A Proofs of Lemma [I)and Corollary

To derive the proof, we recall both Lemma [I]and the Ranking Probability Loss:

‘Qtr‘ N
[RPL _ Z Z Z [y:]r | log | SoftMax Z [fa:lk ;
i=1 j=1 \keL, keL;

where 5;; = >,y [fq,]; is the modified score associated with the query-item pair (g;, k;). The
following Lemma sheds light on the relationship between RPL and ranking probability distribution.
Lemma. (Ranking Probability Loss) Let P € RN*Y denote a matrix with entries Djk given by
pjr = Prob (ranking item k; at location k) = C > ver, [fa:le, where C'is a normalizing constant.

Then, the Ranking Probability Loss maximizes the probability of ranking queries Kgq, in the ordering
of the ground-truth ranking vy;.

Proof. Given fg,, the ground-truth scores y;, and a candidate item k;, we define the set L; = {k €
{1, N} : [yilx < [yi];}. i.e, L; comprises the indices k for which the ground truth score of [y;]; is
larger than the ground truth score at location k. Additionally, without loss of generality, we assume
that f,, and y; are normalized to have entries that lie in [0, 1]. We have:

pjr = Prob (ranking item k; at location k) £ C Z [fa:le,
ely,

Where C'is an appropriately chosed constant, such that P is a matrix with entries summing to one.
Further, in the context of ranking with the logits/scores, we have:

pjx = Prob (ranking item k; at location k)
= Prob (logit of item k; > {logits of all items kj such that k € Ly, }).

Since the entire analysis is presented in the context of a each query g;, for convenience, we abuse
notation, and denote [fg,|; = [f]; = f;. Then, we have
pjr = Prob (logit of item k; > {logits of all items k;, such that & € Ly, })
= Prob (f; > {fr forall k € L})

= Prob (fj > gé%ﬁfﬁ)

~ Prob <fj > Z fg) , 3)

L€y,

where the last step is a consequence of the norm-bound || f||1< || f||- First, we note that, given
the condition in Equation E, for all % ranked higher than j, p;; = 0. Further, for all k£ ranked lower
than j, it suffices to show that the probability p;, is non-zero, for j = k. To verify this, consider two
probabilities p;x, and p;,, with k; ranked higher than k9. Let 1,5, denote the indicator of the event
associated with p;j, . We have

ik, Prob | f;> > fi ‘ Lik, | Prob(Lik,) = pir,
ZGL}W
To build intuition for the this, assume without loss of generality that f have been sorted in a non-
increasing manner. Let j = 1 k1 = 1 and ko = 3. Then, it is clear to see that

Prob(f1>f4+f5+... ‘fl>f2+f3+f4+f5+-o->Pr0b(f1>f2+f3+.--)

:Prob(f1>f2+f3—|—...).

Given P built as described above, and P* defined similarly over scores vy, from the discussion above,
we see that minimizing the distance between P and P* is equivalent to minimizing the distance
between the vectors p = Diag (P) and p* = Diag (P*). We observe that, when normalized, the
entries of p correspond to the probability of ranking item k; and rank j, given sorted vectors f and y.
Then, the RPL is the binary cross entropy loss defined between p and p*, and represents minimizing
the KL-divergence between the predicted ranking probability distribution f and the ground-truth
ranking distribution g, up to a normalizing constant factor. This completes the proof of Lemma[l] [
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Proof of Corollary 2} To link the Ranking Probability Loss to the ListNet loss [21]], we recall that:

|@t7‘| N
LN = =" " Py jlog (Ps),
i=1 j=1
P (x|, . - N N N
whete Py = — ) Seving (5,5 = 515 = oer, fales and (3] = G = Ypen, (01l
S, @ ((a)s)

and a ® that result in mapping s and g to be valid probabilities distributions, we see the equivalence
between the ListNet loss, and the proposed Ranking Probability Loss.

B The CROSS-JEM Inference

The procedure for forward pass of a CROSS-JEM model during training as well as inference is
outlined in Algorithm [2| while the procedure to obtain the attention map over the item union set T is
described in Algorithm

Algorithm 1 Method to create attention masks for item k;. Input: 7},: Tokenized Query, Tt: Tokens
in item Union Set, k: tokenized k; keyword. Output: AttMask: Attention Mask for the keyword

1: procedure GETKUATTENTIONMASK(Tg, Ty, k)
2: AttMask <« []

3: for ¢ from 0 to LEN(T;) - 1 do
4: AttMask. ADDITEM(1)
5: end for
6: for ¢ from 0 to LEN(Ty) - 1 do
7: if Ty [4] in k then
8: AttMask. ADDITEM(1)
9: else
10: AttMask. ADDITEM(0)
11: end if
12: end for

13: return AttMask
14: end procedure

C Datasets

MS MARCO: MS MARCO document re-ranking dataset contains queries and their clicked web
pages consisting of webpage title, URL, and passage. We create a Short-textversion of the dataset by
considering only the titles of the webpages, making the length statistics of the dataset better aligned
with the real-world applications of ranking in sponsored search. We experiment with HDCT [42]
retriever based training dataset consisting of 0.37M training queries and top 10 predictions from
HDCT along with their ground truth click labels. We use the dev set to report our metrics as this
set has ground truth labels available for evaluation. We use ~3.7M training pairs available in MS
MARCO HDCT dataset sourced from [42] as described above for training CROSS-JEM and baselines
using DistilBERT [43]]. The target scores for all training pairs are obtained from a monoBERT model
trained on binary ground truth click data with BERT-Base [44] as the base encoder for MS MARCO
dataset.

SODQ: Stack Overflow Duplicate Questions dataset involves ranking questions on Stack Overflow
as duplicates or not with the tags Java, JavaScript and Python [41]]. It is also one of the re-ranking
datasets on the popular MTEB benchmark [45]]. StackOverflowDupQuestions on MTEB benchmark
is the only shoft text re-ranking dataset with both training and evaluation data available, and is hence
used in our experiments. Similar to our experiments on MS MARCO dataset, the target scores for
training CROSS-JEM as well as baselines are obtained from a BERT [44] based monoBERT model
trained on binary relevance of duplicate questions.

Sponsored Search Dataset: The training dataset for sponsored search query to advertiser matching
task is created using a BERT-Large based monoBERT model trained on manually labeled and good-
click data as the teacher model. A query-item (advertiser bid keyword) pair in the good click data is
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Algorithm 2 Getting relevance scores for a query and retrieved set of items using CROSS-JEM.
Input: Query g, retrieved set of NV items for ¢ where K, = {ko, k1, ..., kx—1}. Output: Scores

S:

{So, S1, ---aSN—l}

PRIN AR

T, < TOKENIZE(Q) > Tokenize the query
Ty < {}
Kiokens < |] > Store tokenized items
for k in K, do
ktokens < TOKENIZE(k)
TU — UNION(TU; ktokens)
Ktokens-ADDITEM(ktokens)
end for
Ty < SORTED(Ty)
KUAttMask <« [] > KUAttMask: item Union Attention Mask

: for i fromOto N — 1 do

AttMask < GETKUATTENTIONMASK(Ty, Ty, Kyokens|i]) (cf. Algorithm
KUAttMask. ADDITEM(AttMask)

: end for

: sepToken <— TOKENIZE([SEP]) > Token id for [SEP] token
: encInpToks < Tq > Tokens to be passed through the Encoder
. enclnpToks. ADDITEM(sepToken)

: for tyy in Ty do

encInpToks.ADDITEM(¢y/)

: end for

. FE < ENCODER(encInpToks)
22:
23:
24

S < SELECTIVEPOOLING(E, KUAttMask) > S e RNVxd
S < CLASSIFIER(S) >S5 e RN
return S

obtained when the user clicked on the ad corresponding to an advertiser keyword in response to their
query, and did not close the ad quickly indicating they found it relevant. This BERT-Large teacher
model was used to score 100 predicted items each for 18.6M queries on the search engine during a
time period. This resulted in around 1.8B query-item pairs with scores in O to 1 range as training data
for CROSS-JEM and all baselines in Table

D

Metrics

* Mean Average Precision (MAP): This is a ranking metric defined as the mean of Average Precision
(AP) over the positive and negative detected classes:

1 Y &
a0 > (m > Pu(k) -relu<k)> )
u=1

k=1

where |@)] is the total number of queries, P, (k) is the precision at cut-off & in the list, rel, (k) is
an indicator function equaling 1 if the item at rank k is a relevant document, otherwise zero.

* Mean Reciprocal Rank (MRR): Rank is defined as the position of the first relevant item in the
ranked list. MRR is hence defined as below:

1 QI 1
@ ; (mnki) )

* Accuracy: Positive, Negative, and Overall Accuracy denote the proportion of positive, negative,
and overall instances, respectively, in the test set that are accurately identified.

* Area Under the ROC Curve (AUC-ROC): The ROC curve is a plot of True Positive Rate (TPR)
or sensitivity against False Positive Rate (FPR) at different thresholds.
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Table 4: Improvement in performance of a large Seq2Seq model, RankT5-base after fine-tuning on
short-text ranking benchmarks

Method | SODQ MS MARCO

| MAP@5 MAP@10 MRR@5 MRR@10

RankT5-base (pre-trained) | 45.66 49.47 27.87 29.75
RankTS5-base (fine-tuned) 55.9 56.8 33.72 35.14

Table 5: Hyperparameters used in CROSS-JEM.
Hyperparam ‘ SODQ ‘ MS MARCO ‘ Sponsored Search
N 30 10 100
L, 265 360 262

Table 6: (a) Ablation on loss function in CROSS-JEM; (b) Adding item token sequence information
in CROSS-JEM via positional encodings in the pooling layer.

Method | BCE CE ListNet RPL

MRR @10 | 31.46 32.03 3027 3545
(@)

Method | Without Positional With Positional

Encodings Encodings
MRR@10 35.45 35.68
MRR@5 33.82 33.98

(b)

E Baselines and Hyperparameters

For the monoBERT, DPR, and ANCE baselines, we tune the following hyperparameters based on the
validation set accuracy: (a) learning rate; (b) weight decay, and (c) number of epochs. ColBERT is
trained and evaluated with the default set of hyperparameters provided by Khattab and Zaharia [19ﬂ
We use the pre-trained checkpoin and code-bas provided by Su et al. [37]] for the INSTRUCTOR
model, and test its zero-shot performance using the instructions mentioned in the paper. CROSS-
JEM is trained with exactly same setting as monoBERT: learning rate of 1e-4, linear learning rate
scheduler, and AdamW optimizer. Hyperparameters specific to CROSS-JEM (/V and L,,) are provided
in Table[5| The metrics for BM25 on SODQ are taken from [41]], while they are computed following
the procedure presented by Trotman et al. [46]] on the MS MARCO dataset.

Fine-tuning RankT5-base (24L) for Short-text Ranking: We fine-tune the model checkpoint
available from Zhang et al. [15] on short-text ranking benchmarks and note the performance
improvements in Table

E.1 Compute

All baselines on MS MARCO and SODQ datasets including CROSS-JEM were trained on 8 V100
GPUs. Experiments on proprietary Sponsored Search dataset were conducted on larger GPU cluster
with 16 V100s.
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F Ablation Experiments on Public Datasets

Loss Function: We demonstrate performance comparison of pointwise and listwise loss functions
with CROSS-JEM architecture in Table [§ (a). While listwise loss functions (Cross-Entropy
and ListNet [21]]) either perform similar to or slightly better than pointwise losses (such as Bi-
nary Cross-Entropy), CROSS-JEM trained with RPL performs better than pointwise or listwise losses.

Incorporating Token Sequence Order Information: CROSS-JEM encodes the union of tokens
from all ranking items, which enables fast inference by reducing the input sequence length. However,
this also discards the original token order information within each item, treating them as bags of
tokens. Though in our preliminary experiments, we observe that the loss of sequence information in
the encoder has a negligible impact on the accuracy particularly in short-text ranking tasks (within
1%, refer Appendix [G). However, token sequence information could be crucial in many ranking
scenarios, and could get completely ignored in CROSS-JEM. To address this limitation, we propose
an extension of CROSS-JEM that leverages sinusoidal positional encodings [47] to inject the item
sequence information back into the model via the selective pooling layer. The key idea is to preserve
the original position indices of the tokens for each item in the ranking list, remove them during
the encoding process, and then add them back to the corresponding token context vectors after the
CROSS-JEM encoder. The positional encodings are computed based on the original position indices
and are summed with the token context vectors. The resulting vectors are then pooled together for
classification as described in Section[3] This simple yet effective technique improves the MRR@ 10
by 0.2% on the MS MARCO dataset (cf. Table [6] (b)), without any additional latency. This technique
could also be used to improve CROSS-JEM’s performance on long texts, which we leave for future
work.

G Experiments: Sponsored Search Dataset

In large-scale search and recommendation systems like sponsored search, the ranking model serves
to weeding out bad retrievals and rank the prediction pool of different retrievers to select the top-k.
We evaluate the effectiveness of CROSS-JEM on this real-world task of matching user queries to
relevant advertiser-bid keywords. A large scale dataset consisting of 1.8B query-keyword pairs was
created by mining search engine logs (detailed in Appendix [C).

Accuracy comparison: As shown in Table[7| CROSS-JEM improves over the in-production sparse
neural model MEB [17]] in MAP by over 13%. Further, CROSS-JEM also outperforms ANCE and
TwinBERT by large margins in MAP, Precision, and Recall. We also assess CROSS-JEM’s ability to
eliminate irrelevant items while preserving relevant ones. Table[7 presents the negative and overall
accuracy when retaining top 80% of positive items per query. CROSS-JEM achieves 99.45% negative
accuracy, removing nearly all irrelevant items.

Efficiency Gains: We observe that CROSS-JEM takes only 9.8 ms to score 700 keywords for a query
on a A100 GPU. In contrast, monoBERT takes 41.3 ms for the same task, rendering it unsuitable for
online deployment. This represents a more than 4-fold reduction in latency compared to standard
cross-encoder models. The latency gains are because CROSS-JEM scores multiple items for a query
in one shot by passing their concatenated tokens through the model. On the other hand, monoBERT
scores each query-item pair independently necessitating 700 passes compared to CROSS-JEM’s 7
passes. Additionally, CROSS-JEM provides 3 x lower latency on GPUs than MEB on CPUs. This
highlights CROSS-JEM’s ability to leverage GPU acceleration for efficiency, unlike sparse models.

CROSS-JEM achieves a high throughput of 17,200 query-keyword pairs per second. This is over
5x more than the 3,350 pairs per second for monoBERT. The massive throughput and latency gains
show CROSS-JEM’s ability to meet the computational demands of large-scale industrial systems
without sacrificing accuracy.

Understanding CROSS-JEM Efficiency Gains: To better understand the efficiency gains in
CROSS-JEM, we analyze the effect of the significant token overlap amongst candidate items in the

*https://github.com/stanford-futuredata/ColBERT
Shttps://huggingface.co/hkunlp/instructor-base
Shttps://github.com/xlang-ai/instructor-embedding
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Table 7: Comparison of CROSS-JEM with production baselines on Sponsored Search Ads Dataset
for ranking advertiser-bid keywords for a user query. CROSS-JEM outperforms baseline methods
(with a latency small enough to be deployed for real-time ranking) by 13% in MAP. CROSS-JEM
filters >90% irrelevant predictions at a threshold which retains 80% of good predictions.

Method MAP@100 P@50 R@50 AUC Negative Accuracy Overall Accuracy
ANCE 78.39 4194 94.02 89.84 86.19 85.55
TwinBERT 83.56 4350 9536 92.10 90.60 88.58
MEB 84.38 4294 94.65 91.77 84.59 84.40
CROSS-JEM 97.48 45.76  99.07 99.41 99.45 95.27

set K4 for a given query g. We trained an ANCE [35]] dense retriever on the same train set as above.
For a query g € Qy., recall that Kq = {k1, ko, ..., kn} are the top N (=100 in our experiments)
items retrieved using ANCE. Let ’]I‘,gj denote word-piece tokens in k; with a max-length of L. Let
Ty denote the union of all tokens of items k; € K;.. We compute the following statistics:

1 N 1 N
_ L _ 1 i3
m= o E g ITx,| |+ and N, = oM Tk, | | »

q€Qe \J=1 g€Q:e \ |J=1

where m is the mean total tokens and N, is the mean size of the set Ty. Intuitively, m is the the sum
of item token lengths on average, while IV, is the cardinaltity of the union set, averaged over the
queries g for which the candidate items K, were obtained. If the items k; have significant overlap,
m > N,. Statistically, N,, is found to be at least 5x smaller than m, indicating high redundancy,
and correlates with observations on the sponsored search data (cf. Appendix Table[§](b)).

Online A/B testing: CROSS-JEM was deployed in the ranking stage of a premier search engine
to conduct A/B tests on live traffic. The ranking stage receives an average of 700 keywords and
up to 1400 keywords in the 99th percentile, from a suite of retrieval algorithms. The control group
consisted of a proprietary combination of late interaction, dense retrieval, and sparse-neural-network
algorithms. CROSS-JEM demonstrated a decrease in the quick-back-rate (users who close the
ad quickly, indicating non-relevance) by over 1.8%. Furthermore, as judged by expert judges,
CROSS-JEM improved the proportion of accurate predictions by 10.2%.

We compare CROSS-JEM against methods that can be deployed for real-time ranking including
ANCE, MEB, and TwinBERT. TwinBERT is a lighter version of ColBERT. It applies an MLP layer
to individual query and keyword embeddings, unlike CoIBERT which considers interactions along all
token embeddings. This makes TwinBERT more efficient and practical for real-world systems due to
lower storage requirements. Table|7|shows the comparison of CROSS-JEM with baseline methods in
production where CROSS-JEM outperforms existing methods by large margins.

Ablation on Number of items per Query (V): From Table[9] we vary the number of items scored
per query from 10 to 100. With more items, the token overlap increases, providing CROSS-JEM
more opportunity for joint modeling. Correspondingly, we observe gains in negative accuracy and
AUC as items per query increase.

Ablation on Encoder & in CROSS-JEM: Table [10 shows that even with a smaller encoder,
CROSS-JEM provides significant accuracy gains over sparse models like MEB while having low
latency.

Ablation on Sequence Information: We analyze the effect of the ordering/sequencing of the item
text on classification accuracy using a cross-encoder model; and a train dataset consists of about
100M query-item pairs (q, k), drawn from Q- x I, mined from proprietary search engine logs.
Given (q, k), we compare two cross-encoder € models: 1) Ecg: Standard cross-encoder scoring the
pairs (g, k), and 2) £/, 5: Cross-encoder trained to score pairs (g, k'), where the item k' is obtained
by sorting the tokens in k alphabetically.

The hypothesis is that, if the cross-encoders Ec i and £, 5, have similar scoring accuracy, then the
sequence ordering is relatively less informative for this task. While testing £/, is evaluated on
(g, k') pairs k' is drawn from I, with its tokens sorted alphabetically. Table [8(a) shows how the
variants perform on a test set of 10M pairs. We observe that, when the sequence information in k is
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Table 8: Sponsored search dataset statistics that motivate our two key insights. (a) Cross-encoder
trained with with ordered tokens (£cx) and alphabetically sorted tokens for all items (£/ ). The
small performance delta (between rows) indicates that sequence ordering is not critical. (b) The mean
total tokens m in a retrieved item set (), and the mean size N,, of tokens in the union of @);,. The
ratio of m to N,, being ~ 5 indicates strong token overlap.

Algorithm ‘ MAP@100 Max-length in word-piece (L) | m | Ny

12 498.38 | 93.70

Eop 93.03 16 499.34 | 94.02

Ebp 92.76 32 501.52 | 94.60
(a) (b)

Table 9: Variation in accuracy on varying the number of items scored per query by CROSS-JEM.
We observe only minor variation in changing the number of items to be ranked at inference time.
This observation is useful in real-world ranking which receive item candidates from a set of retrieval
algorithms and hence the number of items to be scored can vary with the query.

N | Negative Accuracy Overall Accuracy AUC

10 99.18 94.94 99.24
20 99.37 94.96 99.34
50 99.52 94.82 99.40
80 99.56 94.71 99.51
100 99.45 95.27 99.42

Table 10: Variation in accuracy with base encoder £g in CROSS-JEM.

Encoder ‘ Negative Accuracy Overall Accuracy AUC Latency CPU
TinyBERT - 2 layer 96.52 92.76 96.67 114.3
DistilBERT - 6 layer 99.45 95.27 99.61 744.7

discarded, both the mean average precision (MAP) and accuracy are within 1% of the case when the
sequence information is retained.

H Qualitative Analysis

We present additional examples comparing the ranking performance of CROSS-JEM and the baseline
cross encoder model in Table[T1]
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