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Abstract

Speculative decoding (SD) has emerged as a promising approach to accelerate
inference in large language models (LLMs). This method drafts potential future
tokens by leveraging a smaller model, while these tokens are concurrently verified
by the target LLM, ensuring only outputs aligned with the target LLM’s predic-
tions are accepted. However, the inherent limitations of individual drafters, es-
pecially when trained on specific tasks or domains, can hinder their effectiveness
across diverse applications. In this paper, we introduce a simple yet efficient uni-
fied framework, termed MetaSD, that incorporates multiple drafters into the spec-
ulative decoding process to address this limitation. Our approach employs multi-
armed bandit sampling to dynamically allocate computational resources across
various drafters, thereby improving overall generation performance. Through ex-
tensive experiments, we demonstrate that our unified framework achieves superior
results compared to traditional single-drafter approaches.

1 Introduction

Large language models (LLMs) such as GPT-4 [1], Gemini [34], and Llama [66] have revolutionized
real-world applications such as search engine [56], coding assistance, and virtual assistants. How-
ever, the token-by-token generation process inherent to LLMs often leads to substantial inference
times, primarily due to its memory bandwidth bound nature [54, 60]. Speculative decoding (SD) has
emerged as a promising avenue to address this challenge [46, 18]. Precisely, SD employs a smaller
draft model (i.e., drafter) to predict potential future tokens. These tokens are verified concurrently
by the target LLM, ensuring only outputs aligned with the LLM’s predictions are accepted. SD
significantly accelerates the generation process, enabling faster and more efficient text generation.

Recent advancements in SD have primarily focused on architectural and training improvements to
enhance the acceptance rate of drafted tokens [49, 78, 15, 51, 65]. Notably, techniques such as
batched inference and tree verification [65, 51, 15] aim to increase the number of accepted tokens
by exploring more decoding paths at one step, while training recipes with knowledge distillation
[78, 49] seek to better align the drafter’s distribution with that of the target model. However, despite
their efficacy in certain tasks, these methods often lack the versatility required to comprehensively
cover a wide range of tasks [49, 74]. The inherent limitations of relying on a single drafter, with
its specific architectural biases and training data, can hinder performance in scenarios with held-out
tasks (Detailed motivation is in Section 2.1).

To mitigate the limitations of single-drafter SD, we propose a novel framework that integrates multi-
ple drafters into the process. Our high level idea is to meta-draft the optimal drafter among multiple
drafters at test-time utilizing the concept of the exploration-exploitation tradeoff [33]. Effectively
utilizing multiple drafters in a real-world serving system presents several challenges. For instance,
imagine a scenario where you have several drafters, each specialized for a different task like trans-
lation, summarization, or question answering. Determining which drafter will perform best for a
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Figure 1: Overview of speculative decoding with multiple drafters in multi-armed bandit (MAB)
framework. The example in this figure is from an instance in MT-Bench dataset [77].

given user query is not always straightforward, especially when the query involves multiple tasks or
when the topic evolves during the conversation. Furthermore, the system needs to be efficient and
adaptable to varying user loads and traffic patterns, without requiring constant manual intervention
and parameter tuning. Therefore, an ideal system should have low overhead, meaning it should be
robust to variations in user scale or network traffic. It must also be scalable at test time, accurately
identifying the optimal drafter for a given query, which is often infeasible in advance, as factors like
topic can evolve during inference, making pre-selection unreliable. This dynamic nature of language
generation necessitates an adaptive approach.

(a) Black-box SD (b) White-box SD
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Avg. speedup of specialized Eagle drafters
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Figure 2: Comparison of average speedup ratios achieved
by various SD methods relative to standard autoregressive
greedy decoding on a single NVIDIA A100 GPU. The tar-
get model is Vicuna 7B v1.3. (a) Results for black-box
methods. (b) Results for white-box methods. Detailed de-
scription for experimental settings are in Section 4.

In the domain of recommendation sys-
tems, a similar challenge arises where
the optimal set of items to present
to a user can change based on their
evolving interests and interactions [62].
These systems have successfully em-
ployed multi-armed bandit (MAB) al-
gorithms to dynamically adjust recom-
mendations at test time, learning from
user feedback to optimize the selection
process. Inspired by this approach, we
propose a MetaSD framework leverag-
ing MAB algorithms to dynamically al-
locate the optimal drafter among multi-
ple drafters during inference time (Fig-
ure 1). This approach enables the sys-
tem to learn and adapt to the relative
performance of each drafter on-the-fly,
enabling faster inference. Our key con-
tributions include:

• We introduce a simple yet efficient framework, termed MetaSD, for incorporating multiple
drafters into SD, exploring both black-box approaches where drafters operate indepen-
dently with access only to the target LLM’s predictions and white-box approaches where
drafters leverage internal latent features of the target LLM (Section 2).

• We establish theoretical upper bounds on the performance of our proposed framework,
providing insights into its convergence properties and potential benefits (Section 3).

• We demonstrate through extensive experiments that our framework achieves superior in-
ference speed compared to existing single-drafter methods (Figure 2; Section 4).
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2 Problem statement

2.1 Motivation

Speculative decoding (SD) employs a draft-verify-accept paradigm for faster inference. A drafter
Mq , which is smaller than the target LLM Mp, drafts the future tokens {xl+1:l+Nmax} based on
the input sequence x1:l. The target LLM assesses each token xl+j (j = 1, . . . , Nmax) to determine
whether p(·|x1:l+j−1) is aligned with its own predictions q(·|x1:l+j−1). Only the tokens aligned with
the LLM’s own predictions are accepted, ensuring the lossless generation (Details in Appendix D).

Table 1: Speedup ratio relative to the stan-
dard autoregressive greedy decoding on various
multilingual datasets following [74] where tar-
get model is Vicuna 7B v1.3 and the drafter is
decoder-only 68M language model: Japanese
(Ja)→English (En) [52], Russian (Ru)→En,
German (De)→En [14], French (Fr)→En [13],
and Chinese (Zh)→En [11]. Evaluations are
conducted with a NVIDIA A5000 GPU.

Dataset Ja-drafter Ru-drafter De-drafter Fr-drafter Zh-drafter

Ja →En 1.757  1.109 1.012 1.018 1.154
Ru →En 1.055 1.817  0.995 0.963 1.036
De →En 1.098 1.369 2.360  1.036 1.099
Fr →En 1.106 1.445 1.108 2.135  1.122
Zh →En 1.198 1.086 1.021 1.023 1.516  

Despite its advancements, existing works often
rely on a single drafter. This reliance can limit
the effectiveness of SD, as the drafter’s perfor-
mance is inherently tied to its training data [74,
49]. In scenarios where the drafter’s strengths
do not align well with the task at hand, its pre-
dictions may be less accurate, leading to fewer
accepted tokens and diminished speedup bene-
fits of SD. As Table 1 shows, a drafter trained
on a specific language pair exhibits significantly
higher speedup on that pair compared to others,
highlighting the need for a more adaptive ap-
proach. Therefore, integrating multiple heteroge-
neous drafters into the SD framework can poten-
tially address this limitation. By leveraging a pool
of drafters, the system can dynamically adapt to varying tasks and input contexts, selecting the most
suitable drafter for each situation. From a theoretical and practical viewpoint, the integration of
multiple drafters into SD raises several research questions:

1. How to design an efficient and adaptive mechanism for selecting the best drafter at each
generation step, considering the exploration-exploitation tradeoff?

2. How to seamlessly incorporate multiple drafters for meta-drafting while minimizing any
additional computational overhead?

3. Can we provide theoretical guarantees on the performance of a multi-drafter SD system,
ensuring comparable speedup to using single optimal drafter?

To address these challenges, we draw inspiration from the field of multi-armed bandits (MAB). In
the MAB framework, an agent repeatedly chooses an action among different choices (arms), each
with an unknown reward distribution, aiming to maximize its cumulative reward over time. This
closely parallels our problem, where each drafter can be seen as an arm, and the reward is related
to the number of accepted tokens or the overall speedup achieved (Algorithm 1). MAB’s inherent
efficiency and online learning capabilities align well with the requirements of a robust and adaptive
multi-drafter SD system. MAB algorithms offer a principled way to balance exploration (trying out
different drafters) and exploitation (using the seemingly best drafter) to identify the optimal drafter
for each generation step, adapting to the changing context with minimal additional compute costs.

2.2 Problem formulation

Multi-armed bandit (MAB) MAB framework addresses an online learning scenario where, at
each round t, an agent takes an action by choosing an arm at ∈ [K] and receives a reward rt from
the environment. The goal of MAB is to design an algorithm that maximizes the expectation of
cumulative reward E[

∑T
t=1 rt] throughout a total of T rounds. To achieve this, one can aim to design

an optimal policy π⋆ to minimize the pseudo-regret, defined as: REG(π, T ) =
∑T

t=1 E[ra⋆
t
]−E[rat ].

Here, at denotes the action chosen in round t by the policy π and a⋆t represents the optimal action in
round t which yields the highest expected reward. For a more comprehensive review, we refer the
reader to [45].

MetaSD: SD with multiple drafters as a MAB problem We formalize the integration of multi-
ple drafters into SD as a MAB problem, termed as MetaSD framework. Each SD process, consisting

3



Algorithm 1: MetaSD

INPUT : Drafter pool [K], target model, initial prompt sequence x1:l, target sequence length B.
1: t← 0
2: while l < B do
3: Meta-draft the drafter i in drafter pool [K] following the bandit
4: Execute one SD step with drafter i and target model given x1:l

5: Compute the block divergence between drafter i’s predictions and target model’s predictions
as the reward (Section 2.3)

6: Update the sequence length with the number of accepted tokens from the draft Nacc(i, t):
l, t← l +Nacc(i, t) + 1, t+ 1

7: Update the bandit
8: end while

of drafting, verifying, and accepting tokens, corresponds to one round in the MAB setting (Algo-
rithm 1). At round t, a drafter at is selected from a pool of heterogeneous drafters [K]. The round
concludes when all B tokens have been generated. While inspired by classical bandit problems,
our MetaSD framework exhibits key distinctions. Unlike classical bandits with a fixed number of
rounds, MetaSD operates under a fixed token budget B and the number of total rounds T is stochas-
tic which depends on the policy. Although switching between drafters may incur costs such as prefill
cost for tokens and KV cache I/O, we empirically observe that it is negligible in the most of our ex-
periments. Furthermore, for the large scale scenario where switching cost might not be negligible
anymore, we provide a detailed discussion with a practical algorithm in Section H.2. While the gen-
erated tokens can follow a non-stationary distribution, we assume stationarity within a single turn
between the user and the LLM for theoretical analysis. This assumption is reasonable as it allows
our framework to be applied with re-intialization for each new query, even in a multi-turn conversa-
tion, effectively handling the potential non-stationarity across different queries. In the experiments,
MetaSD is implemented with re-initialization for every query.

2.3 Reward design

Ideally, the reward in the MetaSD framework should be informative enough to effectively guide
the bandit algorithm towards optimal speedup. One straightforward and readily available choice is
the block efficiency (BE), which quantifies the number of mean accepted tokens until a given round
[65, 18, 40]. Formally, we define the BE reward for drafter i in round t as: rBE

i,t := Nacc(i, t)/Nmax,
where Nmax is predefined maximum draft length and Nacc(i, t) is number of accepted tokens in the
t-th verification stage. While the BE reward provides a direct measure of a drafter’s immediate
success, it depends on the underlying acceptance rate, denoted as αi. As shown in [46], this accep-
tance rate is intrinsically linked to the distance between two probability distributions p and qi. This
implies that by estimating αi, we can potentially obtain more informative feedback at each round.
To leverage this insight, we propose a new reward, coined as block divergence (BD) reward, which
estimates the normalized expected number of accepted tokens by utilizing empirical mean of the
acceptance rate.
Definition 1 (Block divergence reward). Let t be the current round, i be the drafter index, and
l(t) be the number of input tokens for the target model at round t. Denote dTV (p

l(t), q
l(t)
i ) =

1
2∥p

l(t) − q
l(t)
i ∥1 as the total variation (TV) of two probability measures pl(t) and q

l(t)
i from the

target model and the drafter i given x1:l(t), respectively. Then, BD reward is defined as follows:

rBD
i,t =

1

Nmax

Nmax−1∑
j=0

(
1− dTV

(
pl(t)+j , q

l(t)+j
i

))
. (1)

While [46] assume a fixed acceptance rate for the j-th candidate in their analysis, we relax this
assumption and consider a more general scenario where the acceptance rate for each token follows
stationary distribution with mean αi ∈ (0, 1) for each drafter i ∈ [K]. Then, one can observe

two reward designs are linked by E[rBE
i,t ] =

1−αNmax
i

Nmax(1−αi)
E[rBD

i,t ]. As both E[rBD
i,t ] and E[rBE

i,t ] is
monotonically increasing with respect to αi, maximizing the BD reward aligns with the goal of

4



Table 2: Reward statistics for BE and BD rewards, collected using autoregressive decoding with the
same Japanese dataset and drafter configurations as in Table 1.

Reward statistics BE reward BD reward

Ja-drafter Ru-drafter De-drafter Fr-drafter Zh-drafter Ja-drafter Ru-drafter De-drafter Fr-drafter Zh-drafter

Ratio of the number of zero rewards 0.503 0.678 0.721 0.743 0.681 - - - - -

Mean of rewards 0.232 0.099 0.081 0.074 0.106 0.488 0.294 0.317 0.288 0.326
Variance of rewards 0.093 0.032 0.024 0.023 0.037 0.044 0.026 0.032 0.029 0.034

SD, which is to maximize the number of accepted of tokens. We demonstrate that the BD reward
empirically and theoretically facilitates the generalization of the MetaSD framework compared to
the BE reward, particularly in terms of bandit algorithm performance. To begin, we compare the BD
and BE rewards using the following theorem.
Theorem 1 (Informal). Under the stationary environment, for any reward design ri with µi = E[ri],
i⋆ = argmaxαi, and ∆i = µ⋆

i − µi, we define the feedback signal for each suboptimal arm i ̸= i⋆

as

R(ri) :=
max(Var[ri],Var[ri⋆ ])

∆2
i

. (2)

Then, for most of the scenarios, R(rBD
i ) < R(rBE

i ).

Theorem 1 demonstrates that the BD reward provides a more informative feedback signal than the
BE reward. This signal, defined in eq. 2, plays a crucial role in determining the performance of
bandit algorithms. Intuitively, distinguishing two distributions is easier when their expectations
are further apart or their variances are smaller. In the context of bandit algorithms, this translates
to a smaller regret due to decreased exploration costs. A less noisy feedback signal allows the
algorithm to more quickly and accurately identify the optimal arm, reducing the need for extensive
exploration of suboptimal arms, as it provides a clearer and more reliable signal for decision-making.
Consequently, Theorem 1 implies that we can achieve better performance with bandit algorithms by
using the BD reward. In Section G.2, we provide the formal statement of Theorem 1 along with two
lemmas providing statistics of the BE reward (Lemma 3) and the BD reward (Lemma 4).

We empirically validate our theoretical analysis regarding the effectiveness of the BD reward com-
pared to the BE reward. For the experiment, we use the same Japanese dataset and drafter config-
urations as in Table 1, employing autoregressive decoding to collect BE and BD rewards at each
step without actual speculative execution. Table 2 reveals striking differences. The BD reward
exhibits larger gaps between the expected rewards of the best and suboptimal drafters (∆i), while
also demonstrating consistently lower variance across all drafters. Consequently, the BD reward has
smaller feedback signal R and we can expect using the BD reward leads to more stable learning
and faster convergence of the MAB algorithm, enabling faster identification of the optimal drafter.
Further explanation is in Section F.6 with Figure 4.

3 Method

This section presents our main method, MetaSD-UCB, which is designed to guarantee the optimal
policy for MetaSD. The main challenge arises from the fact that existing regret bounds does not fit
into the objective of SD anymore. Moreover, we have to consider stochastic nature of total number of
rounds T with the fixed budget B, as opposed to the classical bandit settings where T is fixed. This
necessitates us to design a new regret objective and we establish strong regret bounds can still be
achieved under this new objective. At the end of this section, we briefly discuss potential extensions,
incorporating switching costs between drafters and addressing non-stationary reward distributions.

3.1 Algorithm

MetaSD-UCB We introduce MetaSD-UCB in Algorithm 2, where we combine UCB algorithm [6]
in conjunction with the BD reward design to minimize regret. Under the stationary environments,
UCB achieves optimal log-linear regret [45]. However, our problem has two key distinctions which
prevent direct application of prior analysis. First, the total number rounds required to generate all
tokens (i.e., total budget) becomes stochastic. Secondly, minimizing naive regret objective does not
guarantee the optimal performance (Section G.3). This arises due to the nature of SD, where the
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Algorithm 2: MetaSD-UCB

INPUT Drafter pool [K], initial prompt sequence x1:l, target sequence length B, exploration
strength hyperparameter β.

1: t← 0
/* Phase 1: Meta-draft each drafter in [K] once and do one round of speculative decoding. */

2: for i ∈ [K] do
3: Do one round of SD with drafter i and obtain Nacc(i, t), ri,t (by eq. 1)
4: µ̂i,t, ni, l, t← ri,t, 1, l +Nacc(i, t) + 1, t+ 1
5: end for

/* Phase 2: Meta-draft the draft following the UCB bandit until target sequence length B */
6: while l < B do
7: at ← argmaxi∈[K] µ̂i,t + β

√
2 ln t
ni

8: Do one round of SD with drafter at and obtain Nacc(at, t), rat,t (by eq. 1)
9: µ̂at,t, nat , l, t←

µ̂at,t∗nat+rat,t

nat+1 , nat + 1, l +Nacc(at, t) + 1, t+ 1

10: end while

performance of the algorithm is determined by total number of rounds until EOS token (or reaching
the maximum token length supported by the target LLM). In order to better representing actual
speedup, we introduce a novel regret objective for MetaSD, defined as follows.

Definition 2. Denote τ(π,B) as the number of total rounds of bandit policy π with total budget B
and π⋆ as the optimal policy which satisfies π⋆ = argminπ E[τ(π,B)]. Then, regret objective of
MetaSD with policy π becomes:

REG(π,B) = E [τ(π,B)]− E[τ(π⋆, B)] . (3)

Minimizing eq. 3 is equivalent to maximizing expected number of accepted tokens. This can be seen
by observing that the total budget B is consumed by the total number of rounds τ(π,B) plus the total
number of accepted tokens across all rounds: B = τ(π,B) +

∑τ(π,B)
t=1 Nacc(i, t). Consequently,

minimizing the regret (eq. 3) is directly proportional to maximizing the expected number of accepted
tokens, which aligns with the objective of SD.

3.2 Regret upper bound for MetaSD-UCB

We establish that MetaSD-UCB achieves the same level of optimality as the standard UCB [6] by
proving that the regret in eq. 3 exhibits a logarithmic growth with respect to the budget B, which is
stated in the following theorem.

Theorem 2 (Regret upper bound on MetaSD-UCB). Denote ∆(αi) = αi⋆ − αi, where i⋆ is the
index of the drafter with the largest αi. Then, using the BD reward, there exists a constant C > 0
such that following bound holds:

REG(π,B) <
∑
i ̸=i⋆

8

(Nmax)∆(αi)2
lnB + C. (4)

In Section G.4, we prove the log-linear regret upper bound holds with general reward design but
with the higher constant factor 8/∆(αi)

2. The improvement in eq. 4 stems directly from using the
BD reward in Algorithm 2. Since the number of observations within each round grows with Nmax,
the variance of the BD reward is effectively reduced by a factor of Nmax. This, in turn, leads to a
smaller constant term in the regret upper bound compared to using the BE reward. The following
corollary captures this observation:

Corollary 1 (Informal). In most scenarios, the regret upper bound in eq. 4 is tighter than the regret
upper bound obtained when using the BE reward with MetaSD-UCB.

A complete proof of Theorem 2 and a formal statement of Collorary 1 with the proof are in Sec-
tion G.5.
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3.3 Extensions of MetaSD framework

Switching costs In practical implementations, switching between drafters at each round incurs a
computational cost due to the need to recalculate previous KV-cache values for the new drafter. This
aligns with the concept of bandits with switching costs [10]. However, unlike traditional settings
where a fixed cost is incurred per switch, the cost in MetaSD is proportional to the number of
unprocessed tokens in the current block. To address this, we propose Algorithm 4 with Sequential
Halving (SH) [39], designed specifically for this scenario. A detailed analysis along with theoretical
guarantees on its performance is provided in Section H.1.

Non-stationary environment Our prior analysis assumes stationary reward distributions, where
the reward feedback for each drafter follows a fixed distribution. However, in certain scenarios,
the reward distribution can be non-stationary. For instance, in long-context generation, the optimal
drafter might change as the topic or style of the generated text evolves. Despite this challenge, our
MetaSD framework remains applicable by leveraging non-stationary bandit algorithms. These algo-
rithms are designed to adapt to changing reward distributions, enabling the system to continuously
learn and adjust its drafter selection strategy. Detailed discussions for non-stationary algorithms
within the context of MetaSD are in Section H.2.

4 Experiment

4.1 Experimental setup

Models We adopt Vicuna 7B [20] as our target LLM for both black-box and white-box SD. The
distinction between two paradigms lies in the drafter’s access to the target LLM’s internal represen-
tations. Black-box drafters operate independently, with access only to the final logit of the target
LLM. In contrast, white-box drafters can leverage intermediate activations and hidden states within
the target LLM. For black-box SD, we utilize Vicuna 68M [73] as the base architecture for our in-
dependent drafters. Each drafter is trained on a distinct task-specific dataset to ensure heterogeneity.
Following established practices [41, 78, 15, 74], the training data for these drafters is generated
via self-distillation from the target LLM. For white-box SD, we integrate Eagle [47] into the target
Vicuna 7B to enable white-box SD. Similar to the black-box setting, multiple Eagle drafters share
the same underlying architecture but are fine-tuned on distinct task-specific datasets generated via
self-distillation from the target LLM. Further details on the training procedures and datasets used
for both black-box and white-box drafters are provided in Appendix F.

Number of drafts Nmax For black-box SD, we employ speculative sampling (SpS) [18], gener-
ating one draft candidate per drafter, termed as MetaSpS. For multi-draft methods like Medusa [15]
and Eagle [47], we adhere to their original settings with a tree-attention mechanism. We employ
the same tree structure for multiple Eagle drafters described in [47], termed as MetaEagle. Unless
explicitly stated otherwise, all approaches utilize a maximum of 5 drafts (Nmax = 5).

Evaluation We conduct evaluations using a NVIDIA A5000, A6000, and A100 GPU under greedy
decoding settings. We re-initialize the bandit for each new query, even within multi-turn conversa-
tions. Two types of scenarios are evaluated:

1. Diverse task: We evaluate on a diverse range of tasks, including coding (Code) from
MT-Bench [77], summarization (Sum) on CNN/Daily [35], De-En translation (Trans) on
WMT16 [14], natural question answering (QA) [43], and mathematical reasoning (Math)
on GSM8K [21]. The datasets are randomly shuffled to create a non-stationary environ-
ment.

2. Multilingual task: We assess the effectiveness in handling multilingual scenarios by evalu-
ating on the multilingual tasks presented in Table 1, following the [74].

The chosen tasks represent a diverse range of applications. Code involves generating text within the
constraints of a formal programming language, while Math often requires manipulating symbolic
expressions and numerical values. Multilingual tasks introduce challenges related to vocabulary
space and token distribution, necessitating drafters tailored to specific language pairs. Summariza-
tion highlights the dependency of generation on the input space, where drafters must effectively
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Table 3: (Black-box SD) Speedup ratio relative to standard autoregressive greedy decoding on
various datasets, comparing single specialized independent drafters, other methods (PLD [58] and
Lookahead [28]), and bandit-based drafter selection (Rand (uniformly random), EXP3 [7], SH [39],
UCB). Evaluations are conducted with a single NVIDIA A6000 GPU under greedy decoding set-
tings. Drafter specializations: 1: Code, 2: Translation, 3: Summarization, 4: QA, 5: Math.

Speedup SpS with specialized drafters Other methods Bandit in MetaSpS

Drafter1 Drafter2 Drafter3 Drafter4 Drafter5 PLD Lookahead Rand EXP3 SH UCB

Code 2.437  1.224 1.565 1.814 1.687 1.923 1.542 1.640 1.919 2.148 2.300  
Trans 0.991 2.076  1.000 1.019 0.950 1.076 1.133 1.150 1.217 1.422 1.587  
Sum 1.513 1.087 2.133  1.510 1.387 2.501  1.275 1.429 1.606 1.812 1.971
QA 1.332 1.200 1.343 1.960  1.252 1.178 1.208 1.294 1.437 1.599 1.711  

Math 1.483 1.228 1.378 1.486 2.454  1.653 1.533 1.471 1.690 2.144 2.280  

Table 4: (White-box SD) Speedup ratio relative to standard autoregressive greedy decoding on var-
ious datasets, comparing single specialized drafters, other methods (blockwise parallel decoding
(BPD) [64], Medusa, Rescored-BPD (R-BPD) and Rescored-Medusa [40]), and bandit-based drafter
selection. Evaluations are conducted with a single NVIDIA A100 GPU under greedy decoding set-
tings.
Speedup Specialized Eagle drafters Other methods Bandit in MetaEagle

Eagle1 Eagle2 Eagle3 Eagle4 Eagle5 BPD R-BPD Medusa R-Medusa Rand EXP3 SH UCB

Code 3.934  1.303 1.776 2.150 2.427 1.963 2.146 2.661 2.822 2.310 2.858 3.650 3.724  
Trans 1.750 2.496  2.281 2.131 1.714 1.626 1.442 1.909 2.056 2.036 2.171 2.225 2.318  
Sum 1.707 1.507 3.382  2.005 1.589 1.509 1.455 1.723 2.136 2.261 2.261 2.801 3.057  
QA 1.842 1.579 2.181 2.916  1.783 1.489 1.468 1.817 2.154 2.006 2.128 2.466 2.641  

Math 2.584 1.618 2.337 2.433 3.903  1.696 1.696 2.142 2.519 2.449 2.811 3.339 3.520  

capture and condense information from diverse articles. Finally, QA represents a core natural lan-
guage understanding task, requiring drafters to comprehend and extract information from complex
contexts. For both settings, we utilize a pool of 5 heterogeneous drafters in the MetaSD framework.

4.2 Main result

Diverse task (black-box SD) Table 3 presents the speedup ratios achieved by various methods on
a diverse set of tasks using black-box SD. As expected, specialized drafters excel on their respective
tasks, as indicated by the highlighted best results. However, their performance suffers significantly
on unrelated tasks, demonstrating the limitations of relying on a single drafter. Our MetaSpS-UCB
consistently achieves competitive speedup compared to both specialized drafters and other state-of-
the-art techniques across all tasks. This highlights the effectiveness of our adaptive drafter selection
mechanism in leveraging the strengths of multiple drafters to optimize performance across diverse
scenarios. Notably, MetaSpS-UCB reaches the near-optimal performance of the corresponding spe-
cialized drafter on several tasks, demonstrating its ability to dynamically identify and utilize the
most suitable drafter for the given context. Furthermore, when comparing MetaSpS-UCB to other
bandit such as SH and EXP3, considering switching costs and non-stationarity, we observe that
MetaSpS-UCB consistently outperforms others. This supports the theoretical advantages of UCB.

Diverse task (white-box SD) Table 4 presents the results for white-box SD with MetaEagle, uti-
lizing EAGLE drafters integrated into the target LLM. Similar to the black-box setting, specialized
drafters excel on their designated tasks but struggle on others. MetaEagle-UCB again demonstrates
competitive performance, consistently achieving high speedup ratios across all tasks and often out-
performing other bandit-based selection strategies. This highlights the adaptability and effectiveness
of our proposed framework in both black-box and white-box SD scenarios.
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Multilingual task (black-box SD) Ta-
ble 5 shows the speedup ratios on mul-
tilingual tasks. Consistent with the
observations in diverse tasks, special-
ized drafters demonstrate superior perfor-
mance on their matched language pairs.
MetaSps-UCB consistently outperforms
other bandit-based selection strategies
(EXP3, SH) and remains competitive even
with specialized drafters, showcasing its
ability to adapt effectively to varying lan-
guage pairs and achieve notable speedup
gains in multilingual scenarios.

Table 5: Speedup ratio relative to standard autoregres-
sive greedy decoding on various multilingual datasets,
comparing single specialized drafters to bandit-based
drafter selection (EXP3, SH, UCB). Evaluations are
conducted with a single NVIDIA A5000 GPU under
greedy decoding settings. Drafter specializations: 1: Ja
→En, 2: Ru →En, 3: De →En, 4: Fr →En, 5: Zh →En.

Speedup SpS with specialized drafters Bandit in MetaSpS

Drafter1 Drafter2 Drafter3 Drafter4 Drafter5 EXP3 SH UCB

Ja → En 1.757  1.109 1.012 1.018 1.154 1.260 1.368  1.161
Ru → En 1.055 1.817  0.995 0.963 1.036 1.259 1.403 1.503  
De → En 1.098 1.369 2.360  1.036 1.099 1.472 1.656 1.693  
Fr → En 1.106 1.445 1.108 2.135  1.122 1.506 1.607 1.775  
Zh → En 1.198 1.086 1.021 1.023 1.516  1.204 1.297 1.369  

2 4 6 8 10 12 14
Nmax

1.0
1.5
2.0
2.5
3.0
3.5
4.0

Va
lu

es

Optimal E[Nacc]
Optimal Speedup

UCB E[Nacc]
UCB Speedup

Figure 3: Ablations on Nmax. ‘Optimal’
represents the optimal drafter and UCB
denotes MetaSps-UCB with BD reward.

Table 6: Average of speedup ratio comparing the BE
and BD rewards for MetaSD-UCB with both SpS and
EAGLE drafters over 3 different runs.

Task MetaSpS-UCB MetaEagle-UCB

BE BD BE BD

Code 2.052±0.004 2.231±0.006  3.590±0.017 3.661±0.003  
Trans 1.465±0.004 1.554±0.001  2.228±0.009  2.201±0.001

Sum 1.770±0.002 1.929±0.001  3.038±0.005 3.043±0.001  
QA 1.591±0.003 1.698±0.001  2.629±0.003  2.608±0.001

Math 1.992±0.003 2.238±0.002  3.461±0.009 3.515±0.001  

Draft length To analyze the impact of draft length on the performance of MetaSps-UCB with the
BD reward, we conduct experiments on the Code task using 5 drafters following the same setting in
Table 3. The maximum draft length Nmax is varied to measure the resulting speedup. Figure 3 shows
that increasing the draft length initially leads to higher E[Nacc] and speedup due to the increased
parallelism in token generation. However, beyond a certain threshold, further increasing the draft
length yields diminishing returns and can even decrease performance due to the higher probability
of rejection and the associated overhead.

Reward design To assess the impact of our reward function choice, we compare the performance
of MetaSD using both BE and BD rewards. In the black-box setting, BD consistently outperforms
BE across various tasks, as shown in Table 6. This highlights the importance of utilizing a re-
ward signal that accurately captures the underlying dynamics of the SD process. However, for the
MetaEagle-UCB (white-box) setting, both BE and BD rewards exhibit comparable performance. We
hypothesize that this is due to Eagle’s tree-attention mechanism, which effectively explores multiple
decoding paths and implicitly captures the divergence between the drafter and target LLM distri-
butions. This suggests that in white-box settings with multi-path exploration, the choice of reward
function might have a less significant impact on the overall performance. Nonetheless, the consis-
tent superiority of BD in the black-box setting underscores its potential benefits in scenarios where
such multi-path exploration is not available.

5 Conclusion
In this paper, we introduce a unified framework for incorporating multiple drafters into speculative
decoding, addressing the limitations of single-drafter approaches. We formalize this problem as a
multi-armed bandit problem, termed as MetaSD, and proposed MetaSD-UCB, a novel algorithm that
leverages the Upper Confidence Bound (UCB) principle to dynamically select the optimal drafter at
each generation step. We also provide theoretical guarantees on the performance of MetaSD-UCB,
establishing its effectiveness in achieving near-optimal speedup even with a stochastic number of
rounds. Through extensive experiments on diverse and multilingual tasks, we demonstrate the su-
perior performance of MetaSpS and MetaEagle compared to both specialized drafters and other
state-of-the-art methods. Our work opens up new avenues for further research in speculative de-
coding, including exploring more sophisticated reward designs, incorporating switching costs, and
addressing non-stationary environments.
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[27] Nicolò Felicioni, Lucas Maystre, Sina Ghiassian, and Kamil Ciosek. On the importance of
uncertainty in decision-making with large language models. arXiv preprint arXiv:2404.02649,
2024.

[28] Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the sequential dependency of llm
inference using lookahead decoding. arXiv preprint arXiv:2402.02057, 2024.

[29] Zijun Gao, Yanjun Han, Zhimei Ren, and Zhengqing Zhou. Batched multi-armed bandits
problem. Advances in Neural Information Processing Systems, 32, 2019.
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[45] Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

[46] Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via
speculative decoding. In International Conference on Machine Learning, pages 19274–19286.
PMLR, 2023.

[47] Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling
requires rethinking feature uncertainty. arXiv preprint arXiv:2401.15077, 2024.

[48] Jiahao Liu, Qifan Wang, Jingang Wang, and Xunliang Cai. Speculative decoding via early-
exiting for faster llm inference with thompson sampling control mechanism. arXiv preprint
arXiv:2406.03853, 2024.

[49] Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, Ion Stoica, Zhijie Deng, Alvin Cheung, and Hao
Zhang. Online speculative decoding. arXiv preprint arXiv:2310.07177, 2023.

[50] Shie Mannor and John N Tsitsiklis. The sample complexity of exploration in the multi-armed
bandit problem. Journal of Machine Learning Research, 5(Jun):623–648, 2004.

[51] Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang,
Rae Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating large
language model serving with tree-based speculative inference and verification. In Proceed-
ings of the 29th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3, pages 932–949, 2024.

12



[52] Makoto Morishita, Katsuki Chousa, Jun Suzuki, and Masaaki Nagata. Jparacrawl v3. 0: A
large-scale english-japanese parallel corpus. arXiv preprint arXiv:2202.12607, 2022.

[53] Chanwoo Park, Xiangyu Liu, Asuman Ozdaglar, and Kaiqing Zhang. Do llm agents have
regret? a case study in online learning and games. arXiv preprint arXiv:2403.16843, 2024.

[54] David A Patterson. Latency lags bandwith. Communications of the ACM, 47(10):71–75, 2004.

[55] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. arXiv e-prints, 2019.

[56] Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al.
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv
preprint arXiv:2403.05530, 2024.
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Appendices
A Overview of appendix

This appendix provides supplementary material that expands on the main contents. Each section is
designed to complement the research presented:

• Appendix B: Discusses the broader impact of our work.
• Appendix C: Acknowledges the limitations of our current approach and outlines promising

directions for future research.
• Appendix D: Provides a prepliminary for speculative sampling (SpS).
• Appendix E: Provides a comprehensive review of related work, situating our contributions

within the broader context of speculative decoding with LLMs and multi-armed bandit
research.

• Appendix F: Details additional experimental setups, offering further insights into the per-
formance and behavior of our proposed method.

• Appendix G: Presents rigorous mathematical proofs for the theoretical guarantees estab-
lished in the main paper.

• Appendix H: Explores extensions to the MetaSD framework, addressing practical consid-
erations such as switching costs and non-stationary environments.

• Appendix I: Offers further discussion and analysis of the results presented in the main
paper, potentially including additional insights, interpretations, or comparisons.

• Appendix J: Provides further experimental results.

Ethics statement This work primarily focuses on improving the efficiency of LLMs through al-
gorithmic advancements and does not directly involve sensitive data or applications that could raise
immediate ethical concerns.

Reproducibility statement To facilitate reproducibility, we provide a comprehensive exposition
of the materials and experimental configurations within this paper and its accompanying appendices.
The organization is as follows:

• Section 2 - This section presents the problem statement and pseudocode for the MetaSD
framework.

• Section 3 & Section H.3 - This section provide detailed MAB algorithms for the MetaSD
framework under various scenarios.

• Section 4 - This section elaborates on the implementation specifics, including the pre-
trained models, datasets, and evaluation metrics.

• Appendix F - This section delves into additional details of the experimental settings.

B Broader impact

Generalized speedup Our MetaSD framework for multi-drafter speculative decoding has the po-
tential to enhance the robust speedup capabilities of LLMs. By dynamically selecting from a diverse
pool of drafters, the system can better adapt to a wider range of tasks and input contexts, poten-
tially leading to reduced latency on unseen or less frequently encountered scenarios. This increased
generalization could benefit various applications, such as machine translation, summarization, and
creative writing, where models are often required to handle diverse and unpredictable inputs.

Efficiency The primary goal of our framework is to accelerate the inference process of LLMs.
By leveraging speculative decoding with multiple drafters, we aim to achieve significant speedup
gains compared to traditional single-drafter approaches. This improved efficiency could enable the
deployment of large language models in resource-constrained environments or real-time applications
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where latency is critical. Faster inference could also facilitate broader accessibility to powerful
language models, making them more practical for a wider range of users and use cases.

Systematic impact Our work remains various potential societal impact. Faster and more efficient
language models could lead to advancements in various domains, such as healthcare, education, and
customer service, where natural language understanding and generation play crucial roles.

C Limitation & Future work

C.1 Limitation

Scalability It is important to acknowledge that the scalability of our approach may be challenged
when dealing with an extremely large number of drafters. In such scenarios, the computational
overhead associated with evaluating multiple drafters at each step could potentially outweigh the
speedup benefits. To address this limitation, future work could explore strategies for pre-selecting
a smaller subset of promising drafters based on initial query analysis or other heuristics, before
applying the MetaSD framework. This would help to maintain the efficiency and scalability of our
approach even in the presence of a vast pool of potential drafters.

Diverse target LLMs While our framework is designed to be agnostic to the target LLM archi-
tecture, extensive empirical evaluation across a wider range of LLMs is needed. Future work will
assess the generalizability of our approach across different LLM architectures and sizes.

Batched inference Our current implementation primarily focuses on single-query scenarios.
Adapting the MetaSD framework to leverage batched inference techniques could further enhance
its efficiency, particularly in high-throughput settings.

C.2 Future work

Reward design and exploration-exploitation balance The choice of reward function and the
exploration-exploitation tradeoff significantly impact the performance of MetaSD. Exploring alter-
native reward designs and adaptive exploration strategies could lead to further improvements in
speedup and adaptability.

Non-stationarity While we briefly discuss handling non-stationarity in Appendix H, more sophis-
ticated techniques could be investigated. This could involve incorporating change detection mecha-
nisms or developing MAB algorithms specifically tailored to the non-stationary nature of language
generation.

Contextual bandits Our current framework primarily relies on observed rewards for drafter selec-
tion. Incorporating additional contextual information, such as the query type, user history, or drafter
metadata, could lead to more informed decisions. Integrating contextual bandit algorithms into the
MetaSD framework is a promising direction for future research.

Reinforcement learning (RL) formulation The MetaSD framework could also be formulated as
an RL problem, where the agent learns to select the optimal drafter based on the current state (input
context and generated text) to maximize a long-term reward (e.g., overall speedup). Exploring RL-
based approaches could potentially uncover novel strategies for adaptive drafter selection.

MAB framework over different SD algorithms Our current work focuses on applying the MAB
framework to select among heterogeneous drafters sharing the same SD algorithm (e.g., SpS or
EAGLE). While this approach demonstrates significant benefits, it is worth noting that the MAB
framework could potentially be extended to encompass a more diverse set of SD algorithms (e.g.,
Sps, PLD, Lookahead, EAGLE, and others). This would involve designing a reward function and
selection strategy that can effectively compare and choose between fundamentally different SD ap-
proaches, each with its own strengths and weaknesses. Exploring this broader application of the
MAB framework in speculative decoding is an interesting direction for future research.
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Algorithm 3: Speculative sampling (SpS)
INPUT : Target LLMMp, a small drafterMq , initial prompt sequence x1, . . . , xl and target

sequence length B.
1: while l < B do
2: for e← 1, . . . , E do
3: xle ∼Mq(x|x1, . . . , xl, xl1 , . . . , xle−1)
4: end for
5: In parallel, compute E + 1 sets of logits drafts xl1 , . . . , xlE with the target LLMMp:

Mp(x|x1, . . . , xl),Mp(x|x1, . . . , xl, xl1), . . . ,Mp(x|x1, . . . , xl, xl1 , . . . , xlE )
6: for j ← 1, . . . , E do
7: Sample r ∼ U [0, 1] from a uniform distribution
8: if r < min(1,

Mp(x|x1,...,xl+j−1)
Mq(x|x1,...,xl+j−1)

) then
9: Set xl+j ← xlj and l← l + 1

10: else
11: Sample xl+j ∼ (Mp(x|x1, . . . , xl+j−1)−Mq(x|x1, . . . , xl+j−1))+ and exit for loop.
12: end if
13: end for
14: If all tokens xl+1, . . . , xl+E are accepted, sample extra token

xl+E+1 ∼Mp(x|x1, . . . , xl, xl+E) and set l← l + 1
15: end while

D Preliminary: speculative sampling

Speculative decoding accelerates LLM inference by employing a smaller draft model to predict
future tokens, which are then verified by the target LLM. This parallel token generation can signifi-
cantly reduce latency, especially when the draft model’s predictions align well with the target LLM’s
output distribution.

Algorithm 3 outlines the speculative sampling procedure [46, 18]. Given an initial prompt sequence,
the draft model generates E potential future tokens. Concurrently, the target LLM computes the
probabilities of these tokens, as well as the probability of its own prediction for each subsequent
token position. A drafted token is accepted if its probability, according to the target LLM, exceeds
a certain threshold. This threshold is determined by comparing the target LLM’s probability for
the drafted token to both the draft model’s prediction and a random sample, ensuring only high-
confidence drafts are accepted. If a drafted token is rejected, the target LLM samples a token from
the residual distribution, which represents the difference between its own prediction and the draft
model’s. This process iterates until the desired sequence length is reached.

Speculative sampling allows the target LLM to process multiple tokens in parallel by drafting them
in advance, reducing the overall generation time. When the draft model’s predictions are accurate,
a significant portion of the generated tokens are accepted, leading to substantial speedup. The veri-
fication step and residual sampling ensure that the final generated sequence remains consistent with
the target LLM’s distribution, preserving generation quality. Speculative sampling provides a foun-
dation for our proposed framework, where we extend this approach to incorporate multiple drafters
and dynamically select the optimal one using MAB algorithms.

E Related work

E.1 Speculative decoding

Speculative decoding employs a draft-then-verify paradigm to enhance LLM inference speed. This
approach tackles the latency bottleneck in autoregressive decoding, where extensive memory trans-
fers for each token generation lead to underutilized compute resources [54]. Pioneering works by
[46, 18] introduced speculative decoding and sampling, enabling lossless acceleration of diverse
sampling methods. These methods leverage smaller models within the same model family (e.g.,
T5-small for T5-XXL) without additional training. Recent advancements have further refined spec-
ulative decoding. Models like Eagle [47] and Medusa [15] integrate lightweight feedforward neural
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network heads into the LLM architecture, enabling early drafting of token sequences and improving
throughput.

Despite their efficacy, these methods often rely on a single drafter or a fixed set, limiting adaptability
to diverse tasks and input contexts. [74] propose specialized drafters based on the self-distilled
dataset training, but dynamically selecting among heterogeneous drafters remains an open challenge.
[49] suggest online training of specialized drafters, but their reliance on query-based classification
and limited speedup gains highlight the need for a more comprehensive solution.

E.2 Bandit algorithms

Multi-armed bandit Multi-armed bandit (MAB) problem has been extensively studied for
decades with various settings. For stochastic MAB setting, [44] and [2] provided asymptotic op-
timal regret bounds that is logarithmic to the total round T and [6, 5] and [36] proved this result also
holds when T is finite. For another variant, EXP3 algorithm [7] proves the optimal regret bound
in adversarial environment where reward distribution of each arm can change by adversary in every
round.

Budgeted bandit The budgeted MAB problem address a bandit scenario where each arm pull
yields both a reward and a cost drawn from individual distributions. Here, the goal is to maximize
the cumulative reward until sum of the cost reaches the budget. Then, the optimal arm would be
the one with the highest reward-to-cost ratio. ϵ-First policies [67] and KUBE [68] assumed a non-
stochastic fixed cost for each arm pull. [23] provided UCB-BV algorithm where cost for each arm
is assumed to be a bounded discrete random variable.

Bandits with switching costs In real-world scenarios, a cost may be incurred whenever switching
arms. This is related to the MAB problem with switching costs. [22, 29, 57, 24, 3]. For stochastic
MAB, [29] and [24] assume a fixed cost is incurred whenever switching arms. They proved an
instance-dependent regret bound O(log T ) which does not depend on the unit switching cost value.

Pure exploration Pure exploration or best arm identification (BAI) problems [25, 26, 4] aim to
explore as much as possible throughout the round to obtain the best arm at the end of the round.
This contrasts with the traditional MAB objective which is maximizing cumulative reward. [25, 50]
and [26] investigated pure exploration in MAB under the PAC learning framework. BAI problems
are primarily categorized into two settings. First, in the fixed budget setting [4, 39, 16], the goal is
to minimize the chance of selecting sub-optimal arms within a fixed number of rounds. The other
problem targets fixed confidence setting [39, 38, 30, 19] whose objective is to minimize number of
rounds required to achieve a desired confidence level.

Non-stationary bandit Non-stationary bandit problems assume that reward distribution of each
arm changes over time. The goal in non-stationary bandit problems is to find a balance between
exploration and exploitation while carefully managing past information to adapt to the dynamic
environment. Among the earliest works, [32] assumed that only the best arm changes over time.
This assumption was later relaxed in [69], where the authors allow the mean reward for each arm to
change at every round. [63] assumed reward distribution follows a Brownian motion and established
a regret upper bound that grows linear in rounds. Another line of works quantifies the degree of non-
stationarity in the bandit instance by assuming a fixed value of L which represents a number of times
reward distributions change. [7] suggested EXP3.S algorithm and proved regret upper bound with
given L but slightly worse when L is not given. [42] suggested Discounted-UCB, where they obtain
reward estimates with discounting factor over time. [31] introduced Sliding-window UCB, where
they used fixed-size window to retain information of the rounds within the window for estimating
mean reward. ADSWITCH in [8] is proven to be nearly minimax optimal, achieving the state-of-the
art regret bound without any prior knowledge of L.

E.3 Large language models and bandits

Recently, several works have made connections between LLMs with bandits using the emergent
abilities of LLMs. One side of works utilize LLM as an agent to solve decision making problems
combining with bandit framework [9, 27, 70, 53]. On the otherside, some of the works use bandit
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algorithms for improve the performance guarantee of LLMs with certain tasks such as for efficient
prompt optimization [61] and online model selection [71].

Most relevant to ours, several concurrent works investigate how bandit framework can be incorpo-
rated into SD. [48] used Thomson sampling algorithm (which is one of the most popular bandit
algorithm) to adaptively choose maximum candidate length Nmax combining with early-exit frame-
work. [37] assumed existence of multiple drafters and formulate SD as a contextual bandit problem.
However, they rely on collecting offline samples for the policy learning which can be costly. Fur-
thermore, their approach is regarded as a classification problem that the selected drafter is fixed in a
single query. To the best of our knowledge, our work is the first to use MAB framework within
every speculation round and provide its theoretical guarantees.

F Experiment detail

F.1 Training specialized drafters with self-distilled data

Following the [74], we use their training strategy consisting of two steps:

1. Pretraining drafters on a portion of C4 dataset [55] and ShareGPT dataset [59].
2. Finetuning the models with self distilled data having the target task with templates.

Self-distilled data Following prior work [41, 78, 15, 74], we generate the training data for spe-
cialized drafters through self-distillation from the target LLM. To capture the full spectrum of its
output variability, we generate multiple responses at various temperatures—{0.0, 0.3, 0.7, 1.0}. We
utilize this self-distilled dataset for training both independent small drafter models and dependent
Eagle drafters. For Eagle-specific training details, we adhere to the settings outlined in the original
Eagle paper [47].

F.2 Drafter details

All independent drafters are based on a decoder-only Llama transformer model with 68M param-
eters. The model configuration includes 2 hidden layers, 768 hidden size, 12 attention heads, and
a vocabulary size of 32,000. Other key settings are: silu activation function, 0.0 attention dropout,
and no weight decay. The training recipe involves pretraining on a subset of the C4 and ShareGPT
datasets, followed by fine-tuning on task-specific data generated through self-distillation from the
target LLM. We employ 4 NVIDIA A100 GPUs with 80GB memory, utilizing techniques like FSDP
(Fully Sharded Data Parallelism), gradient checkpointing, and lazy preprocessing to optimize train-
ing efficiency. Hyperparameters include a batch size of 8, 3 training epochs, a learning rate of 2e-5,
and a cosine learning rate scheduler with a warmup ratio of 0.03. We maintain consistent architec-
ture and training procedures across all white-box drafters, ensuring their heterogeneity stems solely
from the diverse task-specific datasets they are fine-tuned on. For further specifics on Eagle drafter
training, we refer readers to the original Eagle paper [47].

F.3 Datasets

Training dataset We utilize a diverse collection of datasets to train our specialized drafters, en-
suring their proficiency across various tasks and languages:

• ShareGPT [59]: A dataset of approximately 58,000 conversations scraped. These conver-
sations include both user prompts and responses from OpenAI’s ChatGPT.

• WMT16 De→En [14]: A dataset for German-to-English machine translation, providing
high-quality parallel text data.

• JparaCrawl-v3.0 [52]: A large-scale Japanese web corpus, enabling training of a drafter
specialized in Japanese-to-English translation.

• WMT16 Ru→En [14]: A parallel corpus for Russian-to-English machine translation, sim-
ilar to the WMT16 De→En dataset but focusing on the Russian language.

• WMT14 Fr→En [13]: A dataset for French-to-English machine translation, providing ad-
ditional multilingual training data.
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• WMT19 Zh→En [11]: A dataset for Chinese-to-English machine translation, further ex-
panding the language coverage of our drafter pool.

• Code alpaca [17]: A dataset of code generation instructions and corresponding outputs,
facilitating the training of a drafter specialized in code-related tasks.

• CNN/Daily mail [35]: A dataset for summarization, comprising news articles and their
corresponding summaries.

• Natural question answering [43]: A large-scale question answering dataset based on real
user queries and Wikipedia passages, aiding in training a drafter for question answering
tasks.

• Meta math question answering [75]: A dataset focusing on mathematical question answer-
ing, providing specialized training data for a math-oriented drafter.

Evaluation dataset

• Multilingual translation: Ja to En [52], Ru to En, De to En [14], Fr to En [13], and Zh to
En [11].

• Code generation: Code tasks from the MT-Bench dataset [77].
• Summarization: CNN/Daily summarization dataset [35].
• Question answering: Natural Questions dataset [43].
• Math reasoning: GSM8K mathematical reasoning dataset [21].

Templates We employ specific prompt templates during model evaluation to guide the behavior
of the target LLM and drafters, ensuring consistency and clarity in task execution. These templates
are carefully designed to elicit desired responses and provide relevant context for each task category.
Before the data templates, system prompts of LLMs are positioned at the front to provide additional
context or instructions.

• Multilingual translation: ‘Translate this sentence from [source language] to English:
[source sentence]’.

• Code generation: Its instruction depends on the query.
• Summarization: ‘Summarize: [article text]’.

F.4 MAB settings

In our experiments, we set the exploration strength β for MetaSD-UCB to 0.01, balancing explo-
ration and exploitation. For MetaSD-EXP3, we use a gamma value of 0.4 to control the degree of
exploration. In the SH algorithm, we set the period to 1, ensuring frequent elimination of underper-
forming drafters.

F.5 Baseline

We conduct several SD methods, ensuring their open-source availability and robust performance.
Each method embodies a distinct strategy for accelerating LLM inference:

• SpS [18]: SpS employs a smaller LM from the same model series as the drafter. In the ver-
ification stage, if a token is rejected, SpS corrects it using residual probability to maintain
generation quality.

• BPD, Medusa, and Eagle [64, 15, 47]: These methods enhance the target LLM by incor-
porating additional lightweight FFN heads. These heads draft potential token sequences
based on the penultimate layer representations from the target LLM.

• PLD [58]: Implementing the ideas of [72], PLD selects text spans directly from the input
to serve as drafts, aiming for relevant and accurate initial predictions.

• R-BPD (Rescored blockwise parallel decoding) and R-Medusa (Rescored Medusa) [40]:
This method enhances BPD by rescoring the drafts at test-time, aiming to increase the
number of accepted tokens.
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Figure 4: Comparison of rewards on the Ja→En dataset across different drafters in two scenarios:
(a) BE and (b) BD. Box plots show the distribution of rewards, with whiskers extending to the 5th
and 95th percentiles. Drafter specializations: 1: Ja →En, 2: Ru →En, 3: De →En, 4: Fr →En, 5:
Zh →En.

F.6 Reward distribution

Figure 4 and Table 2 present a statistical analysis of the BE and BD reward distributions, collected
using autoregressive decoding with the same Japanese dataset and drafter configurations as in Ta-
ble 1. Several key observations emerge:

• Lower variance: The BD reward exhibits lower variance compared to the BE reward across
all drafters. This suggests that BD provides a more stable and consistent feedback signal,
leading to faster convergence with less sample complexity.

• Improved discrimination: The difference in mean reward between the optimal drafter
(Drafter 1; Ja-drafter) and the suboptimal drafters is more pronounced with the BD re-
ward. This improved discrimination between drafters can facilitate quicker identification
of the optimal drafter by the MAB algorithm.

• Reduced sparsity: A significant portion of the BE rewards are zero, particularly for the
suboptimal drafters. This sparsity can hinder the learning process of the MAB algorithm.
In contrast, the BD reward consistently provides non-zero feedback, enabling continuous
learning and adaptation.

These observations collectively suggest that the BD reward offers several advantages over the BE
reward in the context of MetaSD. Its lower variance, improved discrimination between drafters,
and reduced sparsity contribute to a more informative and efficient learning signal for the MAB
algorithm, potentially leading to faster convergence and better overall performance.

G Proofs

To begin, we provide the mathematical terms and notations in Table 7.

G.1 Basic lemmas

First, we provide basic concentration inequalities which will be used to prove our theoretical results.
Lemma 1 (Chernoff-Hoeffding bound). Suppose there are n random variables X1, X2, . . . , Xn

whose value is bounded in [0, 1] and E[Xt|X1, . . . , Xt−1] = µ for 2 ≤ t ≤ n. Then, for Sn =∑n
i=1 Xi and a ≥ 0, following inequalities holds:

P(Sn ≥ nµ+ a) ≤ e−2a2/n,P(Sn ≤ nµ− a) ≤ e−2a2/n.

Lemma 2 (Bernstein inequality). Suppose there are n random variables X1, X2, . . . , Xn whose
value is bounded in [0, 1] and

∑n
t=1 Var[Xt|Xt−1, . . . , X1] = σ2. Then, for Sn =

∑n
i=1 Xi and

t ≥ 0, following inequalities holds:

P(Sn ≥ E[Sn] + t) ≤ exp(− t2

σ2 + t/2
).
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G.2 Proof of Theorem 1

In order to prove the theorem, we first provide statistics for the BE and BD rewards by the following
lemmas.

BE reward statistics Here, we explicitly calculate expectation and variance of the BE reward in
one round of speculative decoding. The result is presented in the following lemma.

Lemma 3 (BE reward statistics). The expectation and variance of the number of accepted tokens is
as follows:

E[rBE
i,t ] =

αi − αNmax+1
i

Nmax(1− αi)
,

Var[rBE
i,t ] =

αi

(
1− (2Nmax + 1)αNmax

i + (2Nmax + 1)αNmax+1
i − α2Nmax+1

i

)
(Nmax)2(1− αi)2

.

(5)

Proof of Lemma 3 We first start with calculating the expectation and variance of Nacc which can
be obtained in a closed form. Suppose we conduct one round of speculative decoding for candidate
token indices l + j for j = 1, . . . , Nmax. Now, define Ei

l+j as the event of (l+j)-th token gen-
erated by drafter i is accepted in the verification stage. Also, define random variable Xi

l+j to be 1
when Ei

l+j occurs and 0 otherwise. With the stationary assumption, one can observe Xi
l+j follows

Bernoulli distribution with mean αi. Now, expectation can be obtained as:

E[Nacc(i, t)] =

Nmax∑
l=1

E[Xi
l+j ] =

Nmax∑
l=1

αl
i =

αi − αNmax+1
i

1− αi
. (6)

To obtain variance, from Xi
L+l ∼ Ber(αl

i), following holds:

Var(Xi
L+l) = (αl

i − α2l
i )

22



Now, we can directly obtain a closed form of the variance by,

Var(Nacc(i, t)) = Var(

Nmax∑
l=1

Xi
L+l)

=

Nmax∑
l=1

Var(Xi
L+l) + 2 ·

∑
l<m

Cov(Xi
L+l, X

i
L+m)

= 2 ·
Nmax∑
l=1

Nmax∑
m=l

Cov(Xi
L+l, X

i
L+m)−

Nmax∑
l=1

Var(Xi
L+l)

= 2 ·
Nmax∑
l=1

Nmax∑
m=l

(αm
i − αm+l

i )−
Nmax∑
l=1

(αl
i − α2l

i )

= 2 ·
Nmax∑
l=1

Nmax∑
m=l

αm
i − 2 ·

Nmax∑
l=1

Nmax∑
m=l

{αm+l
i − αi(1− αNmax

i )(1− αNmax+1
i )

1− α2
i

}

= 2 ·
Nmax∑
l=1

l · αl
i − 2 ·

Nmax∑
l=1

{αl
i

(
αl
i − αNmax+1

i

1− αi

)
− αi(1− αNmax

i )(1− αNmax+1
i )

1− α2
i

}

= 2 ·
Nmax∑
l=1

l · αl
i − 2 · 1

1− αi

Nmax∑
l=1

α2l
i

+ 2 · α
Nmax+1
i

1− αi

Nmax∑
l=1

{αl
i −

αi(1− αNmax
i )(1− αNmax+1

i )

1− α2
i

}

=
2αi(Nmax · αNmax+1

i − (Nmax + 1)αNmax
i + 1)

(1− αi)2
− 2α2

i (1− α2Nmax
i )

(1− αi)(1− α2
i )

+
2αNmax+2

i (1− αNmax
i )

(1− αi)2
− αi(1− αNmax

i )(1− αNmax+1
i )

1− α2
i

.

(7)

The second equality comes from the basic property of variance, the fourth equality is from observing
Cov(Xi

L+l, X
i
L+m) = E[Xi

L+lX
i
L+m]− E[Xi

L+l]E[Xi
L+m] = αm

i − αl+m
i . After rearranging the

terms, we can obtain closed form of the variance as follows.

Var(Nacc(i, t)) =
αi

(
1− (2Nmax + 1)αNmax

i + (2Nmax + 1)αNmax+1
i − α2Nmax+1

i

)
(1− αi)2

. (8)

Since rBE
i,t = 1

Nmax
Nacc(i, t) by definition, plugging this into eq. 6 and eq. 8 concludes the proof.

BD reward statistics Next, we obtain the expectation and variance of the BD reward by following
lemma.

Lemma 4. Following the relationships hold for rBD
i,t for all i, t:

E[rBD
i,t ] = αi,Var[r

BD
i,t ] ≤ 1

4Nmax
(9)

Proof of Lemma 4 Under stationary assumption, any random variable which is bounded in [0, 1]
has variance less than 1

4 . Since in eq. 1, rBD
i,t is constructed by empirical mean of Nmax numbers of

samples under stationary assumption, following holds:

Var[ri,t] = Var

 1

Nmax

Nmax−1∑
j=0

(1− dTV (p
l(t)+j , q

l(t)+j
i )

 ≤ 1

4Nmax
,
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and this concludes the proof.

Next, we formally define the bandit signal ratio as follows.

Definition 3 (Feedback signal). Under stationary environment, any reward design ri with µi =
E[ri], i⋆ = argmaxµi, and ∆i = µ⋆

i − µi, we define feedback signal for each suboptimal arm
i ̸= i⋆ as follows.

R(ri) :=
max(Var[ri],Var[ri⋆ ])

∆2
i

As we will see, R become crucial factor that governs regret upper bound of our MetaSD-UCB
algorithm. Specifically, the lower R(ri) guarantees smaller amount of regret by picking suboptimal
arm i.

Then, we provide a formal version of Theorem 1 which states the BD reward actually has lower
feedback signal compared to the BE reward.

Theorem 3 (Formal version of Theorem 1). Denote ∆(αi) := αi⋆ − αi for any suboptimal arm i
and n := Nmax for notational convenience. For any n ∈ N , define functions fn, gn, hn on (0, 1)

by fn(x) =
x−xn+1

1−x , gn(x) = f ′
n(x) =

∑n
s=1 sx

s−1, and hn(x) =
∑n

s=1 s(x
s−1 − x2n−s). Then

following holds:

R(rBD
i ) ≤ 1

4(∆(αi))2Nmax
. (10)

Also, following holds for any drafter configuration satisfying hn(αi⋆) ≥ gn(αi⋆ )
2

4nαi⋆
and Var[rBE

i ] <

Var[rBE
i⋆ ]:

R(rBD
i ) < R(rBE

i ). (11)

Proof. Upper bound for the BD reward can be directly obtained from Lemma 4. To prove eq. 11,
denote Nmax = n for notational convenience. Then, by directly applying Lemma 3, it is observed
that

R(rBE
i ) =

max(Var[rBE
i ],Var[rBE

i⋆ ])

∆2
i

=
αi⋆(1− (2n+ 1)αn

i⋆ + (2n+ 1)αn+1
i⋆ − α2n+1

i⋆ )

(fn(α⋆
i )− fn(αi))2(1− αi⋆)2

>
αi⋆(1− (2n+ 1)αn

i⋆ + (2n+ 1)αn+1
j − α2n+1

i⋆ )

(gn (αi⋆)∆(αi))2(1− αi⋆)
2

=
αi⋆hn(αi⋆)

(gn(αi⋆)∆(αi))2

≥ 1

4(∆(αi))2Nmax
,

(12)

where the first inequality is from fn is a convex function, the second equality comes from Lemma 3,
and the last line comes from the assumption.

Practical considerations While Theorem 3 provides a general scenario, the inequalities used in its
derivation can be quite loose in certain cases. In practice, the BD reward often exhibits a significantly
smaller feedback signal R(ri) than the BE reward. For example, consider the case where Nmax = 5,
which is the setting used in our main experiments. The condition hn(αi⋆) > gn(αi⋆ )

4nαi⋆
holds for

0.06 < αi⋆ < 0.8, which covers most of the practical range of αi⋆ . This implies that, in many
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realistic scenarios, the BD reward leads to a substantially tighter regret bound compared to the BE
reward, further supporting its effectiveness in the MetaSD framework. Moreover, assumption of
Var[rBE

i ] < Var[rBE
i⋆ ] covers most of the practical scenarios. As an example, if n = 5, Var[rBE

i ]
is monotonically increasing until αi = 0.815. Consequently, for any drafter set with αi⋆ < 0.815,
Var[rBE

i ] < Var[rBE
i⋆ ] holds for all suboptimal drafters.

G.3 Stopping time regret

In this subsection, we provide the equivalence relation between two objectives, maximizing the
reward and minimizing the stopping time. First, we define the regret of MetaSD in terms of the
stopping time. Denote τ(π,B) as the stopping time for any policy π with budget B and π⋆ as the
optimal policy. In Definition 2, stopping time regret of policy π with budget B is defined as:

REGs(π,B) = E[τ(π,B)]− E[τ(π⋆, B)].

Intuitively, minimizing REGs(π,B) should guarantee optimal speedup since minimizing τ(π,B)
implies minimizing the number of total SD round. The following lemma proves that our reward
design is well aligned with such objective.

Lemma 5 (BE reward original regret). For any policy π with the given budget B, denote the original
regret objective using the BE reward as REGo,BE(π, T ) =

∑T
t=1(E[ri⋆ ] − E[rat ]) . Then, the

following equation holds:

REGo,BE(π, T ) =
1

Nmax
REGs(π,B)

Consequently, minimizing the regret in terms of accepted tokens is equivalent to minimizing
REG(s)(π,B).

Proof. It is observed that

B =

τ(B)∑
t=1

(Nacc(i, t) + 1) = τ(B) +

τ(B)∑
t=1

Nacc(i, t) = τ(B) +Nmax

τ(B)∑
t=1

rat,t.

Thus,

τ(π,B)− τ(π⋆, B) = Nmax

τ(B)∑
t=1

(ra⋆
t ,t
− rat,t), (13)

where a⋆t is the action from the optimal policy π⋆ in round t. By taking the expectation on both
sides, we get the result.

However, we can show that above result does not hold in every reward design.

Lemma 6 (BD reward original regret). For any policy π with the given budget B, denote the original
regret objective using the BE reward as REGo,BD(π, T ) =

∑T
t=1(E[ri⋆ ] − E[rat ]) . Then, there

exists a bandit instance with the two different policies π1, π2 such that:

E[Rego,BD(π1, B)] < E[Rego,BD(π2, B)],

E[Regs(π1, B)] > E[Regs(π2, B)].

Proof. Suppose we have three drafters with α1 = 0.1, α2 = 0.5, α3 = 0.8 with Nmax = 2.
Consider π1 as the deterministic policy where it picks the drafter 1 for the first round and pick the
drafter 3 rest of the rounds. Also, π2 be the policy which picks drafter 2 for the first two rounds and
drafter 3 for the rest of the rounds. For the original regret objective, π1 has expected regret of 0.7
while π2 has expected regret 0.6. However, it can be observed that the number of expected tokens
until first two rounds is (0.1 + 0.12) + (0.8 + 0.82) = 1.55 for π1 and 2(0.5 + 0.52) = 1.50 for
π2. Since policy for the rest of the rounds are the same, we can conclude that the expected stopping
time of policy π1 is less then that of policy π2. As a result, π2 is better in terms of original regret
objective and π1 is better with stopping time regret objective.
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G.4 MetaSD-UCB with general reward

In this subsection, we provide a generic theorem which is stated as follows.
Theorem 4 (Generic regret upper bound). For any reward design r, Denote µi = E[ri,t], ∆i =
µi⋆ − µi, and i⋆ = argmaxαi. If i⋆ = argmaxµi, then there exists a constant C ′′ > 0 such that
following bound holds:

REG(π,B) <
∑
i ̸=i⋆

8

∆2
i

lnB + C ′′. (14)

Above theorem holds for any reward design as long as the drafter with the maximum expected
reward E[ri,t] also has the highest acceptance rate αi. Since both the BD and BE rewards satisfy
this condition, Theorem 4 applies to both of the reward designs. The proof of Theorem 4 consists of
two main parts. First, given total round, we can bound the expected number of selecting suboptimal
arms using the same anlysis in [6]. Next, we get the upper bound on expected stopping time of
MetaSD-UCB algorithm.

Bounding suboptimal selection Given fixed stopping time, we can bound the expectation of num-
ber of selecting suboptimal arms as follows:
Lemma 7 (Theorem 1 from [6]). Let ni(t) be the number of pulling sub-optimal drafter (i ̸= i⋆)
by the MetaSD-UCB until round t. Also, denote ∆i := µr

i⋆ − µr
i be the sub-optimal gap. Then,

following inequality holds for β = 1 :

E[ni(τ(B))|τ(B)] ≤ 8 ln τ(B)

∆2
i

+ 1 +
π2

3
. (15)

Proof of Lemma 7 For the analysis, we restate the proof in [6] for MetaSD-UCB algorithm with
our notations. One can observe ni(τ(B)), the number of times drafter i is chosen for the one round
of speculative decoding until the end of generation, can be bounded as follows:

ni(τ(B)) = 1 +

τ(B)∑
t=K+1

I[at = i]

≤ l +

τ(B)∑
t=K+1

I[at = i, ni(t− 1) ≥ l]

≤ l +

τ(B)∑
t=K+1

I

[
µ̂i,t−1 +

√
2 ln (t− 1)

ni(t− 1)
≥ µ̂i⋆,t−1 +

√
2 ln (t− 1)

ni⋆(t− 1)
, ni(t− 1) ≥ l

]

≤ l +

τ(B)∑
t=1

t−1∑
s=1

t−1∑
ni=l

I

µ̂i,ni
+

√
2 ln (t− 1)

ni
≥ µ̂i⋆,s +

√
2 ln (t− 1)

s

 .

(16)

Here, I is an indicator function and l is a positive integer. Now, one can see following holds:

P

(
µ̂i,ni +

√
2 ln t

ni
≥ µ̂i⋆,s +

√
2 ln t

s

)
≤

P

(
µ̂i⋆,s ≤ µi⋆ −

√
2 ln t

s

)
+ P

(
µ̂i.ni

≥ µi +

√
2 ln t

ni

)
+ P

(
µi⋆ < µi + 2 ·

√
2 ln t

ni

)
.

First term and the second term in the above equation is bounded by Lemma 1 as:

P

(
µ̂i⋆,s ≤ µi⋆ −

√
2 ln t

s

)
≤ exp(−4 ln t) = t−4,

P

(
µ̂i.ni

≥ µi +

√
2 ln t

ni

)
≤ exp(−4 ln t) = t−4.

(17)
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By choosing l = ⌈ 8 ln τ(B)
∆2

i
⌉, one can see that the last term is 0 since,

2 ·
√

2 ln t

ni
≤ 2 ·

√√√√ 2 ln t

( 8 ln τ(B)
∆2

i
)
≤ ∆i. (18)

Finally, taking expectation of eq. 16 and put the above result, one can see that:

E[ni(τ(B))|τ(B)] ≤ ⌈8 ln τ(B)

∆2
i

⌉+ 2

τ(B)∑
t=1

t−1∑
s=1

t−1∑
ni=l

2t−4

≤ ⌈8 ln τ(B)

∆2
i

⌉+ 2

∞∑
t=1

t−1∑
s=1

t−1∑
ni=l

2t−4

≤ 8 ln τ(B)

∆2
i

+ 1 +
π2

3
.

(19)

Bounding stopping time The overall structure of the proof in bounding the stopping time is based
on the proof of Lemma 2 in [23] while we provide additional details that suits with our problem
formulation. First, we obtain upper bound on stopping time by following lemma:
Lemma 8. Following inequalities holds for some constants C ′ > 0 :

E[τ(π,B)] ≤ B(1− αi⋆)

1− αNmax+1
i⋆

+
∑
i ̸=i⋆

8

∆2
i

lnB + C ′.

In order to prove Lemma 8, we first present two lemmas for bounding stopping time for a single
armed bandit process i.e., we play only the single arm consecutively until the end of the round.
Then, we provide how can we decouple stopping time of multi-armed bandit process of UCB policy.
Lemma 9. Let τ(πi, B) be a stopping time for the single armed bandit process πi which chooses
only same drafter i throughout the generation (i.e. at = i for all t). Then the stopping time can be
bounded as:

B(1− αi)

1− αNmax+1
i

− 1 < E[τ(πi, B)] ≤ (B + 1)(1− αi)

1− αNmax+1
i

. (20)

Proof. One can see the expected budget consumption in each round is µc
i =

1−α
Nmax+1
i

1−αi
and the

remaining number of tokens in the last round is contained in {1, 2, · · · , Nmax}. Now, suppose eq. 20
holds for all B < B0. Then one can observe:

E[τ(πi, B0)] = E

Nmax∑
j=0

(
τ(πi, B0 − 1− j) + 1

)
P[rBE

i = j]


≤

Nmax∑
j=0

(B0 − j)(1− αi)

1− αNmax+1
i

P[rBE
i = j] + 1

≤
Nmax∑
j=0

(B0 + 1)(1− αi)

1− αNmax+1
i

P[rBE
i = j]− (1− αi)

1− αNmax+1
i

E[rBE
i = j] + 1

=

Nmax∑
j=0

(B0 + 1)(1− αi)

1− αNmax+1
i

P[rBE
i = j].

Since it is trivial to see that eq. 20 holds for B = 1, by mathematical induction, one can conclude
the proof. The lower bound can be proved by the exactly same manner as in the upper bound.
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Now, we propose a lemma which provides an upper bound on expected stopping time.

Lemma 10. For MetaSD-UCB algorithm π with given token budget B, expectation of stopping time
τ(B) can be bounded as follows:

E[τ(B)] ≤ E[τ(πi⋆ , B)] +
∑
i ̸=i⋆

E[ni(π,B)], (21)

where, ni(π,B) is number of selecting drafter i by policy π during the generation.

Proof. We first prove the upper bound (eq. 21). For policy π with the budget B, define a corre-
sponding process πu which is defined by extending the process with the new stopping time, which
is:

τu(πu, B) = min{τ > 0 |
τ∑

t=1

(Nacc(a
u
t , t) + 1) · I[aut = i⋆] ≥ B}.

where, aut = at for t ≤ τ(B) and aut = i⋆ for τ(B) < t ≤ τu(πu, B). In other words, τu(πu, B)
is the time where total number of generated tokens by optimal drafter exceeds B. Then, one can see
from the construction of πu and by observing that τu does not depend on the budget consumed by
suboptimal arms,

E[ni⋆(π,B)] ≤ E[τu(πu, B)] = E[τ(πi⋆ , B)].

Proof of Lemma 8 To prove the upper bound, from Lemma 7 and Lemma 10, it is shown that

E[τ(B)] ≤ E[τ(πi⋆ , B)] +
∑
i ̸=i⋆

E[ni(π,B)]

≤ (B + 1)(1− αi⋆)

1− αNmax+1
i⋆

+
∑
i ̸=i⋆

E[ni(π,B)]

≤ (B + 1)(1− αi⋆)

1− αNmax+1
i⋆

+
∑
i ̸=i⋆

8

∆2
i

E[ln τ(B)] + (K − 1)(1 +
π2

3
),

≤ (B + 1) · (1− αi⋆)

1− αNmax+1
i⋆

+
αi⋆ − αNmax+1

i⋆

1− αNmax+1
i⋆

∑
i ̸=i⋆

8

∆2
i

lnE[τ(B)].

(22)

where the second inequality holds from Lemma 9, the third inequality holds by Lemma 7, and
the last inequality holds from Jensen’s inequality. Now, using ln(x) ≤ x

ϵ + ln(ϵ) − 1 and taking
ϵ =

∑
i ̸=i⋆

16
∆2

i
, one can obtain:

E[τ(B)] ≤ (2B + 2) · (1− αi⋆)

1− αNmax+1
i⋆

+ 2 ln(
∑
i ̸=i⋆

16

∆2
i

)− 2 + (2K − 2)(1 +
π2

3
).

If we again put the above equation into the eq. 22, one can obtain:

E[τ(B)] ≤ (B + 1)(1− αi⋆)

1− αNmax+1
i⋆

+
∑
i ̸=i⋆

8

∆2
i

ln

(
(2B + 2) · (1− αi⋆)

1− αNmax+1
i⋆

+ C1

)
+ C2

≤ B(1− αi⋆)

1− αNmax+1
i⋆

+
∑
i ̸=i⋆

8

∆2
i

lnB + C ′,

where C1, C2, C
′ > 0 are appropriate constants independent of B.
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Proof of Theorem 4 The theorem is proved by observing:

E[τ(π,B)]− E[τ(π⋆, B)]) = (E[τ(π,B)]− E[τ(πi⋆ , B)])

≤ B(1− αi⋆)

1− αNmax+1
i⋆

+
∑
i ̸=i⋆

8

∆2
i

lnB + C ′ − E[τ(πi⋆ , B)])

<
B(1− αi⋆)

1− αNmax+1
i⋆

+
∑
i ̸=i⋆

8

∆2
i

lnB + C ′ − B(1− αi)

1− αNmax+1
i

− 1

<
∑
i ̸=i⋆

8

∆2
i

lnB + C ′′.

where C ′′ > 0 is an appropriate constant which doesn’t depend on B. First equality comes
from Lemma 5, first inequality is from Lemma 8, and second inequality holds by putting i⋆ to
the lower bound of Lemma 9.

Note that above analysis holds for every β > 0 in Algorithm 2. However, when the budget B is
finite, constant terms in the regret bound becomes important which makes the performance of the
algorithm dependent on β. We empirically found the optimal β in our experiments.

G.5 Proof of Theorem 2

Concentration inequality Denote empirical mean of the BD and BE rewards as follows.

µBD
i,t =

1

ni(t)

t∑
τ=1

ri,τ · I[aτ = i], µBE
i,t =

1

ni(t)Nmax

t∑
τ=1

Nacc(i, t) · I[aτ = i],

where ni(t) is number of times drafter i is selected until round t and I is indicator function.

Then, following inequalities can be derived for ϵ > 0:

P

(
µ̂BE
i ≥ αi − αNmax+1

i

Nmax(1− αi)
+ ϵ

)
≤ exp

(
− ni(t)ϵ

2

2V ar[rBE
i ] + ϵ

)
, (23)

P
(
µ̂BD
i ≥ αi + ϵ

)
≤ exp

(
−2(Nmax)ni(t)ϵ

2
)
. (24)

eq. 23 comes from combining Bernstein’s inequality (Lemma 2) with Lemma 3 and eq. 24 is from
combining Hoeffding’s inequality (Lemma 1) with Lemma 4.

Bandit algorithm guarantee Using concentration inequalities for both rewards, we provide how
the bandit signal defined in eq. 2 directly related to our algorithm Algorithm 2. In the proof of The-
orem 4, one can observe that bounding number of suboptimal arm selection (Lemma 7) directly
related to the regret under the new regret object defined by stopping time (Definition 2). Leveraging
above results, the regret upper bound for MetaSD-UCB algorithm with the BD and BE rewards can
be proved.

Proof of Theorem 2 For the BD reward, by putting β = 1√
Nmax

in the UCB algorithm and
apply eq. 24, one can directly observe eq. 17 becomes:

P

(
µ̂i⋆,s ≤ µi⋆ −

1√
Nmax

·
√

2 ln t

s

)
≤ exp(−4 ln t) = t−4,

P

(
µ̂i.ni

≥ µi +
1√

Nmax

·
√

2 ln t

ni

)
≤ exp(−4 ln t) = t−4.

(25)

By choosing l = ⌈ 8 ln τ(B)
(Nmax)∆(αi)2

⌉, one can see for ni ≥ l :

2√
Nmax

·
√

2 ln t

ni
≤ ∆i.
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Rest of the proof is same as in Theorem 4 and we can obtain:

REG(B) ≤
∑
i ̸=i⋆

8

(Nmax)∆(αi)2
lnB + C,

for some constants C > 0 and this concludes the proof of Theorem 2.

BE reward regret For MetaSD-UCB algorithm with BE reward, we can obtain regret upper bound
by the following theorem.

Theorem 5. Define ∆BE
i := µBE

i⋆ −µBE
i where µBE

i = E[rBE
i ]. If Var[rBE

i ] < Var[rBE
i⋆ ], we can

obtain the following regret upper bound for the MetaSD-UCB algorithm using BE reward:

REG(πBE , B) ≤
∑
i ̸=i⋆

(
(32Var[rBE

i⋆ ] + 16)

(∆BE
i )2

)
lnB (26)

Proof. From eq. 23, one can similarly modify the original proof of the UCB [6].

Then, putting ϵ =
√

(8Var[rBE
i⋆ ] + 4) ln t into eq. 23 make eq. 17 becomes:

P
(
µ̂i⋆,s ≤ µi⋆ −

√
(8Var[rBE

i⋆ ] + 4) ln t

)
≤ exp(−4 ln t) = t−4,

P
(
µ̂i.ni ≥ µi +

√
(8Var[rBE

i⋆ ] + 4) ln t

)
≤ exp(−4 ln t) = t−4.

By choosing l = ⌈ (32Var[rBE
i⋆ ]+16) ln τ(B)

(∆BE
i )2

⌉, one can see for ni ≥ l :

2 ·

√
(8Var[rBE

i⋆ ] + 4) ln t

ni
≤ ∆BE

i .

Rest of the proof is similar as in Theorem 4.

Regret comparison We restate the Collorary 1 formally as follows:

Corollary 2. For any n ∈ N , define functions fn, gn, hn on (0, 1) by fn(x) = x−xn+1

1−x ,

gn(x) = f ′
n(x) =

∑n
s=1 sx

s−1, and hn(x) =
∑n

s=1 s(x
s−1 − x2n−s). If hn(αi⋆) ≥ gn(αi⋆ )

2

4nαi⋆

and Var[rBE
i ] < Var[rBE

i⋆ ], then the regret of our algorithm πBE with the BE reward feedback is
upper bounded by some function f(B), where f(B) > 8

(Nmax)(∆(αi))2
lnB.

Proof. One can observe:

(32Var[rBE
i ] + 16)

(∆BE
i )2

≥ (32Var[rBE
i ])

(∆BE
i )2

>
16

∆(αi)2(Nmax)
,

where first inequality comes from Theorem 3. Now, putting above result with Theorem 2 and The-
orem 5, we get the result.

Note that the better regret upper bound does not always guarantee the better performance since some-
times it is a proof artifact. Since we take quite loose inequalities during the proof of Theorem 5,
we can improve the constant factors for BE reward. Still, even with assuming we can use Lemma 1
inequality in BE reward (which has better guarantee then Bernstein’s inequality), the result of Col-
lorary 1 still holds which shows the distinction between two reward designs in terms of regret as
in Theorem 3.
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Algorithm 4: Pure exploration-then-commit (PETC)

INPUT Drafter pool [K], initial prompt sequence x1:l, target sequence length B, exploration
rounds B0.

1: for l = 1, 2, ..., B0 do
2: Run SH algorithm with budget B0 (in Algorithm 5)
3: end for
4: î⋆ be the survived index.
5: while l < B do
6: SD with a single drafter î⋆.
7: end while

H Extended scenarios for the MetaSD framework

Our MetaSD framework is universal as it can incorporate various bandit algorithms tailored for dif-
ferent scenarios. However, establishing optimality guarantees for existing algorithms in this frame-
work requires careful analysis or one should look for the different algorithm designs. This is due to
two key distinctions in our problem formulation: (i) stochastic stopping time, and (ii) a new regret
objective defined in terms of this stopping time (Definition 2).

This section explores two distinct scenarios and introduces possible algorithms for each. First, we
address a scenario when switching costs is not negligible anymore. In MetaSD framework, this
happens when substantial computational or memory overhead is incurred when changing drafters.
Second, we consider non-stationary environment where the characteristics of the context change
within a one generation. Finally, we briefly discuss on other possible extensions of our framework.

H.1 Switching costs

Switching costs for multiple drafters In order to use multiple drafters in SD, one need to replace
all missing key-value(KV) cache values for the model whenever switching one drafter to another.
Reading and writing KV cache is one of the factor which can decrease the inference speed, and
we define any decrease of inference speed by changing drafter as the switching cost. Formally,
switching cost is defined as λ(at, t) = λ (l(t)− l(τi(t))) · I[at−1 ̸= at] where l(t) is number
of processed tokens by the target model in round t, τi(t) is the latest round where i-th drafter is
selected before round t, I is an indicator function, and λ is a constant. we first define the pseudo
regret objective in the presence of switching costs.

Definition 4. With bandit policy π and the given budget B, we define the regret as follows:

REGswitch(π,B, λ) = E[τ(π,B)]− E[τ(π⋆, b)] +

τ(B)∑
t=2

λtP(at−1 ̸= at). (27)

To minimize the above regret, observe λ(π,B) = λ
∑τ(B)

t=1 λ(at, t) = λ
∑K

i=1 Bi, where Bi’s are
total number of tokens generated by the i-th drafter after the final round. Intuitively, this implies
that total cost decreases when employing elimination-type of algorithms [4, 39], which successively
eliminate sub-optimal drafters and exclude those drafters from future selection. Consequently, the
total regret REGswitch(B, λ) can be reduced from early elimination of poor-performed drafters.
However, regret can still increase if the best drafter is mistakenly eliminated early on. Therefore, it
is essential to strike a balance between elimination-based algorithms and standard MAB algorithms.
For this, we design a new algorithm Pure Exploration-Then-Commit (PETC) in Algorithm 4
which effectively balances these two approaches.

PETC (Algorithm 4) divides the MetaSD into two phases. In the first phase l < B0, the algorithm
tries to eliminate sub-optimal drafters as quickly as possible. In the bandit literature, this is related to
the pure exploration (or best arm identification) problem [45] and we select using SH Algorithm 5 for
our analysis. After the exploration period for estimating the best drafter, the algorithm exclusively
selects this drafter for the remaining rounds.

Now, we provide how to find the optimal B0 which by the following theorem:
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Algorithm 5: Sequential Halving (SH) [39]
INPUT Total budget T , drafter pool [K]

1: Initialize S0 ← [K]
2: for t = 0, 1, . . . , ⌊log2(K)⌋ − 1 do
3: Pull each drafter in St for nt =

⌊
T

|St|⌊log2(K)⌋

⌋
additional times

4: Rt(i)←
∑nt

j=1 ri,j for i ∈ St

5: Let σt be a bijection on Sk such that Rt(σt(1)) ≤ Rt(σt(2)) ≤ . . . ≤ Rt(σt(|St|))
6: Sk+1 ← [i ∈ Sk|Rt(σt(i)) ≤ Rt(σt(⌈|Sk|/2⌉))]
7: end for

OUTPUT Singleton element of S⌊log2(K)⌋

Theorem 6 (Regret upper bound on PETC). By choosing B0 = c · lnB for some constant
c > 0 and using Algorithm 5 for the pure exploration in the for the first phase in Algorithm 4,
REGswitch(π,B, λ) ≤ O(lnB) holds.

Proof. First, we can decompose the regret as:

REGswitch(π,B, λ) =

τ(B0)∑
t=1

REG(π, t) +

τ(B)∑
t=τ(B0)+1

REG(π, t) + ST ,

where REG(π, t) denotes original regret objective eq. 3 for one round t and ST denotes the to-
tal switching cost. First term can be bounded by the stopping time of selecting the worst drafter
every round until B0 which can be bounded by τ(B0) = O(lnB) according to Lemma 9. To
bound the second term, we borrow Theorem 4.1 in [39], where they prove the probability of
Sequential Halving algorithm to select the suboptimal arm after B0 round can be bounded by
3 log2 K · exp(− B0

8H2 log2 K ), where H2 := maxi
i

∆2
i

. Then we have

τ(B)∑
t=τ(B0)+1

REG(π, t) ≤ τ(πiw , B) · 3 log2 K · exp(−
B0

8H2 log2 K
) = O(lnB),

where iw denotes the worst drafter, τ(πiw , B) denotes the stopping time for generating B tokens
using only the worst drafter. The last term is bounded by λB0 = O(lnB) and this concludes the
proof.

Here, we can improve constant term in regret upper bound in Theorem 6 by controlling c according
to the switching cost λ and given budget B or we may use more advanced proof techniques in the
best arm identification literature such as in [76]. We leave these as a future work.

H.2 Non-stationary environment

In real-world scenarios, the reward distribution for each drafter may evolve over time and past infor-
mation becomes less relevant for decision-making. This phenomenon, referred to as non-stationarity,
challenges traditional MAB algorithms that operate under the assumption of stationary reward distri-
butions. In SD, non-stationarity can stem from various factors. For example, during a long-form text
generation task, the optimal drafter may change as the topic or style of the text evolves. Consider the
prompt: ‘Please summarize and reason about the following article on climate change...’. Initially, a
drafter specialized in summarization might be most effective. However, as the generation progresses
towards the reasoning part, a drafter trained on logical reasoning tasks could become more suitable.

Non-stationary MetaSD Standard analyses of non-stationary bandits [7, 42, 30] often define L
to quantify the number of times the reward distributions change over T rounds. Another line of
work [63, 12] quantifies the non-stationarity using V , the total variation of the means. In both cases,
the regret (which is often called as dynamic regret) is defined as the cumulative expected difference
between the rewards of the optimal arm and the selected arm at each round.

REG(π,B,L) =

τ(B)∑
t=1

(max
i∈[K]

µi,t − E[µat,t]) (28)
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Algorithm 6: Discounted UCB in MetaSD

INPUT Drafter pool [K], initial prompt sequence x1:l, target sequence length B, exploration
strength β, decaying parameter γ.

1: t← 0
/* Phase 1: Meta-draft each drafter in [K] once and do one round of speculative decoding. */

2: for i ∈ [K] do
3: Do one round of SD with drafter i and obtain Nacc(i, t), ri,t (by eq. 1)
4: µ̂i,t, ni, l, t← ri,t, 1, l +Nacc(i, t) + 1, t+ 1
5: end for

/* Phase 2: Meta-draft the draft following the UCB bandit until target sequence length B */
6: while l < B do
7: at ← argmaxi∈[K] µ̂i,t + β

√
2 ln t
ni

8: Do one round of SD with drafter at and obtain Nacc(at, t), rat,t (by eq. 1)
9: µ̂at,t =

1
nat

∑t
s=1 γ

t−sras,sI[as = at]

10: nat , l, t← nat + 1, l +Nacc(at, t) + 1, t+ 1
11: end while

Algorithm 7: Sliding-window UCB in MetaSD

INPUT Drafter pool [K], initial prompt sequence x1:l, target sequence length B, exploration
parameter β, window size τ .

1: t← 0
/* Phase 1: Meta-draft each drafter in [K] once and do one round of speculative decoding. */

2: for i ∈ [K] do
3: Do one round of SD with drafter i and obtain Nacc(i, t), ri,t (by eq. 1)
4: µ̂i,t, ni, l, t← ri,t, 1, l +Nacc(i, t) + 1, t+ 1
5: end for

/* Phase 2: Meta-draft the draft following the UCB bandit until target sequence length B */
6: while l < B do
7: at ← argmaxi∈[K] µ̂i,t + β

√
2 ln t
ni

8: Do one round of SD with drafter at and obtain Nacc(at, t), rat,t (by eq. 1)
9: µ̂i,t ← 1

ni(t)

∑t
s=t−τ+1 ras,sI[as = i] ∀i ∈ [K]

10: ni(t)←
∑t

s=t−τ+1 I[as = i] ∀i ∈ [K]
11: l, t← l +Nacc(at, t) + 1, t+ 1
12: end while

where, as before, B is the number of total tokens we have to generate, µi,t is the mean reward
of choosing drafter i in t-th round, and τ(B) is the total round. However, the regret upper bound
on eq. 28 does not always guarantee the performance of the SD as we discussed in Section 3.1.
Instead, we can use our original regret objective using stopping time Definition 2 without any mod-
ification.

Here, we introduce two types of algorithms within our MetaSD framework: Discounted-UCB (D-
UCB) algorithm [42] (Algorithm 6) and Sliding-window UCB [31] (Algorithm 7). Discounted
UCB-SD estimates mean reward by computing the mean of discounted cumulative rewards as shown
in the line 9 of Algorithm 6. By assigning less weight to the past observations, the algorithm finds
a balance between accumulating knowledge and adapting to the changing environment. Similarly,
sliding-window UCB utilizes a fixed-length window to calculate mean reward as demonstrated in
the line 9-10 of Algorithm 7. By focusing only on recent information, it is also expected to achieve
a balance with careful choose of the window size τ . [31].

One interesting point is that in the non-stationary MetaSD problem, the definition of non-stationarity
L does not fit naturally into our problem. The reason behind this is that under non-stationary context
generations, number of distribution changes happen at the token level, not the round level. This can
disrupt existing regret analysis because a single round might involve multiple reward distribution
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Algorithm 8: MetaSD-EXP3 [7]

INPUT Drafter pool [K], initial prompt sequence x1:l, target sequence length B, γ ∈ (0, 1]
1: t← 0, wt(i)← 1 for i = 1, . . . ,K
2: while l < B do
3:

pt(i) = (1− γ)
wt(i)∑K
i=1 wt(i)

+
γ

K
i = 1, . . . ,K.

4: Draw at randomly according to the probabilities pt(1), . . . , pt(K).
5: Do one round of SD with drafter at and obtain Nacc(at, t), rat,t (by eq. 1)
6: for j = 1, . . . ,K do
7:

r̂j,t =

{
rj,t/pt(j) if j = at
0 otherwise,

wt+1(j) = wt(j) exp

(
γ · r̂j,t
K

)
8: end for
9: l, t← l +Nacc(at, t) + 1, t+ 1

10: end while

changes (e.g., one round of speculative decoding could have two changing points). Whether above
algorithms maintain optimal regret bounds in our regret definition in this non-stationary setting
presents an interesting direction for future theoretical analysis.

H.3 Other possible scenarios

Adversarial environment EXP3 [7] is designed to handle adversarial changes of reward distribu-
tions by continuously updating its estimates of the arm rewards and adjusting its exploration strategy
accordingly. It achieves this by maintaining a probability distribution over the arms and exponen-
tially weighting the rewards based on their recent performance. By incorporating EXP3 into our
framework (Algorithm 8), we can enable the system to adapt to evolving reward distributions and
dynamically select the optimal drafter even in adversarial environments. We utilize this algorithm
as a baseline in our experiments.

I Further discussion

I.1 Is scaling up drafter size always better?

While increasing the drafter size might seem like a straightforward path to improved performance,
it can be less efficient than our MetaSD approach, especially considering memory bandwidth con-
straints. Larger models demand more memory for storing weights and activations, increasing data
movement between memory and processing units. This can become a bottleneck, particularly in
high-performance computing where memory bandwidth is often a limiting factor. It is also discussed
in [74] in SD scenarios. Moreover, this phenomenon is well-illustrated by the roofline model, which
highlights the trade-off between computational intensity and memory bandwidth [15]. As model size
increases, computational intensity might improve, but the memory bandwidth demands can quickly
limit overall speedup.

In contrast, MetaSD utilizes multiple smaller drafters with lower individual memory requirements.
By efficiently switching between these drafters, MetaSD can achieve comparable or superior perfor-
mance to a single large drafter while mitigating the memory bandwidth bottleneck. This is because,
despite having multiple drafters, MetaSD only utilizes one drafter for computation at any given time.
Thus, the memory bandwidth requirement does not scale with the combined size of all drafters, but
rather with the size of the individual drafter being used. Provided sufficient GPU DRAM, this ap-
proach does not have any bottleneck compared to the single drafter SD. Furthermore, MetaSD offers
the flexibility to incorporate diverse drafters with specialized capabilities. This specialization can
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Figure 5: Best arm ratio over rounds for various MAB-SD configurations. (Left) MetaSpS (black-
box SD) with BE and BD rewards. (Right) MetaEagle (white-box SD) with BE and BD rewards.

be more effective than simply increasing the size of a single general-purpose drafter, particularly for
tasks demanding domain-specific knowledge.

I.2 Regret upper bound for MetaSD-UCB

Theorem 2 provides a regret upper bound for MetaSD-UCB, demonstrating that the number of
rounds required to identify the optimal drafter is inversely proportional to the predefined draft length
Nmax. This aligns with the intuition that longer drafts provide more information about the relative
performance of each drafter, leading to faster convergence towards the optimal choice. The logarith-
mic dependence on the budget B further highlights the efficiency of MetaSD-UCB in minimizing re-
gret. These theoretical guarantees are supported by our empirical observations, where MetaSD-UCB
consistently demonstrates strong performance and rapid convergence towards the best-performing
drafter.

I.3 Memory bandwidth bound

A potential concern with our MetaSD framework is the increased memory bandwidth requirement
due to loading multiple drafter models. However, our approach incurs minimal memory overhead.
By storing all drafter weights in GPU DRAM, we avoid frequent accesses to slower system memory,
which are a primary bottleneck for LLMs. For instance, with a 7B target LLM and float16 precision,
our MetaEagle framework utilizes at most 19GB of GPU DRAM during generation, compared to
17GB for a single Eagle drafter. This represents only a small increase in memory usage, and im-
portantly, it does not increase the memory bandwidth requirement during inference since only one
drafter is active at a time.

J Further experiment

Best arm ratio To further analyze the behavior of MetaSD, we examine the best arm ratio, which
represents the frequency of selecting the optimal drafter for a given task. Figure 5 illustrates how
this ratio evolves over speculative decoding rounds, comparing different reward types (BE and BD)
and bandit algorithms (SH, EXP3, UCB) for both MetaSpS (black-box SD) and MetaEagle (white-
box SD). Across all configurations, UCB consistently identifies the best arm more rapidly than other
bandit algorithms. This trend is particularly pronounced in the MetaSpS setting. Additionally, the
BD reward generally leads to a higher best arm ratio compared to BE, suggesting that BD provides
a more informative signal for drafter selection. This observation aligns with our earlier hypothesis
that BD better captures the underlying dynamics of SD. Overall, the combination of UCB with the
BD reward exhibits the most rapid convergence towards the optimal drafter.

Table 8: Speedup ratio with temperature sampling as
temperature is set to 0.7 over a NVIDIA A6000 GPU.

Dataset SpS with specialized drafters Bandit

Drafter1 Drafter2 Drafter3 Drafter4 Drafter5 UCB
Code 2.250 1.215 1.379 1.532 1.513 1.896
Trans 1.086 1.886 1.096 1.130 1.078 1.431
Sum 1.461 1.165 1.874 1.463 1.353 1.744
QA 1.316 1.193 1.324 1.776 1.272 1.534

Math 1.450 1.258 1.355 1.616 2.379 2.046

Temperature sampling We investigate
the impact of temperature sampling on
MetaSpS performance. Table 8 presents
the speedup ratios achieved with tempera-
ture sampling with temperature 0.7 on an
NVIDIA A6000 GPU. Consistent with the
trends observed in our main experiments
with greedy decoding, MetaSD continues
to achieve competitive speedup.
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Table 9: Speedup ratio on long-context De→En
translation with the same settings in Table 5.

Dataset Drafter1 Drafter2 Drafter3 Drafter4 Drafter5 UCB

Long De→En 1.238 1.316 2.044 0.970 1.187 2.031

Long-context De →En translation While our
results in Table 3 and Table 5 have the relatively
less effectiveness of MetaSpS on the WMT16
De→En translation task than other tasks, it is
worth noting that this dataset primarily consists
of relatively short sentences with an average length of fewer than 100 tokens. To assess the per-
formance of our framework in a more challenging long-context scenario, we evaluate it on a new
De→En translation dataset with an average context length of 500 tokens generated by GPT-4o. As
shown in Table 9, MetaSpS-UCB achieves a speedup ratio of 2.031 on this long-context dataset,
approaching the performance of the optimal drafter (Drafter3).
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Table 7: Mathematical terms and notations in our work.
Notation Descriptions

K Number of drafters

[K] For a given integer K, denotes the set {1, ...,K}
i Drafter index i ∈ [K]

αi True mean of acceptance rate when using drafter i

i⋆ Drafter index with the highest αi

t Number of current round

B Total number of tokens to generate

l(t) Number of input tokens at round t

x1:l Token sequence of first l tokens

Mq Target model

Mqi The i-th drafter

pl Probability distribution of target model output given token sequence x1:l

qli Probability distribution of output of drafter i given token sequence x1:l

Nacc(i, t) Number of accepted tokens using drafter i in round t

Nmax Number of candidate tokens

r Arbitrary reward distribution with bounded support [0,1]

ri,t General reward feedback using drafter i in round t

rBE
i,t BE reward using drafter i in round t

rBD
i,t BD reward using drafter i in round t

ni(t) Number of selecting drafter i until round t

at Index of selected drafter in round t

β The exploration strength hyperparamter in UCB

γ The exploration hyperparameter used in EXP3

µi Expectation of the reward distribution of drafter i

π Bandit policy (algorithm)

τ(π,B) Stopping time for the policy π with given total number of tokens B

λ Switching cost constant factor

∆i Suboptimality gap for the arbitrary reward distribution r: µ⋆
i − µi

∆(αi) Suboptimality gap for the BD reward: α⋆
i − αi

∆BE
i Suboptimality gap for the BE reward

R(ri) Feedback signal for reward distribution when using drafter i (Theorem 1)

dTV (·, ·) The total variation distance between probability measures

I Indicator function

O(·) Big O notation
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