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Abstract

Using clustering-driven annotations to train a neural network can be a tricky task
because of label noise. In this paper, we propose a dynamic and adaptive label noise
filtering method, called AdaptiveDrop which combines both label noise cleansing
and correction simultaneously in cascade to combine their advantages. Contrary
to other label noise filtering approaches, our method filters noisy samples on the
fly from an early stage of training. We also provide a variant that incorporates
sub-centers per each class for enhanced robustness to label noise by continuously
tracking the dominant sub-centers via a dictionary table. AdaptiveDrop is a simple
general-purpose method, performed end-to-end in only one stage of training, can
be integrated with any loss function, and does not require training from scratch
on the cleansed dataset. We show through extensive ablation studies for the self-
supervised speaker verification task that our method is effective, benefits from
long epochs of iterative filtering and provides consistent performance gains across
various loss functions and real-world pseudo-labels.

1 Introduction

Label noise is an important problem in machine learning. Indeed, due to the memorization effects of
deep models [1], prediction accuracy can drop as incorrect representations are learned, while model
complexity and the required number of training samples may increase.

Automatic speaker verification (ASV) as one of the most convenient means of biometric recognition
[2], uses the voiceprint of a speaker to verify his identity. Based on known utterances of a speaker,
the speaker verification (SV) task aims to identify whether a speaker is a legitimate user or an
imposter. With the advent of big data, recently researchers in the domain of ASV start to explore
more affordable self-supervised learning (SSL) techniques using large noisy datasets. Indeed, since
well-annotated datasets can be expensive to prepare, large-scale datasets are typically collected from
the internet within automatic pipelines [3, 4]. Therefore, having a reliable selection of pseudo-labels
(PLs) [5] and an effective mechanism to curate these noisy annotations becomes even more crucial.

Many cleansing methods exist in the label noise and data pruning literature [6, 7, 8, 9]. They rely in
general on one or multiple stages of label noise cleansing followed by a supervised training stage that
uses the curated training set. Besides, iterative approaches to mitigate label noise by refining PLs
such as [10, 11] can be intimidating and cumbersome as they require more memory and computations.
Contrary to most of these methods that only adopt one of the correction and filtering modes [12]
or alternate between them [12] to build robust models, in this paper we propose a method called
AdaptiveDrop to integrate both mechanisms in a single framework throughout the whole training
to boost the effectiveness of each other for even enhanced robustness against noisy labels. As a
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consequence, this allows us to combine the advantages of both label correction and filtering where
filtering boosts label correction by assuring that the corrected labels lead to a high cosine similarity
with class centers which we add as a constraint to ensure higher quality of the corrected labels.

Our approach is performed in one stage of end-to-end training without the need to generate all sample
embeddings of the whole dataset, thus avoiding additional memory requirements. Furthermore, we
avoid to retrain the model from scratch on the final cleansed dataset as done by most other approaches
[13, 14]. In fact, this can alter the performance of the model and can also negatively impact the
generalization of the model as it is possible that filtering dramatically reduces the dataset. Besides,
since we cannot know with certainty which samples are wrongly labeled, we believe it is important to
have an adaptive and dynamic strategy to keep adjusting our filtering decisions throughout training:
reprocess cleansed samples to recover them in later epochs in case of wrong drop out decisions or to
remove inaccurate labels that were mistakenly included in training.

Finally, AdaptiveDrop is implemented as a general plug-and-play loss module where the backbone
loss function can be simply replaced to adapt to one’s desired configuration. It is agnostic to the
training data size, simple and highly scalable as no training data information is stored, which makes it
very suitable for online learning, and can speed up training considerably thanks to filtering. Moreover,
our method is versatile and can be effectively applied to a wide range of problems and domains
beyond speech or SV.

The contributions of this paper are as follows:

• We propose AdaptiveDrop, a novel general-purpose label noise filtering and correction
method that can be used as a plug-and-play module with any loss function.

• A significant number of experimental results demonstrate the effectiveness and robustness
of our method under various real-world noisy labels and loss functions.

• Contrary to wide practice, our ablations show that filtering label noise from an early stage
of training is very important to avoid overfitting noisy labels.

• AdaptiveDrop outperformed numerous self-supervised SV baselines and achieved high SV
performance.

2 Related Work and Motivation

One common way to leverage large unlabeled datasets for SV systems is to use clustering models
[15, 16, 17], or to employ SSL-based objectives (SimCLR, MoCo) [18] to generate PLs and train
the speaker embedding network using these labels in a discriminative fashion [11, 10]. However,
clustering accuracy remains a limiting factor that constrains SV performance [10, 19]. Alternatively,
iterative clustering-classification methods [10, 20] aim to jointly improve PLs and SV performance,
but errors in PLs may still propagate, reducing overall performance. Thus, there is a need for more
resilient training approaches to label noise to minimize its impact on generalization.
To tackle label noise, we can employ noise-robust algorithms [21, 22] to learn directly from noisy
labels, or use label-cleansing approaches [9, 23] that remove or correct mislabeled samples. For
instance, Subcenter-ArcFace [13] introduced a new loss function that relaxes ArcFace’s intra-class
constraint, improving robustness to label noise by forming a dominant sub-class of majority clean
samples and grouping hard or noisy samples into non-dominant sub-classes.
To detect mislabeled instances, one can simply employ ad-hoc anomaly measures to filter out low-
quality instances or correct those that are above a certain threshold [8, 9] (e.g. low cosine similarity,
exceptionally high training loss value). Subcenter-ArcFace [13] adopts a filtering strategy to tackle
label noise; as a first stage, it directly drops non-dominant sub-centers after the network is fully
trained and has enough discriminative power, and introduces a constant angle threshold to drop
high-confident noisy samples. In a subsequent stage, the model is retrained from scratch on the
cleansed dataset. As a major difference with our AdaptiveDrop version that employs sub-centers, we
dynamically track dominant sub-centers for each class from the beginning of training via a dictionary
table, and perform a dynamic drop out of noisy samples at each training step from an early stage based
on the latter table in order to learn progressively cleaner dominant sub-centers instead of waiting
till training finishes. In our case, all training samples are reconsidered at each epoch to provide the
opportunity to rectify our previous filtering mistakes. Besides, we are able to achieve considerable
performance improvements without having to retrain our model from scratch.
In the context of self-supervised speaker recognition, to mitigate the negative effect of noise present
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Figure 1: General process for training our self-supervised speaker embedding network using our
proposed AdaptiveDrop method. The pipeline depicts the data flow and the label correction module
employed for correcting noisy wrong labels, followed by the data filtering module used to remove
the remaining misclassified samples. CS denotes the cosine similarity between the generated sample
embedding ω and the class identity center embedding ωy .

in PLs, [14] proposed an audio-visual two-step label noise detection and filtering method by dividing
data into easy and peculiar (hard or noisy). [10] also proposed a two-stage iterative loss-gated learning
strategy where clustering of generated embeddings is applied to generate PLs, and samples with a
large training loss are dropped out. On the contrary, our AdaptiveDrop is simpler as it only employs
cosine similarity between samples and their class centers. Additionally, our approach consists of only
one stage of training in an end-to-end fashion which makes it easily generalizeable, lightweight, and
does not rely on complementary information between several modalities such as speech and audio. In
contrast to [10, 14], AdaptiveDrop does not store embeddings or cosine similarities for all samples
and does not employ additional objectives such as contrastive losses which require large batch sizes.

3 Proposed method: AdaptiveDrop

A detailed schematic diagram of the AdaptiveDrop filtering scheme is presented in Figure 1 which
depicts both our label filtering and label correction modules to mitigate label noise in clustering-driven
pseudo-labels.

Given a training batch X and its corresponding noisy PLs Y , our approach employs noisy label
correction and filtering simultaneously to enhance the label correction process and improve the
accuracy of our PLs by avoiding wrong corrections. Besides, we alleviate the negative impact of
over-cleaning since we first correct suspicious labels before filtering them, which can avoid removing
too many samples. To achieve this, we use Cosine Similarity (CS) as a proxy label confidence
indicator to detect the mislabeled instances and set a constant CS threshold τ for label filtering to drop
high-confident noisy data. First, given each training sample x and its label y, we use the weights of
our currently trained embedding network to extract embedding ω of x on the fly at each training step.
We then compute cosine similarity CS(x, y) = cos(ω, ωy) =

ω·ωy

∥ω∥∥ωy∥ between ω and the current
learnt class center/prototype embedding ωy corresponding to class y. If CS(x, y) >= τ , we retain
sample x in the training batch, otherwise it is dropped out from the batch. Indeed, applying filtering
after label correction helps improve correction by assuring that the corrected labels also have a high
cosine similarity which is a second constraint to ensure higher quality of the corrected labels.
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Here in our current implementation, we adopt the angular additive margin softmax loss [24],
a.k.a ArcFace, to train our models. It is worth mentioning that any other loss can equiva-
lently be used without loss of generality. The ArcFace objective is formulated as follows:

LArcFace = − 1
N

∑N
i=1 log(

es(cos(θyi+m))

K1
), where K1 = es(cos(θyi+m)) +

∑C
j=1,j ̸=i e

scosθj ,
N is the batch size, C is the number of classes, yi corresponds to label index, θyi

represents the angle
between the column vector of weight matrix Wyi

∈ R512×1 of the class center and the ith feature
embedding xi ∈ R512×1, where both Wyi

and xi are l2 normalized. θj = arccos(Wj
Txi) is the

angle between xi and the jth class center Wj ∈ R512×1. The scale factor s prevents the gradient
from becoming too small during training, and m is a margin that ensures correct classes have higher
similarity than incorrect ones.

Inspired by the BoundaryFace [25] loss, we partially adopt its label correction scheme (without its
proposed regularization term to emphasize hard samples). For that, before computing the loss of each
batch, we perform label correction by deciding whether to correct a label based on whether the sample
is distributed within the decision boundary of the nearest negative class: If max{cos(θk +m),∀k ̸=
yi} − cos(θyi

) > 0: yi = k, otherwise label yi remains the same.

Logically, if one network has been trained on an entire noisy dataset (pushing all sample embeddings
to their class centers), using this same network to filter out these same wrongly labeled samples is
not a reliable/optimal strategy [14]. On the contrary to the other aforementioned approaches which
use fixed network’s parameters to extract embeddings, in our case we let our network’s parameters
evolve after each training step. This provides a diversity in the extracted speaker embeddings for
cosine similarity verification which has the potential to improve our label filtering and correction
processes by making the filtering process act as an ensemble of models used to smoothly filter out
noisy samples. We also perform dropping from a very early stage of training to mitigate overfitting.
Therefore, this can induce converging to a better trade-off between the optimized training accuracy
and the cosine similarity to class centers.

As samples are dropped out on the fly, and cosine similarities are already available to compute the
loss function, AdaptiveDrop can considerably accelerate the training of large noisy datasets without
having to decide beforehand which samples are reliably accurate.

Finally, we employ a first very short warm-up stage of training for a few first epochs (typically 5
epochs) to train our embedding network with all the PLs to have meaningful weights when label
noise correction and filtering begin. Since neural networks initially focus on memorizing clean labels
[1, 26], this ensures mislabeled data won’t affect the model’s weights before data correction and
filtering.

Additionally, inspired from the idea of sub-centers from [13], we try to capture the complexity
of the distribution of the whole dataset by employing a max pooling step on the subclass-wise
cosine similarity scores (WTxi) across all our predefined K sub-centers. This helps to identify
dominant clean sub-centers to use later as class prototypes for enhanced label noise robustness.
Given a weight matrix W ∈ RC×K×512 of all sub-centers, the Subcenter-ArcFace objective that
we now use is formulated as follows: LSubcenter−ArcFace = − 1

N

∑N
i=1 log(

e
s(cos(θi,yi

+m))

K1
), where now

K1 = es(cos(θi,yi+m)) +
∑C

j=1,j ̸=i e
scosθi,j , and θi,j = arccos(maxk(Wjk

Txi)) for k ∈ 1, ...,K.

Algorithm 1 shows our implementation of AdaptiveDrop using sub-centers. Aa a major difference
with the original proposed method in [13], we use those dominant sub-centers from the start to
compute cosine similarities instead of simply using the class centers or the corresponding maximum
sub-centers of samples which can be noisier.

As a comparison, Subcenter-ArcFace [13] first generates embeddings of the whole dataset offline.
These embeddings are used to compute the dominant sub-centers of classes which are then used to
filter out noisy samples that have no dominant sub-center as their closest sub-center. This requires
considerable additional memory usage and can lead to problems of over-cleaning [7]. To this purpose,
we employ a sub-centers dictionary table DSCT ∈ NC×K (initially all entries are set to zero) to
adaptively track the dominant ones per class from the beginning of training. As a rule, the ongoing
sub-centers with the highest value per class are considered dominant (see Algorithm 1). At each
training step, the entry corresponding to the class sub-center assigned to each sample is increased by
1 (except a first short warmup stage). This strategy can be considered as a smooth ensemble majority
vote across different previous model weights.
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Algorithm 1 AdaptiveDrop Algorithm (using Sub-centers)

Inputs: Training data X , noisy pseudo-labels Y , model M , loss function l, cosine similarity
threshold τ , epoch to start correcting noisy labels (ESC), epoch to start dropping out noisy labels
(ESD), epoch to start tracking dominant sub-centers (ESTD), dominant sub-centers table DSCT
∈ NC×K .
Output: The best model M .
Initialize: Table DSCT with zeros
for epoch = 1 to max_epochs do

Extract embeddings ω for samples of current batch x.
Compute cosine similarities (CS) between each sample in x and its corresponding class sub-
centers ωy,j for j ∈ {1, ..,K}.
if epoch ≥ ESTD then

#Update dominant sub-centers table (DSCT)
closest_subcenter = argmaxj∈{1,..,K}CS [y, j]

DSCT [y, closest_subcenter] += 1
end if
if epoch ≥ ESC then

Correct pseudo-labels y of batch x.
end if
if epoch ≥ ESD then

#Compute dominant sub-centers
Kdominant = argmaxi∈{1,..,K}DSCT [y, i]

Filter samples based on CS(x, y) = cos(ω, ωy,Kdominant).
Set (xclean, yclean) = {(xi, yi) for xi, yi ∈ (x, y) if CS > τ}

else
Set xclean = x and yclean = y

end if
Compute loss l with filtered xclean and yclean.
Perform gradient descent to update network parameters of model M.

end for

4 Experimental setup

We conducted a set of experiments based on the VoxCeleb2 dataset [4]. To train the embedding
networks, we used the development subset of the VoxCeleb2 dataset, which consists of 1,092,009
utterances collected from 5,994 speakers. The evaluation was performed according to the Original
(Vox1-O) VoxCeleb1 trials lists [3] which consists of 37,720 trials of 4,874 utterances spoken by 40
speakers. Besides, in Table 4 in Appendix B, we extend the evaluation of our different models to
other evaluation sets.

We employ ECAPA-TDNN [27] as our speaker embedding network. As acoustic features for our SV
experiments, we used 40-dimensional Mel-frequency cepstral coefficients (MFCCs) extracted at every
10 ms, using a 25 ms Hamming window via Kaldi toolkit [28]. Moreover, we have used waveform-
level data augmentations including additive noise and room impulse response (RIR) simulation [29]
to follow other SV works. Besides, we have applied augmentation over the extracted MFCCs features,
analogous to the specaugment scheme [30]. All SV experiments have been run for 150 epochs using
a single A40 GPU (around 2 days training), with a batch size of 200 MFCC samples. Scale factor
s = 30 and margin m = 0.2 were used across all margin-based losses. Besides, we do not use score
normalization and CS was used as a backend for verification scoring between enrollment and test
embeddings. We refer to our loss implementation using label correction with BoundaryFace and refer
to sub-centers combined with label correction with subcenter-BoundaryFace.

Finally, we use a default K = 3 sub-centers when sub-centers are employed and unless specified
otherwise, a default CS threshold of τ = 0.423. For AdaptiveDrop, we use ESD = 5, ESC = 7,
ESTD = 3. Besides, to avoid training unstability especially for highly noisy thresholds, we only
drop out a maximum of 50% of samples from each training batch. We use the CAMSAT clustering
algorithm [31] to generate PLs using predefined numbers of clusters in {5000, 5994, 10000}. Code
of our experiments is available at https://github.com/fathana/AdaptiveDrop
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Table 1: Speaker verification performance in terms of EER (%) on the Vox1-O test set, using
CAMSAT-based PLs and AdaptiveDrop with different losses for different starting epochs of label
filtering. Results between parentheses refer to our ablation experiments using the maximum class
sub-center instead of the dominant one to compute cosine similarities.

Epoch to start label filtering 0 5 10 15 20 50 100 150

ArcFace
10k clusters 3.314 2.641 2.609 2.763 2.715 2.837 3.059 -

5994 clusters 3.595 2.651 2.89 2.842 2.821 3.07 3.012 -

5k clusters 3.765 2.646 2.821 2.869 2.853 2.911 3.065 -

Subcenter-
ArcFace

10k clusters - 2.508 (2.757) 2.683 2.731 2.683 2.985 2.863 -

5994 clusters - 2.55 (2.577) 2.662 2.731 2.662 2.863 3.033 -

5k clusters - 2.699 (2.757) 2.842 2.757 2.81 2.884 2.842 -

BoundaryFace
10k clusters - 2.513 2.635 - 2.757 2.831 2.863 2.752

5994 clusters - 2.858 2.784 - 2.9 3.006 2.874 3.049

5k clusters - 2.853 3.181 - 3.059 3.102 3.112 3.091

5 Results and Discussion

First of all, to confirm our hypothesis that early label noise filtering performs better, in Table 1
we perform label filtering starting from different epochs of training using ArcFace and Subcenter-
ArcFace as backbone losses of AdaptiveDrop and BoundaryFace to integrate label correction into
cleansing. As results demonstrate, we find that the best strategy for label filtering is to perform it
as early as possible during training (after only 5 epochs of warmup in our case). We also find that a
short warmup training is also required to produce reliable enough embeddings and cosine similarities
(see case of starting from epoch 0). Indeed, contrary to current practice, we observe that the more we
wait to start dropping out noisy labels, the worse is the downstream EER SV performance, which can
be attributed to the capacity of the network to memorize the wrong labels over time.

We can also see that employing sub-centers induces better robustness and generalization performance
across the three numbers of clusters (e.g. 2.508% EER compared to 2.641% without sub-centers).
We believe this is thanks to the cleaner learnt sub-centers of classes which provide more reliable
cosine similarities to filter misclassified samples. Therefore, learning better and more generalizeable
speaker embeddings. Additionally, we find that our choice of using the dominant class sub-center to
compute cosine similarities instead of the current sub-center of maximum cosine similarity at each
training step is relevant. Indeed, this provided better performance across the 3 PLs. Notably, we also
observe that label correction with BoundaryFace does in general further improve SV performance,
reaching an impressive 2.513 % EER performance on Vox1-O without sub-centers.

Finally, figure 2 shows the evolution of several important metrics over time. Importantly, we can see
that the two losses achieve better EER performance with AdaptiveDrop and behave much better in
terms of overfitting over epochs. Interestingly, we can notice that models using AdaptiveDrop can
keep improving performance progressively for at least the first 25 epochs, benefiting from iterative
filtering to keep refine the cleansed dataset. We also find that our variant incorporating label correction
does not suffer from degradation of EER performance (almost no overfitting). It can also be seen
that AdaptiveDrop leads to slightly better final label accuracy over epochs and that we do not suffer
from problems of over-cleaning of training samples. Indeed, the percentage of cleansed samples
ranges between 15.9% and 21.5% which we find reasonable given that label accuracy of the employed
CAMSAT-based PLs is 70.9%. We can also observe a phenomenon where the percentage of removed
samples decreases slightly over epochs, which can be attributed to the overall cosine similarities
increasing over time (see Figure 3 in Appendix A) and to label correction (see percentage of dropped
samples with label correction in (c) and (d) versus without label correction in (a) and (b)).

To assess the generalizability of AdaptiveDrop to other types of loss objectives, in Table 2 we train our
embedding network with various losses with and without the proposed label noise filtering module.
The relative improvements in percentage show that our method is able to considerably improve
performance across all losses, up to more than 20% relative improvement. Besides, Figure 3 in
Appendix A compares the behavior of our systems trained with and without AdaptiveDrop. According
to the curves of validation EER performance, we can observe two phases: a first phase of 20 to
30 epochs where the model fits the clean labels and their simple patterns, therefore generalization
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(a) (b)

(c) (d)

Figure 2: Validation EER performance over time of our SV system trained under different losses
with AdaptiveDrop. We show the percentage of filtered samples versus retained ones over epochs
and label accuracy when label correction is applied with and without our label filtering module.

keeps improving. And a second phase where EER performance keeps degrading because of the
memorization of wrong labels and memorization of noisy patterns. From the loss curves, we can also
see that AdaptiveDrop results in lower training loss (a sign of a cleaner filtered dataset) and also less
overfitting to the noisy PLs over time compared to when AdaptiveDrop is not employed. Notably,
we find the increasing cosine similarities over epochs confirm our hypothesis that employing cosine
similarity later in training is less reliable because of the memorization effects and that label noise

Table 2: A comparison study of different losses with and without AdaptiveDrop, with the relative
improvement. SV performance is reported in terms of EER (%) on the Vox1-O test set using
CAMSAT-based PLs.

Loss function Without With Relative improvement (%)
BoundaryFace [25] 2.752 2.513 8.7 ↑

CosFace [32] 2.863 2.577 10.0 ↑
MV-Arc-Softmax [33] 2.884 2.519 12.7 ↑

Subcenter-ArcFace [13] 2.943 2.508 14.8 ↑
Subcenter-ArcFace (batch size = 50) - 2.407 -

AMSoftmax [34] 2.959 2.609 11.8 ↑
Subcenter-BoundaryFace 2.959 2.672 9.7 ↑

OCSoftmax [35] 2.969 2.678 9.8 ↑
AdaFace [36] 3.059 2.688 12.1 ↑
ArcFace [24] 3.134 2.641 15.7 ↑

CurricularFace [37] 3.192 2.529 20.8 ↑
DropMax [38] 8.006 6.702 16.3 ↑
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Table 3: Some recent SOTA self-supervised SV approaches in EER (%) compared to AdaptiveDrop
on the Vox1-O evaluation set.

SSL Objective EER (%)
MoBY [18] 8.2

InfoNCE [10] 7.36
MoCo [39] 7.3

ProtoNCE [18] 7.21
PCL [18] 7.11

CA-DINO [40] 3.585
i-mix [41] 3.478
l-mix [41] 3.377

Iterative clustering [10] 3.09
CAMSAT [31] 3.065

Subcenter-BoundaryFace [42] 2.752

AdaptiveDrop (ours) 2.407

filtering should be performed early. This is to prevent overfitting the wrong labels from inflating
the cosine similarities of misclassified samples which can make the use of cosine similarities as an
indicator of wrong labels less effective in later usage of the model’s weights.

Finally, Table 3 shows a comparison of our AdaptiveDrop approach using our best-performing
configuration with Subcenter-ArcFace and CAMSAT-based PLs, compared to recent SOTA self-
supervised SV approaches employing diverse SSL objectives with the same ECAPA-TDNN model
encoder, on Vox1-O. The results show clearly that our adaptive filtering strategy provides large
performance gains compared to all baselines, while being simple, fast and performed end-to-end in a
single stage of training.

6 Conclusion

In this work, we proposed a novel and general-purpose label noise filtering method to improve
robustness of self-supervised training in the presence of noisy labels. We proposed a framework with
several variants encompassing label correction and/or sub-centers of classes to integrate with any type
of loss objective. Our single-stage method is highly scalable, and adds no to very negligible memory
and computational resources. Besides, our extensive experiments show that our method performs
consistently well across all studied losses and lead to considerable improvements in self-supervised
speaker verification.
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A Behaviour over time

Figure 3 compares the behavior of our systems trained with and without AdaptiveDrop. According
to the curves of validation EER performance, we can observe two phases: a first phase of 20 to
30 epochs where the model fits the clean labels and their simple patterns, therefore generalization
keeps improving. And a second phase where EER performance keeps degrading because of the
memorization of wrong labels and memorization of noisy patterns. From the loss curves, we can
also see that AdaptiveDrop results in lower training loss (a sign of a cleaner filtered dataset) and
also less overfitting to the noisy PLs over time compared to when AdaptiveDrop is not employed.
Very importantly, we find the increasing cosine similarities over epochs confirm our hypothesis that
employing cosine similarity later in training is less reliable because of the memorization effects and
that label noise filtering should be performed early in training. This is to prevent overfitting the wrong
labels from inflating the cosine similarities of misclassified samples which can make the use of cosine
similarities as a proxy indicator of wrong labels less effective in later usage of the model’s weights.

(a)

(b)

Figure 3: Training accuracy/loss, cosine similarity, and validation performance over time of our SV
system trained under various loss functions, with and without AdaptiveDrop.

B Evaluation on other datasets

Finally, we report the evaluation of the performance of our different models with and without
AdaptiveDrop on all VoxCeleb1 trials lists (Vox1-O, Vox1-E, and Vox1-H) in Table 4. Vox1-E and
Vox1-H are test pairs drawn from the VoxCeleb1 development set. Vox1-E consists of 581,480 trials
of 145,375 utterances spoken by 1251 speakers, and Vox1-H consists of 552,536 trials of 138,137
utterances spoken by 1190 speakers. Vox1-H is composed of identities that share the same gender
and nationality, making it more challenging for verification compared to Vox1-E.

First, from the comparison of EER performance using true labels to train our models versus CAMSAT-
based PLs, results show that speaker verification can degrade considerably in the presence of noisy
training labels. Secondly, results across the different loss objectives also demonstrate that models
trained using AdaptiveDrop generalize better across the 3 evaluation sets and benefit from our
proposed label filtering method.
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Table 4: EER (%) evaluation performance across the three Voxceleb1 test sets. Training is performed
with and without AdaptiveDrop across different loss functions using the ground-truth labels or
CAMSAT-based pseudo-labels.

Loss function AdaptiveDrop Labels Vox1-O Vox1-E Vox1-H
ArcFace ✗

True labels
1.437 1.623 2.998

Subcenter-ArcFace ✗ 1.384 1.563 2.874

ArcFace ✓

CAMSAT-PLs

2.641 3.238 5.578

ArcFace ✗ 3.134 3.606 6.471

Subcenter-ArcFace ✓ 2.508 3.203 5.519

Subcenter-ArcFace (batch size=50) ✓ 2.407 3.216 5.485

Subcenter-ArcFace ✗ 2.943 3.321 5.914

BoundaryFace ✓ 2.513 3.216 5.453
BoundaryFace ✗ 2.752 3.371 5.899

Subcenter-BoundaryFace ✓ 2.672 3.331 5.578

Subcenter-BoundaryFace (batch size=50) ✗ 2.662 3.223 5.658

Subcenter-BoundaryFace ✗ 2.959 3.419 5.927

CosFace ✓ 2.577 3.345 5.691

CosFace ✗ 2.863 3.454 6.068
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