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Abstract

Foundation models (FMs) are pre-trained on large-scale datasets and then fine-
tuned on a downstream task for a specific application. The most successful and
most commonly used fine-tuning method is to modulate the pre-trained weights
via a low-rank adaptation (LoRA) of newly introduced weights. These weight
matrices are usually initialized at random with the same rank for each layer across
the FM, which results in suboptimal performance. We propose to enhance LoRA
by initializing the new weights in a data-driven manner, by computing singular
value decomposition on activation vectors. Then, we initialize the new LoRA
matrices with the obtained right-singular vectors. Finally, we re-distribute the ranks
among layers to explain the maximal amount of variance across all layers. This
assignment results in an adaptive allocation of ranks per weight matrix, and inherits
all benefits of LoRA. We apply our new method, Explained Variance Adaptation
(EVA), to a variety of fine-tuning tasks comprising language understanding and
generation, image classification, and reinforcement learning. EVA consistently
attains the highest average score across a multitude of tasks per domain.

1 Introduction

Foundation models (Bommasani et al., 2021, FMs) are usually trained on large-scale data and then
fine-tuned towards a particular downstream task. This training paradigm has led to significant
advancements in the realm of language modeling (OpenAI, 2023; Touvron et al., 2023; Reid et al.,
2024), computer vision (Dehghani et al., 2023; Oquab et al., 2023), and reinforcement learning
(Brohan et al., 2023; Zitkovich et al., 2023). With an increasing number of model parameters,
the process of fine-tuning becomes prohibitively expensive. This results in the need for efficient
alternatives to fine-tuning all parameters of the pre-trained model.

Parameter-efficient fine-tuning (PEFT) approaches are a commonly used as an effective alternative
to full fine-tuning (FFT). They usually inject a small fraction of new trainable weights into the pre-
trained model. During fine-tuning, the pre-trained weights remain frozen and only the new weights
are updated. This substantially reduces the computational cost in terms of both, time and space
dimensions. A particularly successful approach, LoRA (Hu et al., 2022), introduces new weights in
the form of a low-rank decomposition for each weight matrix in the pre-trained model. After training,
the new weights can be readily merged into the pre-trained weights without any additional inference
latency. While LoRA yields strong performance compared to full fine-tuning, current approaches

*Equal contribution

4th NeurIPS Efficient Natural Language and Speech Processing Workshop (ENLSP-IV 2024).



Figure 1: Left: EVA performs singular value decomposition on activation vectors for the first few
mini-batches to obtain a suitable initialization for the LoRA matrix A. Right: After initializing A,
we allocate ranks to maximize the explained variance throughout the model and continue the standard
LoRA fine-tuning procedure, where W is kept frozen and only A and B are trained.

either initialize the LoRA weights according to statistics of the pre-trained weights (Meng et al.,
2024) or at random (Hu et al., 2022; Zhang et al., 2023a).

We propose a new data-driven initialization of LoRA weights by leveraging information from the
downstream task at hand. Certain activation patterns of FMs have been shown to be crucial for
model performance (Sun et al., 2024). Therefore, we aim at leveraging activations computed on the
downstream data for initialization of LoRA weights. To this end, we propagate a few mini-batches
of the fine-tuning data through the model and compute the singular value decomposition (SVD)
on activation vectors to obtain right-singular vectors. We leverage this projection to initialize the
down-projection in LoRA. Further, We sort all ranks according to their explained variance and only
assign those that maximize it for a given rank budget. This results in an effective initialization of
LoRA matrices, that (i) is data-driven by leveraging information from the downstream task, and
(ii) allocates ranks to pre-trained weights to maximize the explained variance throughout the model.
We call the resulting method EVA, which is short for Explained Variance Adaptation. Importantly,
this procedure can be performed within the first few mini-batches during LoRA fine-tuning without
significant computational overhead.

We demonstrate the benefits of EVA on an array of downstream tasks, namely language genera-
tion, image classification, and reinforcement learning (RL). EVA consistently improves average
performance across a multitude of tasks on each domain compared to LoRA and other recently
proposed PEFT methods.. On language understanding tasks, EVA exhibits average performance
gains compared to LoRA on several tasks of the GLUE benchmark (Wang et al., 2019). On image
classification we fine-tune a pre-trained vision transformer (Dosovitskiy et al., 2021) on a set of 19
diverse tasks. We find that EVA again attains higher average scores than competitors, exhibiting
most improvements on out-of-distribution data. For our RL experiments we conduct fine-tuning on
continuous control tasks and find that EVA significantly exceeds performance of LoRA and even
exceeds performance of full fine-tuning (FFT) when combined with DoRA (Liu et al., 2024). Finally,
we conduct ablation studies to demonstrate that the combination of direction and scale provided by
EVA leads to the best performance.

2 Method

EVAaims at initializing LoRA weights in a data-driven manner by leveraging data from the down-
stream task. Since EVAbuilds on low-rank decomposition of weight matrices as in LoRA (Hu et al.,
2022), we first briefly explain LoRA in Section 2.1. In Section 2.2, we describe how we obtain
an effective initialization for the low-rank decomposition of LoRA matrices via SVD on activation
vectors. This enables an adaptive assignment of ranks across all layers to maximize the explained
variance throughout the pre-trained model, which we explain in more detail in Section 2.3.
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2.1 Low-Rank Adaptation (LoRA)

LoRA adds new trainable weights that are computed via an outer product of low-rank matrices (Hu
et al., 2022). This is motivated by the low intrinsic dimensionality of language models (Aghajanyan
et al., 2021) and relies on the assumption that the gradients during fine-tuning are also of low rank
(Gur-Ari et al., 2018; Zhang et al., 2023b; Gauch et al., 2022). In the following, we explain LoRA
in more detail. Let x ∈ Rd×1 be a an activation vector that serves as input to a pre-trained weight
matrix W ∈ Rk×d. LoRA introduces new weight matrices A and B as a low-rank decomposition

h = Wx+BAx , (1)

where B ∈ Rk×r and A ∈ Rr×d. The rank r is a hyperparameter and r ≪ k. During fine-tuning,
W remains frozen and only A and B are updated. Usually B is initialized with zeros, such that the
initial forward pass at the beginning of fine-tuning is not altered. A is usually initialized at random
following a Gaussian distribution. Additionally, Hu et al. (2022) introduce a constant scaling factor α
which is used to scale BAx by α

r . In Hu et al. (2022), this scaling factor is set to α = 2r.

2.2 Data-driven Initialization of Low-Rank Adaptation

Our aim is to find an effective initialization for the low-rank matrix A in a data-driven manner
to maximize performance on the downstream task. To this end, we perform SVD on batches of
activation vectors X ∈ Rb×d to obtain the right-singular values, which constitute the directions that
capture most of the variance. Therefore, we devote the initial training phase to During the initial
training phase, we propagate mini-batches of data through the model and incrementally compute
SVD on activation vectors. More formally, we collect activations X for each weight matrix W of the
pre-trained model. Subsequently, we compute SVD on these vectors to obtain singular values σi as

X =

r∑
j=1

u:,jσjvj,:. (2)

Importantly, we compute the SVD incrementally on each mini-batch of the fine-tuning data and
update v:r,: after each forward pass through the model. After every mini-batch we check whether v:r,:

has converged. To this end, we measure the cosine similarity between subsequent computations of
v:r,: and determine convergence based on a threshold τ . If the right-singular values have converged,
i.e. cossim(vt−1

j,: ,v
t
j,:) ≥ τ , we initialize Ai = v:r,: and do not compute SVD for the corresponding

weight matrix anymore. We continue this procedure until v:r,: has converged for all weight matrices.

Algorithm 1 Fine-tuning via EVA
Input: FM ψ(·), ρ, rank r, dataset D

1: while not all_converged(ψ) do
2: X ← ψ(next(D)) ▷ get activations
3: Vnew, ξ ← SVD(X, ρr)
4: if isclose(Vold,vnew) then
5: wrap_and_initialize(Wj ,Vnew)
6: end if
7: Vold ← Vnew

8: end while
9: redistribute_ranks(ψ, ξ,Vnew)

10: lora_finetune(ψ,X)

The computation of SVD introduces compu-
tational overhead in the initial training stage.
Since we do not require gradient computation or
storing of optimizer states, there is no overhead
in terms of memory. SVD has a time complexity
of O(min(b2d, bd2)) which can be reduced to
O(k2b) for k << d by randomly choosing k
columns from X as introduced in Halko et al.
(2011). Let l be the number of weight matrices
for which we compute SVD and T be the num-
ber of minibatches until all components are con-
verged, then the time complexity is O(lTk2b).
In other words, the complexity scales linearly
with the number of weight matrices and the num-
ber of minibatches. To further speed up the com-
putation of SVD, we provide an implementation
that runs entirely on GPU.

2.3 Adaptive Rank Allocation

The singular values obtained by SVD provide an estimate of the variance that is explained by their
components. Leveraging this information, we can redistribute ranks across weight matrices of the
pre-trained model such that the maximum amount of variance is explained. This can be done by
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Table 1: Comparison of LoRA to EVA and other state-of-the-art PEFT methods for RoBERTaLarge(top)
and DeBERTav3Base(bottom) on all GLUE tasks. We report mean and standard deviation of Matthew’s
correlation for CoLA, pearson correlation for STS-B, matched accuracy for MNLI, and accuracy for
remaining tasks across 5 seeds.

Method MNLI QNLI QQP SST2 CoLA MRPC RTE STS-B Avg

FFT 90.2 94.7 92.2 96.4 68.0 90.9 86.6 92.4 88.93
LoRA 90.7±.1 94.8±.1 92.0±.0 96.2±.3 69.1±.5 91.1±.6 88.1±1.1 92.3±.1 89.13
AdaLoRA 90.5±.1 94.8±.2 90.6±.1 96.1±.2 68.2±.7 90.7±.6 84.4±.9 91.8±.1 88.39
BOFT 90.1±.2 94.4±.2 91.2±.0 96.1±.1 68.4±.9 90.0±.5 86.5±.6 92.5±.0 88.65
DoRA 89.5±.1 94.6±.1 89.9±.1 96.1±.1 69.3±.8 91.0±.6 88.4±1.2 92.4±.1 88.90
EVA 90.8±.1 95.0±.2 92.1±.1 96.2±.1 69.5±1.4 91.4±.8 88.8±1.2 92.6±.1 89.55

FFT 90.1 94.0 92.4 95.6 69.2 89.5 83.8 91.6 88.28
LoRA 90.5±.1 94.3±.1 92.4±.1 95.9±.3 72.0±1.3 91.4±.7 88.9±.5 91.7±.1 89.64
AdaLoRA 90.8 94.6 92.2 96.1 71.5 90.7 88.1 91.8 89.46
BOFT 90.3 94.2 92.1 96.4 73.0 92.4 88.8 91.9 89.89
DoRA 89.0±.2 94.1±.1 88.0±.1 94.6±.4 70.3±.5 91.9±.6 87.8±.7 91.8±.1 88.44
EVA 90.6±.1 94.4±.1 92.4±.04 96.2±.2 72.5±1.3 91.8±.6 89.4±.7 92.0±.2 89.91

allocating more ranks to layers that propagate more information, i.e., explain more variance. More
formally, the variance explained by each component in vi

j,: is given by their explained variance ratio

ξij =
σi2

j

(M − 1)||σi||1
, (3)

where || · ||1 denotes the ℓ1 norm, σi is a vector containing all r singular values, and M is the total
number of samples used for the incremental SVD computation. Next, we sort the components vi

j,: for
each weight matrix in descending order according to their explained variance ratio ξij . Finally, we
assign ranks to pre-trained weights until we reach a certain rank budget.

Additionally, we introduce a hyperparameter ρ ∈ [1,∞) which controls the uniformity of the rank
distribution. ρ determines the number of ranks that we compute during SVD and increasing ρ allows
for an increasingly heterogeneous rank distribution. That is, for each W i we compute rρ components
initially meaning we obtain Nrρ components in total. For the redistribution we only use the top Nr
components according to their explained variance ratio ξij . Thus, setting ρ = 1, results in a uniform
rank distribution as in LoRA, but initialized according to EVA. Therefore, ρ provides us with the
means to change the rank distribution in a controlled manner prior to fine-tuning at the initialization
stage, as opposed to learning it throughout the training process as done in prior works (Zhang et al.,
2023a; Valipour et al., 2023; Meo et al., 2024). In practice we found that the redistribution converges
for values of ρ > 2. Finally, we initialize B with zeros and perform the standard LoRA fine-tuning,
as recommended in Hayou et al. (2024a). In Algorithm 1 we provide pseudocode for EVA.

3 Experiments

First, we elaborate on implementation details of EVA in Section 3.1. Then, we show results for
language understanding, image classification, decision making and language generation tasks in
Section 3.2, Section 3.3, and Section 3.4, Section 3.5, respectively. Finally, in Section 3.6 and
Section 3.7 we investigate convergence properties of our data-driven initialization and report results
on ablation studies.

3.1 Implementation Details

We follow the standard LoRA training procedure from Hu et al. (2022) and run hyperparameter
searches on the number of ranks and the learning rate. Similar to Kalajdzievski (2023), we found
LoRA training to be very sensitive to the scaling parameter α. Therefore, we set α = 1 for all
our experiments, unless mentioned otherwise, because this appeared to be the most stable setting.
We use a batch size of 4 for the initial training phase to compute the initialization of EVA with
ρ = 2r. We only apply our initialization to pre-trained weights, i.e., we do not initialize newly
introduced classifier heads. Following Zhang et al. (2023a), we always apply LoRA to all pre-trained
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weight matrices. All models we used for fine-tuning are publicly available on the huggingface hub
(Wolf et al., 2020). For the implementation of baselines we leverage the widely used PEFT libary
(Mangrulkar et al., 2022).

3.2 Language Understanding

For the language understanding benchmarks, we train RoBERTaLarge(Liu et al., 2019) and
DeBERTav3Base(He et al., 2023) on the GLUE benchmark (Wang et al., 2019). The GLUE dataset
comprises eight downstream tasks, such as natural language inference, or sentiment analysis. We
compare EVA to LoRA (Hu et al., 2022), DoRA (Liu et al., 2024), AdaLoRA (Zhang et al., 2023a),
and BOFT (Liu et al., 2023). Most prior works merely compare performance for a certain rank
budget (Zhang et al., 2023a; Liu et al., 2023). We hypothesize that different tasks require different
parameter budgets to maximize performance. Therefore, we search over different rank budgets for
LoRA methods and the number of sparse matrices for BOFT. Further, we search over the learning
rate and always report the best performing setting. We include variance estimates for all methods we
trained ourselves. For further details about datasets, implementation, or hyperparameter settings, we
refer the reader to Appendix B. We report Matthew’s correlation for CoLA, Pearson correlation for
STS-B, and accuracy for the remaining tasks. We report our results in Table 1. For RoBERTaLargeEVA
consistently achieves the highest average scores across all tasks and attains statistically significant
improvements over LoRA on STSB, QNLI, and QQP. Interestingly, DoRA usually only slightly
improves over LoRA on low resource tasks (RTE, MRPC), while performing worse in high resource
tasks (MNLI, QNLI, QQP, SST2). Overall, when including the rank budget as a hyperparameter,
LoRA yields better performance than AdaLoRA, BOFT, and DoRA. We also add a comparison of
LoRA to EVA in Table 8 in Appendix B where we show that EVA consistently improves over LoRA
for different rank budgets. For DeBERTav3Base, EVA again attains the highest average performance
and significantly improves performance over LoRA on STS-B.

Figure 2: Rank redistribution in EVA for
DeBERTav3Baseon the GLUE task RTE with initial
rank r = 4.

We visualize the resulting rank redistribution of
EVA for DeBERTav3Baseon the GLUE task RTE
with r = 4 in Figure 2. More ranks are assigned
to higher layers of the query (Wq), key (Wk),
and value (Wv) projections in the self-attention,
while the attention output (Wo) and the feed-
forward layers (Wf1,Wf2) are often assigned a
lower number of ranks. We show additional re-
distribution patterns for different rank budgets in
Appendix B. A pattern that is common among
both, DeBERTav3Baseand RoBERTaLargeis that
Wf2 often only receives a single rank. This
means that the first component already explains
most of the variance of the respective layer. This
pattern corroborates findings of Sun et al. (2024)
that LMs often exhibit massive activations on
single neurons which encode implicit biases.

3.3 Image Classification

We investigate the efficacy of EVA on the VTAB-1K (Zhai et al., 2019) benchmark, which has been
widely used to evaluate PEFT methods. VTAB-1K comprises 19 image classification tasks that are
divided into natural images, specialized images (medical images and remote sensing), and structured
images (e.g. orientation prediction, depth estimation or object counting). For our experiments, we
fine-tune the commonly used DINOv2-L/14 model (Oquab et al., 2023) and compare EVA to LoRA
(Hu et al., 2022), DoRA (Liu et al., 2024), AdaLoRA (Zhang et al., 2023a), and BOFT (Liu et al.,
2023).

Our results in Table 2 demonstrate that EVA again exhibits the highest average score across all tasks
and among all competitors. We report error bars for all methods we trained ourselves in Table 13 in
Appendix D.4, as well as a comparison for different rank budgets (Table 12). EVA leads to significant
improvements over LoRA on both, natural images (Cifar100, Caltech101) and structured images
(KITTI-Dist, sNORB-Ele). The highest improvement of EVA over LoRA (+4.9% on sNORB-Ele)
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Table 2: Fine-tuning DINOv2-L/14 on the VTAB-1K benchmark. Best average performance is
highlighted in boldface. We report average accuracy across five seeds, highlight the best performance
in boldface and underline the second best.
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DoRA 83.5 97.5 81.3 99.7 95.2 91.3 61.7 92.7 97.3 89.3 77.7 91.8 65.5 56.5 84.2 90.0 61.3 26.5 45.2 78.3
EVA+DoRA 83.0 93.2 82.1 99.7 94.9 92.6 63.1 88.7 96.7 92.0 73.3 94.5 65.7 60.4 82.4 92.5 61.0 37.6 52.4 79.3

is significantly higher than the largest performance drop (-1.2% on dSpr-Loc). Further, most PEFT
methods outperform FFT on the VTAB-1K benchmark. This is consistent with our results on the
GLUE benchmark, where PEFT methods consistently outperformed FFT on smaller datasets. DoRA
also significantly improves over LoRA on some tasks (Cifar100, Caltech101, Camelyon, Retinopathy,
and KITTI-Dist), however, it also performs significantly worse on a variety of tasks (sNORB-Azim,
DTD, SVHN, Resisc45, Clevr-Count, DMLab, dSpri-Loc), therefore yields worse performance on
average. We observe similar behavior for both BOFT and AdaLoRA.

3.4 Decision Making

We follow the single task fine-tuning experiments in Schmied et al. (2024) and fine-tune a Decision
Transformer (Chen et al., 2021, DT) on the Meta-World benchmark suite (Yu et al., 2020). Meta-
World consists of a diverse set of 50 tasks for robotic manipulation, such as object manipulation,
grasping, or pushing buttons. We split Meta-World according to (Wolczyk et al., 2021) into 40
pre-training tasks (MT40) and 10 fine-tuning tasks (CW10). We pre-train a 12 M parameter DT
on MT40 and afterwards fine-tune it on the CW10 holdout tasks. We evaluate EVA against LoRA,
AdaLoRA, DoRA, and FFT, excluding BOFT due to compatibility issues with our custom layers
and report success rates and standard errors for each task of CW10 in Table 3. As in Schmied et al.
(2024), we observe that FFT significantly outperforms LoRA. However, EVA reduces that gap and
achieves a performance close to FFT. Furthermore, DoRA significantly improves upon both, LoRA
and EVA and reaches an even higher performance than FFT. Therefore, we add an additional setting
to investigate whether initializing DoRA with EVA can further advance performance (EVA+DoRA).
Indeed, we observe that EVA+DoRA leads to the best average performance across all tasks. These
results demonstrate that EVA can also improve other LoRA variants, such as DoRA. We report results
for different rank budgets in Table 15 in Appendix E.

3.5 Language Generation

We follow the experiments conducted in Hu et al. (2022) and fine-tune GPT2 (Radford et al., 2019)
medium and large on the E2E dataset (Novikova et al., 2017). The dataset aims at evaluating the
generation capabilities of language models. Given a set of restaurant-specific attributes and their
corresponding values, the model aims to generate natural and coherent utterances. This requires
content selection, as not all of the attributes are useful to construct meaningful natural language
descriptions. The generated texts are then evaluated by measuring how close they are to human
generated utterances. Due to resource constraints we only compare EVA to FFT, LoRA, DoRA and
AdaLoRA. Since the official implementation for BOFT does not support the custom layers of GPT2,
we do not include it. We report BLEU scores (Papineni et al., 2002) for both model sizes and all
methods in Table 4. EVA attains the highest scores for both model sizes, closely followed by DoRA
for GPT2-medium and AdaLoRA for GPT2-large. All evaluated PEFT methods outperformed FFT,
potentially due to their inherent regularization effects.
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Table 3: Results for single task fine-tuning experiments on the Meta-World benchmark (Yu et al.,
2020). We report mean success rates and standard error across three seeds for every task, highlight
the best performance in boldface and underline the second best.
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FFT 1.0±.0 0.97±.03 1.0±.0 0.77±.05 0.87±.05 1.0±.0 1.0±.0 1.0±.0 0.63±.03 1.0±.0 0.92

LoRA 1.0±.0 1.0±.0 1.0±.0 0.6±.05 0.63±.1 1.0±.0 1.0±.0 1.0±.0 0.4±.09 1.0±.0 0.86

AdaLoRA 1.0±.0 0.97±.03 1.0±.0 0.4±.09 0.57±.1 0.97±.03 0.97±.03 1.0±.0 0.13±.07 1.0±.0 0.80

EVA 1.0±.0 0.97±.03 1.0±.0 0.63±.03 0.77±.05 1.0±.0 1.0±.0 1.0±.0 0.63±.07 1.0±.0 0.90

DoRA 1.0±.0 1.0±.0 1.0±.0 0.6±1.2 1.0±.0 1.0±.0 1.0±.0 1.0±.0 0.67±1.5 1.0±.0 0.93

EVA+DoRA 1.0±.0 1.0±.0 1.0±.0 0.8±.08 1.0±.0 1.0±.0 1.0±.0 1.0±.0 0.63±.03 1.0±.0 0.94

3.6 SVD Convergence Analysis

Table 4: BLEU scores for GPT2-medium and
GPT2-large on the E2E dataset. We report mean
and standard deviation across three seeds, high-
light best performance in boldface and underline
second best.

Method GPT2-medium GPT2-large

FFT 68.20 68.50
LoRA 69.6±.3 69.3±.3

DoRA 69.7±.2 69.2±.8

AdaLoRA 68.8±.6 69.5±.4
EVA 69.8±.2 69.6±.4

The data-driven initialization of EVA relies on
incremental SVD on minibatches of activations.
We conduct this procedure in the initial training
phase. In Figure 3, left, we show that this pro-
cess converges for RoBERTaLargeon the GLUE
task STS-B for different minibatch sizes. Using
a minibatch size of 4 the computation for EVA’s
initialization lasts for approximately 80 seconds,
which corresponds to around 112 minibatches.
Increasing the batch size results in more com-
putational overhead. However, even for larger
batch sizes, such as 64, the initialization only
takes around 180 seconds. In Figure 3, right, we
additionally show, that the main components ob-
tained via SVD mostly remain consistent across
different batch orders for a batch size of 4. Here,
we measure cosine similarity between components obtained via incremental SVD after rank redistri-
bution for different minibatch orders for all layers of RoBERTaLarge. This indicates that these models
exhibit certain activation patterns that remain consistent across different batch orders which lead to a
robust initialization for EVA.

3.7 Ablation Studies

We conduct ablation studies on EVA to investigate the importance of its constituents. In particular,
we investigate the impact of scale and directions of our initialization. For this line of experiments,
we use the VTAB-1K dataset because it comprises a diverse set of tasks and allows for a systematic
investigation. We report results for our ablation studies in Table 5 and explain the different settings in
the following paragraphs.

Effect of the scale To address the effect of scale on the initialization, we add a setting which
uses whitening (EVA-whiten). This scales the initialization by the reciprocal of their eigenvalues,
while preserving its directions. We found that whitening can significantly improve performance
on structured vision tasks. This indicates that scale is especially important for out-of-distribution
datasets. However, on the remaining groups it leads to a decrease in performance.

Effect of directions To address the importance of the direction of our initialization, we randomly
permute its rows (EVA-perm). This has the effect, that the scale of is preserved while the directions
and ℓ2 norm of A are altered. Additionally, we add a setting where we randomly rotate A (EVA-rot),
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Figure 3: Left: Time in seconds until convergence of incremental SVD components for different
batch sizes for RoBERTaLargeon the GLUE task STSB. The dashed line indicates the total number of
components. Right: Average cosine similarity between SVD components across 10 random seeds
for permuting the batch order. The first 10 components remain consistent across all permutations.
While the remaining components vary, they strongly correlate as their cosine similarity is around 0.5.

which preserves ℓ2 norm, but alters directions. EVA-perm leads to worse performance on natural and
structured tasks compared to EVA. Surprisingly, it still outperforms LoRA on average across all tasks.
Similarly, EVA-rot outperforms LoRA on average, but experiences drops in performance for natural
and structured tasks. These results indicate that the directions of A are particularly important for
both natural and specialized tasks.

Effect of rank redistribution We conduct an experiment in which we randomly initialize A after
performing rank redistribution (LoRA-redist). While this setting is not practical, it gives insights on
the effect of the redistribution and whether its benefits are bound to EVA. Further, we add a setting
where we do not perform the rank redistribution, but still use our initialization (EVA-no-redist).
The redistribution has a positive effect on LoRA on the structured tasks, but a negative effect on
both natural and specialized tasks, leading to an average performance worse than LoRA. However,
EVA-no-redist leads to an improvement for both, natural and structured tasks. This illustrates that
rank redistribution is mostly beneficial in combination with EVA’s initialization of A.

4 Conclusion and Future Work Table 5: Group-wise averages for DINOv2-L/14
ablation studies on the VTAB-1K benchmark.

Method Nat. Spec. Struct. All
LoRA 86.9 87.6 68.2 79.2
LoRA-redist 86.7 87.2 68.4 79.1
EVA-whiten 86.5 87.3 69.0 79.3
EVA-rot 87.0 87.4 68.6 79.4
EVA-perm 86.8 87.5 68.7 79.3
EVA-no-redist 87.0 87.3 68.7 79.4
EVA 87.2 87.6 68.7 79.5

We propose a novel PEFT method named Ex-
plained Variance Adaptation (EVA). EVA initial-
izes LoRA matrices in a data-driven manner by
leveraging the fine-tuning dataset. To this end,
we compute SVD on activation vectors of mini-
batches during the initial training stage. Further,
we re-distribute ranks across the entire model
according to maximize the amount of variance
they explain. Thereby, in EVA we bind the bene-
fits of adaptive rank allocation per weight matrix
and effective data-driven initialization, resulting in one initialization to rule them all. Our experi-
ments demonstrated performance gains of EVA over state-of-the-art PEFT methods on language
understanding, language generation, image classification and decision making tasks. In the future
we aim at applying EVA to large-scale models and investigate the effect of EVA on convergence
properties and quantization. We believe that EVA can have a significant impact on future research on
fine-tuning of foundation models, because it inherits all benefits of LoRA while yielding significant
improvements at almost no additional cost.
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A Reproducibility Statement

We provide the source code to reproduce all our experiments in the supplementary material as a
zip archive. The code contains instructions how to install the environment and how to execute
all the parameter searches that we conducted. Additionally, we provide a package that contains
implementations for EVA along with different LoRA variants, such as DoRA, and ELoRA. We will
release our codebase upon publication and also integrate EVA into the widely used PEFT library
(Mangrulkar et al., 2022).

B Natural language understanding

B.1 Dataset Statistics

The dataset statistics for each task in the GLUE benchmark (Wang et al., 2019) are shown in Table 6.
Generally, GLUE contains four low-resource datasets (RTE, MRPC, STS-B, and CoLA) and four
high resource datasets (SST-2, QNLI, QQP, MNLI). While CoLA and SST-2 rely on single sentence
classification, STS-B evaluates for similarity and the remaining tasks are based on pairwise text
classification.
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Table 6: GLUE benchmark suite statistics and evaluation metric for each corpus sorted by the number
of examples in the training set.

Corpus #Train #Dev #Test Metric

RTE 2.5 k 276 3 k Accuracy
MRPC 3.7 k 408 1.7 k Accuracy
STS-B 7 k 1.5 k 1.4 k Pearson correlation
CoLA 8.5 k 1 k 1 k Matthew’s correlation
SST-2 67 k 872 1.8 k Accuracy
QNLI 108 k 5.7 k 5.7 k Accuracy
QQP 364 k 40 k 391 k Accuracy
MNLI 393 k 20 k 20 k Accuracy

B.2 Implementation Details

We base our implementation on the codebase of LoRA1. For these experiments, we initially pre-
compute our initialization prior to the fine-tuning stage and store it as a checkpoint. However, we also
provide the possibility to directly compute the initialization during the fine-tuning stage, as done for
our experiments on VTAB-1k and Meta-World. By default, we always offload the computation of the
initial checkpoint to CPU to save VRAM. We ran all our experiments on nodes with four A100 GPUs
and used PyTorch’s data-distributed parallel functionality (Paszke et al., 2019). Runtimes ranges
from as little as 10 minutes per run for smaller datasets (RTE, STS-B) to around 15 hours for the
largest datasets (QQP, MNLI).

B.3 Hyperparameter search

For LoRA and EVA, we search over the number of ranks r ∈ {2, 4, 6, 8} and different learning rates
η ∈ {1e− 3, 4e− 4, 1e− 4} for RoBERTaLargeand η ∈ {4e− 3, 1e− 3, 4e− 4} for DeBERTav3Base.
We report the best hyperparameter settings for both, RoBERTaLargeand DeBERTav3Basefor LoRA and
EVA in Table 7. For AdaLoRA, we search over the same ranks and always start initial ranks with
r + 4 that are then redistributed during training. For BOFT we sweep over different combinations of
block sizes b ∈ {2, 4, 8, 16} which determine the number of multiplicative matrices. Additionally,
for both, AdaLoRA and BOFT, we search over the same learning rates as for the other LoRA variants.
Further, we introduce hyperparameters that result in additional speed-up of our initialization, namely
a threshold τ that considers components as converged, and a threshold δ that stops computation of the
initialization when a certain percentage of components have converged. By default, we set τ = 0.99
and δ = 1, i.e. we only stop when all components are converged, and they are almost exactly the
same. These parameters provide additional leeway to speed up the initialization stage of EVA.

We have explored the sensitivity of LoRA to different initialization schemes and found that, similar
to other prominent initialization schemes (He et al., 2015; Glorot & Bengio, 2010), scale plays an
important role along with directions. Originally, (Hu et al., 2022) proposed to set α = 2r, however,
we found that this parameter is quite sensitive as also shown in (Kalajdzievski, 2023). Similarly,
different ranks lead to very different results on different downstream tasks. Therefore, we suggest to
always search over more ranks and choose the best performing one if the required compute budget is
available. We also experimented with different learning rates for the A and B matrices as proposed
in (Hayou et al., 2024b), however, this did not result in consistent improvements. Instead, we found
that learning rates for LoRA-style training can be surprisingly high (4e − 3 for DeBERTav3Base),
while for larger models the learning rate needs to be approximately a magnitude smaller. A simple
recipe that worked consistently well, was setting α = 1, which results in a similar scaling factor as in
Kalajdzievski (2023), and searching over a set of small learning rates for larger models and higher
learning rates for smaller ones. For EVA, the only tunable hyperparameter is the rank budget, which
we recommend to tune along with the fine-tuning learning rate.

1https://github.com/microsoft/LoRA
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Table 7: The best hyperparameters RoBERTaLargeand DeBERTav3Basethat were found via gridsearch
for each task of the GLUE benchmark.

Method Dataset MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Optimizer AdamW
Warmup Ratio 0.06
LR Schedule Linear

RoBERTaLarge
LoRA

Batch Size 8 16 8 8 8 8 16 8
# Epochs 10 10 20 20 10 20 20 10
LoRA rank 2 8 8 4 8 4 2 2
Learning rate 4e-4 1e-3 4e-4 1e-3 1e-3 1e-3 1e-3 4e-4
LoRA α 1
Max Seq. Len. 512
DDP GPUs 4

RoBERTaLarge
EVA

Batch Size 8 16 8 8 8 8 16 8
# Epochs 10 10 20 20 10 20 20 10
LoRA rank 2 2 4 2 16 8 4 4
Learning rate 4e-4 1e-3 4e-4 1e-3 4e-4 1e-3 1e-3 1e-3
LoRA α 1
Max Seq. Len. 512
DDP GPUs 4

DeBERTav3Base
LoRA

Batch Size 32 32 16 32 64 32 32 16
# Epochs 30 60 30 80 25 25 80 40
LoRA rank 8 4 4 8 16 4 4 8
Learning rate 4e-4 1e-3 4e-3 4e-3 4e-3 4e-3 4e-3 4e-3
LoRA α 1
Max Seq. Len. 512
DDP GPUs 4

DeBERTav3Base
EVA

Batch Size 32 32 16 32 64 32 32 16
# Epochs 30 60 30 80 25 25 80 40
LoRA rank 8 2 4 8 16 4 2 2
Learning rate 4e-4 4e-4 4e-3 4e-3 4e-3 4e-3 4e-3 4e-3
LoRA α 1
Max Seq. Len. 512
DDP GPUs 4

B.4 Additional results

We report additional results for EVA compared to LoRA for different rank budgets in Table 8.
We find that EVA consistently outperforms LoRA for different rank budgets. This demonstrates
the effectiveness of EVA among different compute budgets. Further, we show additional rank
redistributions for the CoLA, MRPC, RTE, and STSB tasks for different for r = 2 (Figure 4), r = 4
(Figure 5), r = 8 (Figure 6), and r = 16 (Figure 7) for both, RoBERTaLargeand DeBERTav3Base. The
distributions for the different models show different patterns. For DeBERTav3Basethe higher attention
layers usually receive more ranks than lower ones. For CoLA, there is also a high number of ranks in
the very first layer. For RoBERTaLargeit seems to be the opposite, as the very first layers consistently
receive more ranks compared to later layers. There is also a notable difference across tasks for both
models, which demonstrates the flexibility of EVA to allocate ranks dependent on the downstream
task. Interestingly, for a higher initial rank (r = 16), the redistribution for DeBERTav3Baseputs more
emphasis on fine-tuning the self-attention specific weight matrices. This is not true for RoBERTaLarge,
as Wf1 also receives plenty of ranks across all tasks. Overall, the rank redistribution incurs different
fine-tuning paradigms depending on the task and the initial rank.

Additionally, we show results for different rank redistributions that we obtain by using alternative
measures for explained variance. Specifically, we compare EVA to using, (i), the raw eigenvalues
(EVA-Raw), and (ii), normalizing by the maximum eigenvalue (EVA-Max). We report results for
RoBERTaLargeon four of the GLUE tasks, namely CoLA, RTE, MRPC, and STS-B in Table 9. Our
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Table 8: Comparison of LoRA to EVA using RoBERTaLarge on all tasks from GLUE for equal rank
budgets. Mean and standard deviation of Matthew’s correlation for CoLA, pearson correlation for
STS-B, and accuracy for remaining datasets on the development set across 5 seeds are shown.

Method CoLA MRPC RTE STS-B MNLI QNLI QQP SST-2 Avg

LoRAr=2 68.0±1.4 90.9±.8 88.1±1.1 92.3±.1 91.9±.1 94.8±.3 90.6±.1 96.1±.1 89.09
EVAr=2 69.1±1.4 90.8±.5 88.2±.7 92.5±.1 90.8±.1 94.9±.1 91.9±.1 96.2±.1 89.30

LoRAr=4 69.1±.5 90.7±.7 86.9±.2 92.3±.1 90.6±.1 94.7±.2 92.0±.0 96.0±.1 89.04
EVAr=4 69.5±1.4 91.4±.8 88.8±1.3 92.6±.1 90.7±.0 94.9±.1 91.8±.0 96.1±.1 89.48

LoRAr=8 68.8±1.0 91.1±.6 87.10.7 92.2±.2 90.6±.2 94.8±.1 91.8±.0 96.2±.3 89.08
EVAr=8 69.0±1.4 91.1±.4 88.4±.6 92.6±.3 90.6±.1 94.9±.1 92.1±.1 96.1±.2 89.35

LoRAr=16 68.4±1.0 90.5±.5 88.0±.5 92.3±.1 90.6±.1 94.8±.1 91.9±.1 96.1±.1 89.08
EVAr=16 69.1±.8 91.2±.8 88.0±.5 92.6±.2 90.7±.0 95.0±.2 91.8±.0 96.2±.1 89.33

Table 9: Comparison of LoRA to EVA, EVA-Raw, and EVA-Max for RoBERTaLargeon the GLUE
tasks CoLA, MRPC, RTE, and STS-B. We report mean and standard deviation of Matthew’s cor-
relation for CoLA, pearson correlation for STS-B, matched accuracy for MNLI, and accuracy for
remaining tasks across 5 seeds.

Method CoLA MRPC RTE STS-B Avg

LoRA 69.1±.5 91.1±0.6 88.1±1.1 92.3±0.1 85.2
EVA 69.5±1.4 91.4±0.8 88.8±1.2 92.6±0.1 85.6
EVA-Raw 69.4±1.1 91.0±0.9 88.2±0.3 92.5±0.2 85.3
EVA-Max 69.1±0.5 91.2±0.5 88.4±1.2 92.5±0.2 85.3

results show that while EVA-Raw and EVA-Max slighthly improve upon LoRA, they perform worse
on average than EVA.

C Natural language generation

C.1 Dataset statistics

The aim of the E2E dataset (Novikova et al., 2017) is to evaluate the generation capabilities of
language models. Each data point consists of a set of attributes and their assigned values, and cover
common concepts of the restaurant sector. These are also referred to as meaning representations and
consists of 3–8 attributes (slots), such as name, food or area, and their values. We show a sample
from the dataset below:

{’human_reference’: ’The Vaults pub near Café Adriatic has a 5 star rating.
Prices start at £30.’,
’meaning_representation’: ’name[The Vaults], eatType[pub],
priceRange[more than £30], customer rating[5 out of 5], near[Café Adriatic]’}

The dataset consists of 51.46 K samples and is split into a ratio of 76.5/8.5/15 percent for train,
development and test splits, respectively. Further, the splits contain distinct meaning representations.

C.2 Implementation details

Similar to B, our implementation is built on top of the LoRA codebase in PyTorch. To run the
AdaLoRA baseline, we use the implementation provided by the huggingface peft library. The DoRA
baseline as well as EVA are custom implementations. Fine-tuning GPT2-medium and GPT2-large on
e2e for five epochs takes several hours depending on the model size. For testing we run beam search
on the test set with a batch size of one as batched generation had a negative impact on performance.
Due to setting batch size 1̄ evaluation takes around 10 hours. All training runs were executed on
single A100 GPUs.
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Figure 4: Rank distribution after initialization with EVA on four tasks of the GLUE benchmark
(CoLA, MRPC, RTE, STSB) for DeBERTav3Base(left) and RoBERTaLarge(right) with initial rank
r = 2.
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Figure 5: Rank distribution after initialization with EVA on four tasks of the GLUE benchmark
(CoLA, MRPC, RTE, STSB) for DeBERTav3Base(left) and RoBERTaLarge(right) with initial rank
r = 4.
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Figure 6: Rank distribution after initialization with EVA on four tasks of the GLUE benchmark
(CoLA, MRPC, RTE, STSB) for DeBERTav3Base(left) and RoBERTaLarge(right) with initial rank
r = 8.
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Figure 7: Rank distribution after initialization with EVA on four tasks of the GLUE benchmark
(CoLA, MRPC, RTE, STSB) for DeBERTav3Base(left) and RoBERTaLarge(right) with initial rank
r = 16.
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C.3 Hyperparameter search

For finetuning on E2E, we follow the hyperparameter settings used by Hu et al. (2022). The reported
results in 4 are the best setting for each method based on a grid search over different learning rates.
Further, as in Hu et al. (2022), we set α = 32 for all our experiments. We use AdamW with weight
decay and a linear learning rate schedule with warm-up. We train for a total of 5 epochs and use the
best checkpoint for evaluation. All hyperparameters are summarized in 10

Table 10: hyperparameters for finetuning GPT2-medium and GPT2-large on the E2E dataset

Training

Optimizer AdamW
Weight Decay 0.01
Lora Dropout 0.0
Batch Size 8
#Epoch 5
LR Schedule Linear
Warmup Steps 500
Label Smooth 0.1
Learning Rates {1e-3, 4e-4, 2e-4}
LoRA Dims {2, 4, 8, 16}
LoRA α 32

Inference

Beam Size 5
Length Penalty 0.9
no repeat ngram size 4

D Image Classification

D.1 Dataset statistics

The VTAB-1K benchmark consists of 19 datasets, each containing a subset of 1000 examples of
their respective samples. We summarize the dataset statistics for each dataset in Table 11. While the
original train sizes of the datasets vary drastically, the 1K subset provides equal datasets across tasks.
The number of classes also varies from as little as two to almost 400.

D.2 Implementation details

We implemented a custom pipeline to fine-tune DINOv2-L/14 on VTAB-1K that supports LoRA,
DoRA and EVA. To train BOFT and AdaLora, we integrate their implementation from the peft
library Mangrulkar et al. (2022) into our pipeline. This pipeline is designed to be highly parallelizable
and to be executed on individual A100-40GB GPUs. All VTAB-1K experiments were conducted on a
public research cluster with 4xA100-40GB nodes. A single run (all 19 datasets with hyperparameter
tuning and evaluation) takes roughly 160 GPU-hours but can be easily parallelized.

We use the original DINOv2-L/14 model Oquab et al. (2023) and train a classification head on top of
the [CLS] token, where we initialize the classification head weights with a normal distribution with
σ = 2e-5 and bias with zeros. We train the classification head, LoRA matrices and biases. Images are
resized to 224×224 resolution with bi-cubic interpolation and normalized with the per-channel mean
and variance of ImageNet. We train all models in bfloat16 precision using the AdamW optimizer with
a weight decay of 0.05 for 30 epochs. We use a cosine learning rate schedule with a linear warm-up
for the first 3 epochs. Batch size is set to 64.

D.3 Hyperparameter search

We first fine-tune on the 800 train samples of VTAB-1K datasets to find the best learning rate for the
task. We sweep over learning rates {2.5e-3, 1e-3, 7.5e-4, 5e-4, 2.5e-4} and average the accuracy on
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Table 11: Category, train size and classes of the VTAB-1K dataset.

Category Dataset Train size Classes
Natural Caltech101 (Fei-Fei et al., 2006) 3060 102
Natural CIFAR-100 (Krizhevsky, 2009) 50000 100
Natural DTD (Cimpoi et al., 2014) 3760 47
Natural Flowers102 (Nilsback & Zisserman, 2008) 2040 102
Natural Pets (Parkhi et al., 2012) 3680 37
Natural Sun397 (Xiao et al., 2010) 87003 397
Natural SVHN (Netzer et al., 2011) 73257 10
Specialized EuroSAT (Helber et al., 2019) 21600 10
Specialized Resisc45 (Cheng et al., 2017) 25200 45
Specialized Patch Camelyon (Veeling et al., 2018) 294912 2
Specialized Retinopathy (Kaggle & EyePacs, 2015) 46032 5
Structured Clevr/count (Johnson et al., 2017) 70000 8
Structured Clevr/distance (Johnson et al., 2017) 70000 6
Structured dSprites/location (Matthey et al., 2017) 663552 16
Structured dSprites/orientation (Matthey et al., 2017) 663552 16
Structured SmallNORB/azimuth (LeCun et al., 2004) 36450 18
Structured SmallNORB/elevation (LeCun et al., 2004) 36450 9
Structured DMLab (Beattie et al., 2016) 88178 6
Structured KITTI/distance (Geiger et al., 2013) 5711 4

the 200 validation samples over 3 different seeds to choose the best learning rate for each dataset.
For evaluation, we train on the union of train and validation set using 5 different seeds and report the
average accuracy on the test set.

For each method, we additionally sweep over one method-specific hyperparameter. For LoRA,
DoRA, AdaLoRa, and EVA we sweep over rank ∈ {2, 4, 8, 16} and for BOFT we sweep over
block_size ∈ {2, 4, 8, 16}.

D.4 Additional results

We provide a comparison between EVA and LoRA for different rank-budgets in Table 12. We find that
EVA performs on-par or better on average across all tasks, demonstrating its effectiveness. Further,
to complement our main results in Table 2, we report the respective standard deviations in Table 13.

Table 12: Average VTAB-1K test performances across 5 seeds using the best learning rate tuned on
validation set performance.
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LoRAr=2 83.5 93.2 82.1 99.7 95.1 92.5 62.8 87.8 96.6 92.0 72.5 96.3 63.9 63.5 82.6 89.3 60.9 39.0 48.7 79.1
LoRAr=4 82.8 93.0 82.2 99.7 95.2 92.4 62.7 88.7 96.6 92.2 73.4 95.7 65.1 61.2 83.8 84.0 61.3 36.7 49.6 78.7
LoRAr=8 83.8 93.0 82.5 99.7 95.0 92.4 62.9 87.2 96.6 92.2 74.2 96.4 65.2 61.1 83.0 91.7 61.2 39.5 44.1 79.0
LoRAr=16 83.5 93.2 82.1 99.7 95.1 92.5 62.8 87.8 96.6 92.0 72.5 96.3 63.9 63.5 82.6 89.3 60.9 39.0 48.7 79.1

EVAr=2 83.1 95.4 81.8 99.7 95.0 92.4 63.0 87.7 96.4 91.6 73.8 95.5 65.4 62.2 83.4 90.5 61.6 36.5 51.7 79.3
EVAr=4 82.3 95.2 82.0 99.7 94.8 92.5 63.0 87.3 96.7 92.0 73.4 92.8 65.3 62.8 84.5 89.9 59.2 35.9 53.6 79.1
EVAr=8 83.3 94.5 81.7 99.7 94.7 92.5 62.6 87.0 96.5 91.1 74.0 93.8 65.7 63.6 84.6 89.0 58.9 37.6 51.4 79.1
EVAr=16 83.3 94.5 81.9 99.7 95.0 92.2 63.0 87.1 96.5 92.2 74.3 93.2 65.6 63.8 82.2 87.9 59.1 37.8 52.1 79.0
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Table 13: Standard deviations for the VTAB-1K results (Table 2) over 5 seeds.
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FFT 1.5 1.1 1.6 0.0 0.4 1.2 0.9 14.9 0.4 0.6 2.7 1.7 0.9 1.2 23.6 0.5 0.4 1.6 1.9 3.0
LoRA 0.2 0.4 0.2 0.0 0.3 36.4 0.1 0.5 0.3 0.1 0.4 0.2 0.3 0.5 1.2 0.4 0.4 0.7 0.4 2.3
AdaLoRA 0.0 0.2 0.4 0.0 0.1 0.4 0.1 0.3 0.3 0.2 0.3 0.3 0.2 0.3 0.8 0.8 0.3 0.3 0.4 0.3
PiSSA 0.2 0.4 0.3 0.0 0.2 0.5 0.2 0.7 0.2 0.1 0.4 0.3 0.4 0.2 0.7 0.3 0.5 0.4 0.5 0.3
OLoRA 0.3 0.3 0.4 0.0 0.3 29.4 0.1 0.3 0.1 0.2 0.2 0.5 0.1 0.3 24.6 0.3 0.4 0.3 0.8 3.1
EVA 0.2 0.5 0.2 0.0 0.1 0.3 0.1 0.3 0.2 0.3 0.4 0.5 0.3 0.6 0.6 0.5 0.5 0.2 0.5 0.3
DoRA 0.1 0.2 0.5 0.0 0.2 29.7 0.4 0.7 0.1 0.2 0.4 0.4 0.3 0.3 0.6 36.2 0.5 0.3 0.3 3.8
EVA+DoRA 0.2 1.3 0.6 0.0 0.3 0.5 0.3 0.4 0.2 0.3 0.3 0.4 0.4 12.8 1.3 2.5 0.3 0.6 0.6 1.2

E Decision Making

E.1 Dataset statistics

Meta-World (Yu et al., 2020) is an established benchmark in RL for multi-task continuous control.
The benchmark consists of 50 challenging robotics tasks simulated using a Sawyer robotic arm
in the MuJoCo physics engine (Todorov et al., 2012). All 50 tasks in Meta-World share the same
underlying robotic arm. Therefore, all tasks share a common state (39-dimensional continuous vector)
and action-space (6-dimensional). The reward functions in Meta-World are dense and based on the
distance of the robotic arm to the goal location or objects. All episodes last for 200 environment
interactions.

For our experiments on Meta-World, we leverage the datasets released by Schmied et al. (2024). We
follow Wołczyk et al. (2021) and Schmied et al. (2024), and split the 50 tasks into 40 pre-training
tasks (MT40) and 10 fine-tuning tasks (CW10). The CW10 tasks are:

hammer-v2, push-wall-v2, faucet-close-v2, push-back-v2, stick-pull-v2,
stick-pull-v2, handle-press-side-v2, push-v2, shelf-place-v2, window-close-v2,
and peg-unplug-side-v2.

The datasets contain 2M transitions for every of the 50 tasks, amounting to 80M transitions (320M
tokens) across all training tasks. The average success rate and rewards across all MT40 tasks are 84%
and 1414.62, respectively. We list the statistics per task in Table 14.

E.2 Implementation details

We implemented our pipeline that supports training for Meta-World on top of the code-base provided
by Schmied et al. (2024). Our custom implementation supports training LoRA, DoRA and EVA.
Furthermore, we leverage the peft library (Mangrulkar et al., 2022) to train AdaLora.

For our experiments on Meta-World, we use a GPT2-like network architecture (Radford et al., 2019)
with 4 Transformer layers, 8 heads, and hidden dimension of 512 resulting in 16M parameters. We
use a context of 50 time steps, which amounts to a sequence length of 200, as each timestep contains
states, actions, rewards and RTGs. We embed states, actions, rewards and return-to-gos (RTGs) using
separate linear embedding layers per modality, as proposed by Chen et al. (2021). We train with a
batch size of 128 using a constant learning rate of 1e−4, 4000 linear warm-up steps followed by a
cosine decay to 1e−6, using the AdamW optimizer (Loshchilov & Hutter, 2017). We employ gradient
clipping of 0.25, weight decay of 0.01, and a dropout rate of 0.2. Our DT implementation employs
global position embedding. For every task, we set the target return to the maximum return achieved
in the respective training datasets, as proposed by (Schmied et al., 2024). Furthermore, we employ
mixed-precision (Micikevicius et al., 2017) and flash-attention (Dao, 2023) to speed-up training.
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Table 14: Dataset statistics for all MT40 tasks from Schmied et al. (2024).

Task |S| |A| Success Rate Reward
assembly-v2 39 4 0.0 1206.9
basketball-v2 39 4 0.9 1375.95
bin-picking-v2 39 4 0.0 474.81
box-close-v2 39 4 0.0 759.15
button-press-topdown-v2 39 4 1.0 1299.24
button-press-topdown-wall-v2 39 4 1.0 1296.16
button-press-v2 39 4 1.0 1430.44
button-press-wall-v2 39 4 1.0 1508.16
coffee-button-v2 39 4 1.0 1499.17
coffee-pull-v2 39 4 1.0 1313.88
coffee-push-v2 39 4 0.6 508.14
dial-turn-v2 39 4 0.8 1674.29
disassemble-v2 39 4 1.0 1396.55
door-close-v2 39 4 1.0 1535.4
door-lock-v2 39 4 1.0 1712.65
door-open-v2 39 4 1.0 1544.32
door-unlock-v2 39 4 1.0 1733.64
drawer-close-v2 39 4 1.0 1845.92
drawer-open-v2 39 4 1.0 1710.65
faucet-open-v2 39 4 0.9 1727.98
hand-insert-v2 39 4 1.0 1607.17
handle-press-v2 39 4 1.0 1854.79
handle-pull-side-v2 39 4 1.0 1613.72
handle-pull-v2 39 4 1.0 1581.75
lever-pull-v2 39 4 1.0 1449.05
peg-insert-side-v2 39 4 1.0 1545.19
pick-out-of-hole-v2 39 4 1.0 1435.64
pick-place-v2 39 4 0.0 6.59
pick-place-wall-v2 39 4 0.1 702.59
plate-slide-back-side-v2 39 4 1.0 1766.24
plate-slide-back-v2 39 4 1.0 1773.56
plate-slide-side-v2 39 4 1.0 1663.35
plate-slide-v2 39 4 1.0 1667.35
reach-v2 39 4 1.0 1858.99
reach-wall-v2 39 4 1.0 1831.14
soccer-v2 39 4 0.4 445.84
stick-push-v2 39 4 1.0 1470.71
sweep-into-v2 39 4 1.0 1761.69
sweep-v2 39 4 1.0 1458.35
window-open-v2 39 4 1.0 1537.59

Average - - 0.84 ± 0.34 1414.62 ± 439.39
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We first pre-train a DT on all MT40 tasks (80M transitions) for 1M updates via next-action prediction
by minimizing the mean-squared error. The resulting pre-trained model attains an average success
rate of 80% across all MT40 tasks. Then we fine-tune the DT on each of the CW10 down-stream
tasks for 100K updates with the same set of hyperparameters as used for pre-training.

We run all our experiments on a public research cluster with 4xA100-40GB GPU nodes. A single
fine-tuning run with EVA for one task takes roughly 1 hour on one A100.

E.3 Hyperparameter search

In line with previous experiments, we tune the rank for LoRA, DoRA, AdaLora and EVA, rank ∈
{2, 4, 8, 16}. Further, we sweep over the same learning rates as for the GLUE tasks.

E.4 Additional results

In Table 15, we show the full comparison for all methods on CW10. EVA+DoRA consistently
outperforms all competitors for the different rank budgets.

Table 15: Full comparison for all methods on CW10. We fine-tune a 12M DT on 10 tasks individually
and report the mean success rates/rewards (± standard error) for every task.
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Method Rank

FFT - 0.97±0.03 0.93±0.03 1.0±0.0 0.6±0.05 0.7±0.12 1.0±0.0 0.93±0.03 1.0±0.0 0.57±0.07 1.0±0.0 0.87±0.03

LoRA 2 1.0±0.0 1.0±0.0 1.0±0.0 0.6±0.05 0.57±0.07 0.97±0.03 0.93±0.03 1.0±0.0 0.37±0.1 1.±0.0 0.84±0.04

4 1.0±0.0 0.97±0.03 1.0±0.0 0.47±0.12 0.63±0.1 0.97±0.03 1.0±0.0 1.0±0.0 0.23±0.12 1.0±0.0 0.83±0.05

8 1.0±0.0 0.97±0.03 1.0±0.0 0.43±0.05 0.4±0.09 0.97±0.03 0.93±0.03 1.0±0.0 0.23±0.12 1.0±0.0 0.79±0.06

16 1.0±0.0 0.97±0.03 1.0±0.0 0.43±0.03 0.47±0.03 1.0±0.0 0.97±0.03 1.0±0.0 0.4±0.09 1.0±0.0 0.82±0.05

DoRA 2 1.0±0.0 1.0±0.0 1.0±0.0 0.57±0.05 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 0.33±0.11 1.0±0.0 0.89±0.04

4 1.0±0.0 1.0±0.0 1.0±0.0 0.6±0.12 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 0.43±0.12 1.0±0.0 0.9±0.04

8 1.0±0.0 1.0±0.0 1.0±0.0 0.47±0.12 0.93±0.05 1.0±0.0 1.0±0.0 1.0±0.0 0.57±0.15 1.0±0.0 0.9±0.04

16 1.0±0.0 1.0±0.0 1.0±0.0 0.57±0.12 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 0.67±0.15 1.0±0.0 0.92±0.03

AdaLoRA 2 1.0±0.0 0.97±0.03 1.0±0.0 0.37±0.05 0.37±0.05 0.93±0.05 0.97±0.03 1.0±0.0 0.13±0.07 1.0±0.0 0.77±0.06

4 1.0±0.0 0.97±0.03 1.0±0.0 0.37±0.07 0.57±0.1 0.97±0.03 0.9±0.08 1.0±0.0 0.13±0.07 1.0±0.0 0.79±0.06

8 1.0±0.0 0.97±0.03 1.0±0.0 0.3±0.05 0.57±0.14 0.93±0.03 0.87±0.07 1.0±0.0 0.0±0.0 1.0±0.0 0.76±0.06

16 1.0±0.0 0.97±0.03 1.0±0.0 0.4±0.09 0.57±0.12 0.97±0.03 0.93±0.05 1.0±0.0 0.0±0.0 1.0±0.0 0.78±0.06

EVA 2 1.0±0.0 0.97±0.03 1.0±0.0 0.43±0.07 0.77±0.05 0.97±0.03 1.0±0.0 1.0±0.0 0.63±0.07 1.0±0.0 0.88±0.04

4 1.0±0.0 0.97±0.03 1.0±0.0 0.43±0.05 0.47±0.12 1.0±0.0 0.97±0.03 1.0±0.0 0.23±0.05 1.0±0.0 0.81±0.05

8 1.0±0.0 0.97±0.03 1.0±0.0 0.63±0.03 0.7±0.08 1.0±0.0 1.0±0.0 1.0±0.0 0.23±0.03 1.0±0.0 0.85±0.05

16 1.0±0.0 0.97±0.03 1.0±0.0 0.53±0.03 0.77±0.07 1.0±0.0 1.0±0.0 1.0±0.0 0.0±0.0 1.0±0.0 0.83±0.06

EVA + DoRA 2 1.0±0.0 1.0±0.0 1.0±0.0 0.8±0.08 0.97±0.03 1.0±0.0 1.0±0.0 1.0±0.0 0.43±0.12 1.0±0.0 0.92±0.03

4 1.0±0.0 1.0±0.0 1.0±0.0 0.8±0.05 0.93±0.03 1.0±0.0 1.0±0.0 1.0±0.0 0.63±0.03 1.0±0.0 0.94±0.02

8 1.0±0.0 1.0±0.0 1.0±0.0 0.63±0.19 0.87±0.07 1.0±0.0 1.0±0.0 1.0±0.0 0.57±0.03 1.0±0.0 0.91±0.04

16 1.0±0.0 1.0±0.0 1.0±0.0 0.67±0.2 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 0.5±0.16 1.0±0.0 0.92±0.04

F Discussion

Alternative data-driven initialization schemes We also investigated alternative data driven ini-
tialization schemes. Such alternatives include, but are not limited to, Kernel-PCA (Schölkopf et al.,
1997), Linear Discriminant Analysis (Fisher, 1936, LDA). While Kernel-PCA can account for non-
linearities in the data, it scales with the number of datapoints, i.e., in our setting we perform PCA
on minibatches of sequences. Therefore, the number of datapoints grows fast with each minibatch,
making Kernel-PCA infeasible. LDA projects the data onto a subspace that maximizes linear separa-
bility between classes. Such an initialization scheme is particularly interesting for classification tasks
like GLUE or VTAB-1K. However, we observed on the GLUE tasks that the columns of the LDA
projection matrix never converges during the initial computation phase.

Additional latency of SVD EVA leads to significant performance improvements over LoRA, but
introduces additional latency in the beginning of training for computing the data-driven initialization.
We found that this process consistently converges after a few minibatches across all tasks. Further, it
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does not require backpropagation through the model compared to standard LoRA fine-tuning. While
storing components requires slightly more memory, this can entirely be offloaded to CPU, and thus,
does not result in additional GPU memory requirements. We found that in practice, there is no
considerable difference between runtimes of LoRA and EVA.

What method performs well on which tasks? We conducted a broad range of experiments and
found that EVA improves upon LoRA and competitors on tasks that are out-of-distribution. Further, it
also resulted in significant improvements on some in-domain data. Throughout all of our experiments,
we observed that EVA is the most stable method and consistently improves average scores across
tasks versus other state-of-the-art PEFT methods. We also observed that DoRA can significantly
improve upon LoRA as it did on the RL tasks and on certain datasets in VTAB-1K, and initializing
DoRA with EVA leads to further improvements, especially on out-of-distribution tasks. Therefore,
EVA advances the state-of-the-art among other PEFT competitors.

G Related Work

LoRA variants The advent of LoRA (Hu et al., 2022) has sparked widespread interest in leveraging
low-rank decompositions for fine-tuning large models due to its simplicity. Building on the success
of LoRA, a number of other variants have been proposed (Kopiczko et al., 2024; Zi et al., 2023;
Babakniya et al., 2023; Dettmers et al., 2023; Li et al., 2023; Nikdan et al., 2024; Liu et al., 2024;
Zhang et al., 2023a; Hayou et al., 2024b; Chavan et al., 2023). The most similar variants to EVA are
AdaLoRA (Zhang et al., 2023a) and PiSSA (Meng et al., 2024). AdaLoRA adaptively allocates ranks
for the introduced LoRA matrices during fine-tuning. In contrast, the data-driven initialization allows
EVA to redistribute the ranks for each LoRA matrix at the beginning of training after the first few
mini-batches. PiSSA initializes the LoRA matrix A via the top singular vectors of the pr-trained
weight matrices. Contrary, EVA initializes A via the right singular-vectors of activation vectors and
is therefore data-driven. Since EVA mostly constitutes an effective initialization, it can be readily
plugged into most LoRA variants such as DoRA (Liu et al., 2024), or ELoRA (Kopiczko et al., 2024).

Initialization of LoRA matrices Common initialization schemes for neural networks (He et al.,
2015; Glorot & Bengio, 2010) were designed to stabilize training of deep neural networks based on
activation functions and depth. In the context of PEFT, Hu et al. (2022) and Liu et al. (2022) explored
data-driven initialization by either pre-training on a different task first, or by unsupervised pre-training
on the task at hand. Contrary, our initialization does not require any gradient update steps, therefore
it is much more efficient. Similarly, Nikdan et al. (2024) uses a warm-up stage of LoRA fine-tuning
and use gradients with respect to LoRA weights to initialize a sparse matrix for sparse adaptation
(Sung et al., 2021) in combination with LoRA. Alternatively, Babakniya et al. (2023) initializes
LoRA matrices with SVD on the original weight matrices after a few steps of full-finetuning for
federated learning that usually comes with heterogeneous data for each user. Finally, Meng et al.
(2024) use the main directions of the pre-trained weights to initialize the LoRA matrices. In contrast,
EVA takes a data-driven approach to initialize the LoRA matrices, instead of relying on components
of the pre-trained weights. Similar initialization schemes were proposed by Mishkin & Matas (2016);
Krähenbühl et al. (2016) for training deep networks from scratch.

Increasing efficiency of LoRA Several works have investigated how to further break down the
complexity of LoRA for fine-tuning FMs. Kopiczko et al. (2024) decrease the memory complexity
of LoRA by initializing both A and B at random and keeping them frozen while merely training
newly-introduced scaling vectors. This way, only random seeds for initializing A and B need to be
stored. Another fruitful avenue is quantization (Dettmers et al., 2022), which has been successfully
applied to LoRA matrices (Dettmers et al., 2023). More recent LoRA variants (Nikdan et al., 2024;
Valipour et al., 2023) also provide quantized versions. It has also been shown that proper initialization
for quantization results in improved fine-tuning performance (Li et al., 2023).

Alleviating the low-rank constraint The weight matrices introduced in LoRA are constrained
by a low rank. Many recent works have investigated whether this constraint can be alleviated by
merely considering gradient updates to be low-rank, while updating the full-rank weight matrices.
To this end, Zi et al. (2023) leverage the delta between subsequent LoRA update steps to update the
pre-trained weights. Hao et al. (2024) investigates the dynamics of LoRA and uses random matrices
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to project the gradient into lower dimensional space. Similarly, Zhao et al. (2024) and Lialin et al.
(2023) explored large scale pre-training by using low rank gradient updates. All of these works aim
at keeping the original weights of full rank, however, it is not yet clear whether this is a necessary
requirement for effective fine-tuning.
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