRA with reset at 10k
+ warm start 21.01 0.91 0.35 0.69 0.30 0.06 2.31 121.5
ReLoQRa with reset at 10k
+ warm start 20.82 0.91 0.35 0.69 0.30 0.06 2.31 120.0

Optimizers

Adam-mini 21.16 0.69 0.69 0.81 0.30 0.06 2.54 138.0
GaLore† 21.01 0.69 0.69 0.53 0.30 0.06 2.26 140.0
GaLore-dynamics 20.76 0.69 0.69 0.53 0.30 0.06 2.26 138.8
GaLore-EF (0.1) 20.98 0.69 0.69 1.09 0.30 0.06 2.83 139.0
GaLore-EF (0.2) 21.35 0.69 0.69 1.09 0.30 0.06 2.83 139.0
GaLore-dynamics-EF (0.1) 20.86 0.69 0.69 1.09 0.30 0.06 2.83 141.5
GaLore-dynamics-EF (0.2) 20.66 0.69 0.69 1.09 0.30 0.06 2.83 141.4

Table 1: Comparison of parameter-efficient pre-training methods. “Param” is parameters, “Grad” is
gradients, “OS” is optimizer states, “Act” is activation states, “Extra” is extra memory for largest
tensor. * stands for throughput for micro-batch 24, the throughput will be slightly higher (0.04%)
than this value for micro-batch size of 48. All results are for weight and optimizer states in bfloat16
unless w and os are mentioned. “w” and “os” stands for weights and optimizer states of the model.
Numbers in parentheses “(*)” is the error-feedback (EF) weighting. †Methods highlighted in blue are
our evaluation of the existing methods AdamW, GaLore [Zhao et al., 2024], ReLoRA [Lialin et al.,
2024]. Overall best method is shown in bold.
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Methods Param Rank d/r Forward Pass Throughput Micro-batch
(examples/sec) Size

Full-rank 1024 1 Wx 137.3 24
GaLore 256 4 Wx 136.5 24

ReLoRA 256 4 (W + AB)x 115.2 24
ReLoRA 128 8 (W + AB)x 129.0 24
ReLoRA 64 16 (W + AB)x 135.2 24

ReLoRA 256 4 (W + AB)x 120.6 48
ReLoRA 128 8 (W + AB)x 133.6 48
ReLoRA 64 16 (W + AB)x 142.1 48

Table 2: Throughput analysis of ReLoRA with respect to rank, d/r (hidden size / rank), throughput,
and micro-batch size.

requiring 2.31 GB of memory and a throughout of 120 examples per second. Overall, GaLore-
dynamics-error-feedback (scale 0.2) outperformed all other optimizers as well as all low-rank model
decomposition methods, achieving the lowest validation perplexity of 20.66, memory usage of 2.83
GB and throughput of 141.5 examples per second. We show that in order to achieve better throughput
with ReLoRA style methods, we need to have higher hidden dimension to rank ratio and higher
micro-batch size. This is important to understand the true saving when we are using low-rank model
decomposition methods to train large-scale LLMs. Furthermore, we demonstrate other avenues like
using residual gradient as error-feedback and dynamic update frequency to improve GaLore. As next
steps, we will explore how our proposed efficient methods perform for training larger-scale LLMs.

8 Limitations

Our experiments were conducted on V100 GPU, which lack native bf16 support, potentially affecting
the reported throughput and memory requirements of the methods included in this study. While our
results are comparable within this setup, the performance and hence rankings of methods may vary on
other GPU such as A100 or H100 which have native bf16 support Future work will include verifying
the results on A100 or H100.
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A Training loss and evaluation loss curves for all methods

We show the training and evaluation loss for all low-rank model decomposition methods in Figures 4
and 5. We see ReLoQRa with reset frequency 10k and warm start gives the best validation perplexity
among all low-rank decomposition techniques.

In Figures 6 and 7 show the training and evaluation loss for all optimizers. We see GaLore-dynamics-
EF-0.2 gives the best validation perplexity among optimizers.

Figures 8 and 9 show the training and evaluation loss best methods in each category.
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Figure 4: Training loss for low-rank decomposi-
tion methods and baselines
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Figure 5: Evaluation loss for low-rank decompo-
sition methods and baselines
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Figure 6: Training loss for optimizers and base-
lines
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Figure 7: Evaluation loss for optimizers and
baselines

B Low-rank model decomposition method trainable parameter memory
usage

Methods Perplexity Memory in GB Thru.
Param Grad OS Act Extra Total put

ReLoRA 27.61 0.91 0.35 0.69 0.30 0.06 2.31 120.0
ReLoRA (T) 0.35 0.35 0.69 0.30 0.06 1.75
ReDoRA 27.06 0.91 0.35 0.69 0.30 0.06 2.31 118.0
ReDoRA (T) 0.35 0.35 0.69 0.30 0.06 1.75
RePiSSA 26.44 0.91 0.35 0.69 0.30 0.06 2.31 120.2
RePiSSA (T) 0.35 0.35 0.69 0.30 0.06 1.75
ReLoQRa 25.43 0.91 0.35 0.69 0.30 0.06 2.31 120.5
ReLoQRa (T) 0.35 0.35 0.69 0.30 0.06 1.75

Table 3: Low-rank decomposition methods trainable parameters consumes 0.35GB which is one third
of its total parameters. Low-rank methods has lowest number of trainable parameters. ‘T’ stands for
Trainable parameters.
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Figure 8: Training loss for overall best methods
and baselines
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Figure 9: Evaluation loss for overall best meth-
ods and baselines
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