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Abstract

Tensor parallelism provides an effective way to increase server large language
model (LLM) inference efficiency despite adding an additional communication
cost. However, as server LLMs continue to scale in size, they will need to be
distributed across more devices, magnifying the communication cost. One way to
approach this problem is with quantization, but current methods for LLMs tend
to avoid quantizing the features that tensor parallelism needs to communicate.
Taking advantage of consistent outliers in communicated features, we introduce a
quantization method that reduces communicated values on average from 16 bits to
4.2 bits while preserving nearly all of the original performance. For instance, our
method maintains around 98.0% and 99.5% of Gemma 2 27B’s and Llama 2 13B’s
original performance, respectively, averaged across all tasks we evaluated on.

1 Introduction

The use of large language models (LLMs) [6, 8, 20, 21] has ballooned in countless areas due to their
impressive capabilities. Even so, with the enormous size of server LLMs, inference-time efficiency
becomes a dire issue for those who own the models and those who use them. Fortunately, techniques
like sequence parallelism [9] and tensor parallelism [14, 19] distribute the computational load of
transformer-based LLMs [23] onto different devices. However, these methods require communication
between devices, which is especially a concern when serving models, so cheaper networking would
greatly cut costs. In addition, as LLMs increase in size, we need to distribute them over more devices,
which further drives up communication costs.

A natural idea is to try quantization, but this comes with challenges. Quantization methods for LLMs
have largely focused on weights [4, 7, 10, 15, 18] or multiplication between low-bit weights and
low-bit input features [1, 5, 24, 25, 27]. These methods are most useful for hardware-constrained
settings, but their savings are not as relevant to tensor parallel server LLMs. In particular, current
LLM quantization methods keep the output features of each attention and feedforward block at
high precision (BF16 or FP16) to preserve performance. However, this is exactly what needs to be
communicated in tensor parallelism. There has been work in quantized communication for distributed
inference [12, 13, 16], but applications in LLMs have been limited. Consequently, the main challenge
with quantization is to find a way to communicate low-bit output features from tensor parallelized
attention and feedforward blocks across devices while preserving the original model’s performance.

Thankfully, there are a couple observations that we can leverage. First, the communicated features
have consistent structures. Looking at the aggregated quantization ranges for each feature across a
calibration set in Figure 1 (details in Section 3), we observe that a small number of features have
enormous ranges, potentially resulting in large quantization errors. Second, tensor parallelism can
counteract feature quantization error. Theoretically, instead of uniformly distributed quantization
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Figure 1: Sorted aggregated quantization ranges, R̄j , of each each attention (left) and feedforward
(right) block in Gemma 2 27B, with the mean across all layers in red. Values are scaled such that the
max range for each layer is set to 1.

errors, quantizing the partial sums prior to synchronization results in aggregated errors that follow
the Irwin-Hall distribution, approximately Gaussian as the number of devices increases. This means
tensor parallelism synchronization pushes quantization errors to be clustered around 0. We take
advantage of both observations in our method design.

We propose a solution to reduce tensor parallelism communication cost from 16 bits to less than 4.2
bits per value with minimal performance degradation. Inspired by the extra care taken for outlier
features in many LLM quantization methods, the main idea of our algorithm is to determine a static
set of features that are kept in BF16 while quantizing everything else to 4 bits without perturbing
the weights. In Section 2, we formulate the problem with compressed communication for tensor
parallelism. Next, Section 3 illustrates our method to select features to maintain at higher precision
and how they are used during inference. Then, Section 4 showcases the performance of our method
across multiple LLMs and tasks. For example, our method preserves around 98% of Gemma 2 27B’s
original performance despite communicating only about 1/4 of the information.

2 Tensor Parallelism Synchronization

Here, we formalize the communication problem in tensor parallelism that we aim to tackle. In tensor
parallelism, weights in attention and feedforward blocks are partitioned across devices such that each
partition can be computed in parallel until a synchronization step aggregates all outputs together on
each device. Attention blocks can be split across the head dimension, and feedforward blocks can
be split across the intermediate feature dimension. Synchronization in the form of an AllReduce is
necessary after the output projection in attention blocks and after the down projection in feedforward
blocks. With this setup, a tensor parallelized model and the original model produce the same outputs.

Define the final linear layer (i.e., the layer immediately before synchronization) in attention blocks or
feedforward blocks as f(x) = xW + b for x ∈ R1×D, weight W ∈ RD×E , and bias b ∈ R1×E

when on a single device. When tensor parallelized, the input and weight take the form x(i) ∈ R1×D
N

and W (i) ∈ RD
N ×E , respectively, for N devices. The pre-sync point linear layer on each device is:

f (i)(x(i)) = x(i)W (i),

and a sum of the outputs from all devices produces the same activations as the original layer:

f(x) =

[
N∑
i=1

f (i)(x(i))

]
+ b.

This operation requires communicating f (i)(x(i)) ∈ RE for each device, which can be expensive
for large batch sizes and long sequences. Therefore, we aim to find compression and decompression
functions, C(i) and D(i), so that we can communicate just C(i)(f (i)(x(i))) between devices and
decompress as needed. Good functions should satisfy for all i and x(i):

f (i)(x(i)) ≈ D(i)(C(i)(f (i)(x(i)))).

We choose C(i) and D(i) to be quantization and dequantization operations based on the intuition that
tensor parallelism can alleviate some of the quantization error in low-bit features.
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Figure 2: Our hybrid quantization algorithm. A small set of features are selected based on aggregated
quantization ranges to be kept at BF16 while all others are quantized to Int4 prior to inter-device
communication. Then, all tensors are converted to BF16 and summed to sync across each device.

3 Method

Outlined in Figure 2, we choose to transfer a fraction of features in BF16 and the rest in 4-bit precision.
The BF16 features are chosen based on the range from the calibration set since a larger range would
result in greater quantization error.

Calibration. We let each feature on each device have static and independent quantization parameters
(i.e., NE sets of quantization parameters per tensor parallel block). These parameters are exponential
moving averages of the minimum and maximum values that are obtained for each feature on each
device on a calibration set. In other words, we find quantization parameters (m

(i)
j ,M

(i)
j ) for

1 ≤ i ≤ N and 1 ≤ j ≤ E following the recursive update rules:

m
(i)
j = (1− γ)m

(i)
j + γmin(Y

(i)
·,j ) (1)

M
(i)
j = (1− γ)M

(i)
j + γmax(Y

(i)
·,j ) (2)

for a sequence’s features to communicate Y (i) = f (i)(X(i)) ∈ RS×E and constant γ. For the first
sequence, m(i)

j = min(Y
(i)
·,j ) and M

(i)
j = max(Y

(i)
·,j ). Using symmetric quantization, the range on

each device is R(i)
j = 2max(−m

(i)
j ,M

(i)
j ). For our experiments, we use 256 random WikiText

[11] sequences for calibration following update rules (1) and (2) with γ = 0.01.

Selecting High Precision Features. Looking at the aggregated quantization ranges across devices
after calibration, R̄j :=

∑N
i=1 R

(i)
j , in Figure 1, we see a problem: a small set of features have wide

ranges which harms the quantization quality. As a solution, we select the top-k features based on R̄j

to be communicated at higher precision, fixed across all sequences and devices. All other features
are symmetrically quantized to Int4. Compared to plain quantization, the additional overhead of our
method includes the pre-sync BF16 feature selection and post-sync concatenation of features.

4 Experiments

Evaluating on multiple LLMs and tasks, we demonstrate that our quantization method preserves
nearly all of the original performance at less than 4.2 bits per value. Furthermore, we show that even
at lower and higher precision quantization, we still outperform all our baselines.

Our two baselines and our method use the same symmetric quantization parameters per model. For
the first baseline, we quantize everything to Int4. For the second baseline, we randomly select k
features with uniform probability to be kept at BF16, and everything else is quantized to Int4. For all
experiments, our method and the second baseline fix k = ⌊E/64⌋ which brings the average bits per
value to under 4.2 for both. The choice of 1/64 as the fraction of BF16 features can be substituted,
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Table 1: Zero-shot accuracy. The best values for each model and task, excluding the performance of
full communication, are in bold. We fix k = ⌊E/64⌋ for Random BF16 and Selected BF16 (ours).

Method Bits ARC-e ARC-c WinoGrande HellaSwag BoolQ

Gemma 2 27B 16 87.71 62.37 79.08 65.38 84.67
Int4 4 84.13 57.51 74.27 63.50 83.55
Int4 + Random BF16 4.2 83.71 56.83 72.61 63.58 82.14
Int4 + Selected BF16 4.2 86.45 61.01 76.48 63.86 83.98
Llama 2 13B 16 79.55 48.72 72.22 60.03 80.58
Int4 4 77.40 47.10 68.67 58.88 78.01
Int4 + Random BF16 4.2 76.73 46.08 67.80 58.95 77.55
Int4 + Selected BF16 4.2 79.08 47.35 72.93 59.49 81.22
Mistral NeMo 12B 16 82.91 55.80 73.01 62.82 85.17
Int4 4 79.50 50.77 71.43 60.97 82.84
Int4 + Random BF16 4.2 79.12 51.02 70.56 60.96 81.04
Int4 + Selected BF16 4.2 81.06 52.05 71.98 61.74 83.06

Figure 3: Gemma 2 27B performance when features are quantized to varying numbers of bits. Our
method achieves the best accuracy for every quantization precision.

but we found this fraction to strike a good balance between performance and compression (Figure 1
suggests k can be relatively small). Future work can explore adaptively varying k per layer or input.

Using Gemma 2 27B [20], Llama 2 13B [22], and Mistral NeMo 12B [21], we compare our method
against the baselines and full models on ARC-easy/challenge [3], WinoGrande [17], HellaSwag
[26], and BoolQ [2]. Experimental results are reported for tensor parallelism across 8 devices. From
Table 1, we see that our method achieves the best performance for the vast majority of tasks and
models among the quantization schemes. Moreover, performance degradation with our method is
fairly small in most cases. Overall, our method preserves around 98.0%, 99.5%, and 97.1% of the
original Gemma 2 27B, Llama 2 13B, and Mistral NeMo 12B performance in Table 1, respectively.
We also observe that choosing random features to be sent in BF16 adds virtually no benefit on top
of pure Int4 quantization while choosing features based on aggregated quantization ranges adds a
clear performance boost. In fact, in some cases, random selection appears to degrade performance in
comparison to pure Int4 quantization, suggesting that maintaining low magnitude features at high
precision without preserving high magnitude ones to be harmful. Beyond Int4 quantization, our
method consistently best preserves performance at lower and higher precision, as seen in Figure 3.

5 Conclusion & Future Work

We introduced a method to quantize features for compressed synchronization in tensor parallel LLMs
with very little performance degradation. Directly inspired by the consistent nature of outliers in
these communicated features, our method combines Int4 and BF16 representations to compress these
features to less than 4.2 bits per value. Nevertheless, there are many possibilities for future work.
First, we would like to develop a system level implementation of our method to better assess the
efficiency gains. Second, our method is fit for AllReduce executed as an AllGather followed by a
local reduction, so it would be interesting to see how we can adapt our method to other AllReduce
algorithms (e.g. ring-AllReduce). Together, our work and these directions would greatly improve
server LLM inference efficiency.
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