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Abstract

Speculative decoding is a prominent technique to accelerate large language model
inference by leveraging predictions from an auxiliary draft model. While effective,
in application-specific settings, it often involves fine-tuning both draft and target
models to achieve high acceptance rates. As the number of downstream tasks
grows, draft models add significant complexity to inference systems. Recently
several single model architectures viz. Medusa have been proposed to speculate
tokens in non-autoregressive manner, however, their effectiveness is limited due
to lack of dependency between speculated tokens. We introduce a novel specu-
lative decoding method that integrates drafting within the target model by using
Multi-stream attention and incorporates future token planning into supervised fine-
tuning objective. To the best of our knowledge, this is the first parameter-efficient
approach that scales well with an increasing number of downstream tasks while
enhancing downstream metrics and achieving high acceptance rates, attributable to
the interdependence among the speculated tokens. Speculative Streaming speeds
up decoding by 1.9 - 3X in a diverse set of tasks, such as Summarization, Structured
Queries, and Meaning Representation, while improving generation quality and us-
ing ∼10000X fewer extra parameters than alternative architectures, making it ideal
for resource-constrained devices. Our approach can also be effectively deployed in
lossless settings for generic chatbot applications that do not necessitate supervised
fine-tuning. In such setups, we achieve 2.9 - 3.2X speedup while maintaining the
integrity of the base model’s output.

1 Introduction

Large transformers are today’s preeminent tool for language modeling. The quality of these models
improves as they scale [18], leading to the introduction of the state-of-the-art multi-billion parameter
models [3, 26, 9, 28]. While these models are effective for token generation, they incur a high
inference cost as the model and its transient states need to be loaded into computing memory for
each subsequently generated token. This poses a challenge to the deployment of large autoregressive
transformers, particularly for user-facing applications with stringent latency requirements.

Given the memory-bound nature of large language model (LLM) inference, recent work [19, 6]
proposed Speculative Decoding as an effective technique to accelerate decoding based on concepts
borrowed from speculative computation [4] to exploit the available extra compute. The core of
speculative decoding is the idea of speculating multiple candidate future tokens first, and then
verifying them all in parallel. To achieve this, as shown in Figure 1a.(i), a two-model paradigm
approach is used: a small auxiliary “draft” model for candidate speculation and a large “target” model
for verification [19, 6]. Although effective in accelerating LLMs, speculative decoding complicates
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(a) (i). Speculative Decoding requires a well-aligned
draft model that runs autoregressive speculation. (ii).
Speculative Streaming significantly simplifies the sys-
tem by performing speculation and verification concur-
rently, within a single stream-fused model.
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(b) Theoretical speedups of Speculative Stream-
ing compared to draft-based speculative decoding
for various ζ/β and target-to-draft latency ratios,
where ζ and β represent the advancement per step
for speculative decoding and Speculative Stream-
ing, respectively.

Figure 1: Speculative Decoding vs Speculative Streaming

deployment. Training also becomes more demanding and complicated, as a separate draft model needs
to be trained and aligned with the target model for each application. It is also not resource-efficient,
requiring to host two models in memory during token prediction.

In this paper, we propose Speculative Streaming, a single-model speculative decoding approach
that unifies speculation and verification, obviating the need for a separate draft model as shown in
Figure 1a.(ii). This is accomplished by incorporating multi-stream attention into the target model
to perform n-gram prediction which serves as future candidate speculation. As a result, a forward
model pass can verify the previously generated tokens while simultaneously speculating on the future
tokens. Figure 1b illustrates the theoretical speedups of our approach, demonstrating that achieving
token advancement per step close to that of draft-based speculative decoding (ζ/β ≈ 1) results in
greater speedups compared to conventional speculative decoding across a range of target-to-draft
latency ratios.

While significantly simplifying training and inference architecture and enhancing resource efficiency,
Speculative Streaming not only improves generation quality across a wide range of downstream tasks
but also outperforms two-model speculative decoding [19] and other methods such as Medusa [5],
Lookahead decoding [14], Hydra [34], and Eagle [33] in terms of decoding speedup. The key
advantages of Speculative Streaming are as follows:

– Achieves substantial decoding speedups and improves downstream performance metrics through a
single, streamlined fine-tuning process leveraging multi-stream attention.

– Demonstrates resource efficiency with significantly fewer additional parameters compared to
Medusa [5], Hydra [34] and Eagle [33], while still surpassing them in speedup gains.

– Simplifies deployment by removing the complexity of managing, aligning, and switching between
multiple models during inference, as required by approaches like [19].

2 Related Works

The original speculative decoding approach [6, 19] utilizes a smaller draft model to generate a
candidate sequence of tokens to be verified by the target model. Recent SD variants propose parallel
computation along the batch axis [25], and tree-structured batches [20, 22] to improve the acceptance
rates of the guessed tokens by the target model and to further boost the performance. However, these
methods encounter a common limitation: the necessity of developing an accurate and independent
draft model for each downstream application. First, training such a draft model aligned with the main
model is not trivial [38]. Second, hosting two different models increases the system complexity, and
is more computationally and operationally expensive to maintain as number of applications grow.
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Recently, single-model speculation has also been considered. In particular, inspired by [21, 23],
Medusa [5] extends the main model to predict future tokens in parallel by training multiple output
heads. While it does not require a draft model, each Medusa head of size (hidden_size × vocab_size)
requires significant nonnegotiable additional parameters which introduce deployment challenges on
resource-constrained devices. Furthermore dependency between speculated tokens is not guranteed
[34] limiting speedups. [34] improves speculation procedure of [5] by using autoregressive draft
head to introduce dependency between speculated tokens, however small size draft head tends to
be sub-optimal and increasing draft head size leads to similar issues as those with [19, 38]. [33]
uses a dedicated layer of target model to generate speculation, however, speedups are limited due to
auto-regressive draft generation. Moreover, using a dedicated layer leads to significant parameter
overhead. Lookahead decoding [14] proposes a parallel decoding method without learning new
parameters. While this approach is parameter efficient, speedups are limited as speculation procedure
is not learnable.

3 Method

3.1 Motivation

Existing speculative decoding techniques often enforce a strict decoupling of the training objectives
between draft and target models [19], or between draft models and auxiliary heads [5]. While
this separation has been effective, we propose that these objectives are not inherently orthogonal.
Instead, they can be aligned during training. Specifically, we hypothesize that, similar to the main
residual stream, the model can process “speculative” residual streams which can be optimized to
approximate the residual streams of future tokens, extending beyond immediate next-token prediction.
By conditioning immediate next token prediction on speculative streams as well as previous context,
the model gains the ability to predict upcoming tokens with a richer contextual scope. As a result, this
approach mitigates the risks of overly greedy decoding, providing a more informed and contextually
aware generative process.

Our goal is to develop an end-to-end trainable, single-model framework that integrates future token
planning, enhances generation quality, and scales efficiently across multiple downstream applications.
We propose following modifications to achieve these objectives. (a) Speculative stream design and
initialization as described in Section 3.1.1 (b) Parallel speculation and verification as described
in Section 3.1.2 (c) Parallel tree draft pruning, described in Section 3.1.3 and finally (d) Training
objective as described in Section 3.1.4.

3.1.1 Streams Design and Initialization

Parameter efficient supervised fine-tuning [16] of decoder-only pre-trained language models involves
training low-rank adapters to predict next target token yt given context tokens (x1....xm) and previous
target tokens (y1..y<t) on downstream applications. Although effective, this objective generates
each token greedily and lacks a sense of future token planning [21] which may lead to sub-optimal
generation quality (see Section 4.1.2). To inherently embed a notion of future token planning, we
modify the training objective of the target model from next token prediction to n-gram prediction
using multi-stream attention. This objective facilitates proactive token planning and mitigates
over-fitting to local correlations [30, 21]. Furthermore, we extend this framework by sharing the
key/value cache across all streams, allowing each of the γ streams to generate speculative tokens
with negligible latency overhead when the model is memory-bound. Specifically, each added stream
predicts p(yt+j |y<t, x), where 1 <= j <= γ, while main stream predicts p(yt|y<t, x).

We enable the main stream to attend to speculative streams, allowing it to plan its residual transfor-
mations based on anticipated future residual states by modifying the standard multi-head attention
mechanism [29] as

Mk+1
t = MHA(Mk

t ,M
k
≤t ⊕ Sk

t1...γ ,M
k
≤t ⊕ Sk

t1...γ) (1)

where Mk
t and Sk

t refer to main and speculative streams at time step t and layer k and
MHA(H,H,H) denotes attention between query HWQ, key HWK and value HWV as described
in [29]. On the other hand, each speculative stream j at time step t attends to previous main stream
hidden states and previous speculative stream hidden states as:
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Figure 2: Architecture: We replace top Ns multi-head attention (MHA) layers of the base model with
multi-stream attention (MSA) layers as described in (2). Speculative streams are initialized using
hidden states of layer N −Ns and stream identifier embeddings (SE), as described in (3) and used to
generate speculative draft in the form of a tree. The speculative tree draft from the previous iteration
is batched for verification and pruned before stream insertion. During each forward pass previous
tree draft is verified and a new tree draft is issued using speculative streams as described in 3.1.2

Sk+1
tj = MHA(Sk

tj ,M
k
≤t ⊕ Sk

t(≤j),M
k
≤t ⊕ Sk

t(≤j)) (2)

Hidden state of last transformer layer N , MN
t is used to predict yt, whereas each speculative stream

at last layer, SN
tj predicts yt+j . We refer to layers incorporating the attention mechanism in [29] as

MHA layers while layers incorporating Equation (1) and Equation (2) are referred to as MSA layers.

Key/value projections of main stream hidden states are cached during inference to avoid re-
computation, whereas, we design speculative stream attention to specifically avoid storing additional
key/value projections associated with individual streams. This is because speculative streams are
trained to learn contextual features from main stream key/value context allowing us to not introduce
additional caching overhead and operate within memory bounds of resource-constrained devices
during inference. We initialize hidden states of speculative streams at layer N − Ns instead of
initializing them from the embedding layer, where Ns < N . Specifically, stream j at time t is
initialized at layer N −Ns as,

SN−Ns
tj = fη(M

N−Ns
t ) + PN−Ns

j (3)

where Pj is a stream identifier embedding that embeds a sense of relative position into streams and
distinguishes the computation from main stream. fη is a linear transformation of rank η to transform
main stream hidden states into speculative stream hidden states. This initialization helps to reduce
computation per forward pass, since only the main stream needs to be passed through N − Ns

layers, while speculative streams are passed through the last Ns layers, decreasing the speculative
FLOPs contribution by (N − Ns)/N and in turn helping with peak power consumption on the
device. In terms of forward pass latency, FLOPs do not contribute significantly when the model is
memory bound, however, as we describe in Section 3.1.2, we sample additional tokens to make the
model compute-bound, therefore FLOP reduction becomes crucial. We also experimented with value
rotation based stream design which does not require identifier embeddings and incurs no parameter
overhead as described in Appendix B.3.
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3.1.2 Parallel Speculation and Verification

In standard draft-target speculative decoding [19], speculation and verification processes happen
sequentially. Speculative Streaming makes this process efficient by parallelizing speculation and
verification. In each forward pass, the draft generated in the previous step is verified and a new draft
is generated as shown in Figure 2. For instance, in step s, if draft tokens (ỹ1..ỹδ) are accepted where
0 < δ ≤ γ, main stream Mδ is used to issue a correction token and logits from speculative streams
Sδ(1...γ) are used to generate draft for step s+ 1.

Instead of using a linear sequence of speculated tokens for verification, we sample a tree of tokens
from main and speculative streams, such that each path in the tree is one possible verification
candidate. Tree drafting enables accepting the longest matching candidate sequence and more tokens
can be advanced during each forward pass. To create a tree draft, instead of sampling 1 token from
logits of speculative streams, (z1...zγ), we sample top k tokens and form a tree of sampled tokens
as shown in Figure 2, such that tokens sampled from stream n are predecessors of tokens sampled
from stream n + 1. We process a tree draft of speculative tokens in one forward pass by creating
an additive attention mask [29] such that each node in the tree attends to its predecessor. Attention
mask between kth token sampled from logits of stream j, ỹjk and the mth token sampled from logits
of stream n, ỹnm is

aỹjkỹnm =

{
0 if j = n+1,
−∞ otherwise

(4)

Please refer to Figure 10 for more details.

3.1.3 Parallel Tree Pruning

One of the issues with the naive creation of a speculative tree draft is that every permutation between
k tokens sampled from each stream needs to be considered as a viable speculative candidate for the
next verification pass. For instance, sampling k tokens from each of γ streams results in tree draft of
size 1 +

∑γ
g=1 k

g. Furthermore, each of the draft tokens is batched with γ speculative streams in
MSA layers to ensure that the generation of the next draft happens in the same forward pass, resulting
in a batch size of (1 + γ) ∗ (1 +

∑γ
g=1 k

g). As batch size increases, target model inference becomes
compute-bound, obviating the latency benefit of sampling more tokens. We mitigate this problem by
introducing a parallel tree draft pruning layer, which prunes less probable tokens from the input tree
draft based on transition probability between parent and immediate child tokens. To obtain transition
probabilities without using proxy models, we use an early-exiting-based technique. Specifically,
hidden states of the main stream at layer l, M l are passed through a low-rank linear transformation
oθ, where the rank θ is typically set to a small value like 8 to keep parameter overhead minimal.
We use original language modeling head, H to obtain early exit logits, z̃ = H(oθ(M

l). z̃pc is used
to approximate transition probability between parent token p and child token c. The pruning layer
can be inserted at any point in the network, guided by the trade-off between forward pass latency
and pruning accuracy. Early insertion reduces latency but risks pruning potentially valuable tokens.
Conversely, late insertion retains more "good" tokens but comes at the cost of increased forward
pass latency. In all experiments described in Section 4.1, we insert the pruning layer just before
speculative stream insertion. More details can be found in Appendix Figure 9.

3.1.4 Training

Our supervised fine-tuning procedure entails training the base model on both the prediction loss of
the next token and γ future tokens. The overall loss function is defined as follows:

Lss = −α0(

T∑
t=1

log pθ(yt|y<t, x))−
γ∑

j=1

αj(

T−j∑
t=1

log pθ(yt+j |y<t, x)) (5)

where α0 and αj are set empirically to normalize losses of the next token and speculative tokens
prediction using LoRA [16]. Note that adapter parameters are shared between main and speculative
streams in application specific settings to increase down-stream performance. For generic chat-
bot like settings where fine-tuning is not required, adapter parameters are dedicated to training of
speculative streams and α0 is set to 0. Although training with Speculative Streaming is relatively
cheap (see Appendix D), naive training increases batch dimension along sequence length axis by γ
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causing attention computation to hit peak memory with larger batches. We employ a segment based
attention method that helps reduce peak memory consumption and increases training throughput
significantly by dividing training sample into prompt and multiple completion segments. More
details on segment attention can be found in Appendix C. Finally, Tree-pruning adapter described in
Section 3.1.3 is trained on the next token prediction loss.

3.1.5 Acceptance Criteria

We employ rejection sampling based acceptance criteria used in [6] to avoid distribution shift from
base target model. Acceptance of draft tokens from each path in pruned tree (see Section 3.1.3) is
run as per rejection sampling scheme and longest accepted path is used to advance decoding. Please
refer to Appendix A.1 for more details.
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4 Experiments

We evaluate our methods on a diverse set of downstream applications as well as generic reasoning
oriented conversational tasks using pre-trained models of various scales.

Datasets. To test our method on user-facing application specific settings that are vital to on-device AI
assistants we use a diverse set of tasks namely Text Summarization, Structured Queries and Meaning
Representation using Dialogsum [7] dataset, the sql-create-context dataset built from WikiSQL [37]
and SPIDER [32], and e2e-nlg dataset [11] respectively. Along with application specific settings, to
test generalizability of our method, we evaluate on reasoning oriented chat-bot like setup using the
multi-turn dialogue dataset, MT-bench [36].

Model Configuration. We tested four different open source models of various scales, Phi-3-mini-
4k-instruct(3.8B)[1], Llama-2(7B)[27], Mistral(7B) [17] and OPT(1.3B, 6.7B) [35] on application
specific settings. To test scalability of our approach we use Vicuna Models (7B, 13B, 33B) [8] and
Llama-2 chat models (7B, 13B). We compare our method with the draft-target speculative decoding
methods [19, 38] and single-model speculative decoding frameworks, Medusa [5], LookAhead
decoding [14], Hydra [34] and Eagle [33]. For the standard draft-target approach, we use OPT-125m,
the smallest configuration of available open-source OPT models as the draft model.

Metrics. For application specific settings, we report wall-time speedups and generation quality
metrics on held-out test set. We use Exact Match (EM) accuracy metric for the structured query task
and Rouge1/RougeLSum metrics for the Dialog Summarization and Meaning Representation tasks.
For generic chat-bot like settings, where fine-tuning is not required, we train speculative streams
while keeping base model frozen as noted in Section 3.1.4 and report speedup and inference overhead.

Inference. Inference is performed using a batch size of 1 on a single Nvidia A100-80G GPU in float16
using greedy sampling and T = 0. Please refer to Appendix F for batching impact, Appendix B.4 for
ablations on top-k sampling, T = 1 and Appendix G.1 for more experimental details. We set Ns = 4,
γ = 3 and k = 3 for all experiments. Please refer to Appendix for hyperparameter ablations.
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Table 1: Comparison of walltime speedup, CR ratio, and parameter overhead across models of
different scales fine-tuned for downstream tasks. CR ratio indicates accelerator agnostic call reduction
ratio. Metrics include exact match accuracy for SqlContext and Rouge for Dialogsum and E2E-NLG.
Medusa and Speculative streaming parameters are fine-tuned jointly with the base model, while the
base model is frozen during Eagle fine-tuning to to prevent adverse effects on generation metrics.

Dataset Model Method SpeedUp (↑) CR Ratio (↑) Metric (↑) # Extra Parameters (↓)

SqlContext

Mistral-Instruct-7B

Baseline 1.00 1.00 84.16 −
Medusa-2 2.79 3.18 84.18 5.9E8

Eagle 2.75 3.58 84.16 2.4E8
SS (ours) 2.93 3.67 84.50 8.2E4

PHI-3-Instruct-3.8B

Baseline 1.00 1.00 80.92 −
Medusa-2 2.54 2.81 81.07 4.3E8

Eagle 2.62 3.37 80.92 1.3E8
SS (ours) 2.92 3.65 84.10 6.1E4

Llama2-7b

Baseline 1.00 1.00 85.37 −
Medusa-2 2.52 2.98 85.31 5.9E8

Eagle 2.59 3.31 85.37 2.4E8
SS (ours) 2.81 3.57 85.93 8.2E4

DialogSum

Mistral-Instruct-7B

Baseline 1.00 1.00 44.74/36.76 −
Medusa-2 1.89 2.05 44.78/36.95 5.9E8

Eagle 1.95 2.56 44.74/36.76 2.4E8
SS (ours) 2.04 2.96 44.89/37.09 8.2E4

PHI-3-Instruct-3.8B

Baseline 1.00 1.00 46.08/38.28 −
Medusa-2 2.15 2.26 45.82/37.78 4.3E8

Eagle 2.05 2.31 46.08/38.28 1.3E8
SS (ours) 2.32 2.85 46.30/38.32 6.1E4

Llama2-7b

Baseline 1.00 1.00 44.90/37.0 −
Medusa-2 1.76 1.95 44.17/37.02 5.9E8

Eagle 1.86 2.57 44.90/37.0 2.4E8
SS (ours) 1.90 3.05 45.0/37.85 8.2E4

E2E-NLG

Mistral-Instruct-7B

Baseline 1.00 1.00 67.82/48.99 −
Medusa-2 2.78 3.19 67.74/48.85 5.9E8

Eagle 2.85 3.52 67.82/48.99 2.4E8
SS (ours) 2.93 3.67 68.37/49.09 8.2E4

PHI-3-Instruct-3.8B

Baseline 1.00 1.00 68.72/49.31 −
Medusa-2 2.39 2.63 68.41/49.08 4.3E8

Eagle 2.42 2.76 68.72/49.31 1.3E8
SS (ours) 2.36 2.72 69.38/50.22 6.1E4

Llama2-7b

Baseline 1.00 1.00 69.47/49.54 −
Medusa-2 2.82 3.19 69.41/49.44 5.9E8

Eagle 2.79 3.26 69.47/49.54 2.4E8
SS (ours) 2.89 3.38 69.52/49.93 8.2E4

4.1 Results
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4.1.1 Effectiveness

Table 1 presents the comparison between standard auto-regressive decoding baseline, Medusa, Eagle
and our approach in terms of speedup, call reduction ratios, and the number of extra parameters. We
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Table 2: Walltime latency (per sample) and auto-regressive calls comparison with standard draft-target
(Two-model) speculative decoding approach using OPT-125m as the draft model.

Dataset Target Method Target calls Draft Calls Walltime Latency (ms, ↓) Metric (↑)

SqlContext
OPT-1.3b Two-model SD 6.59 22.35 269.24 84.98

SS (ours) 7.79 0 133.48 87.40

OPT-6.7b Two-model SD 6.60 22.41 301.10 89.13
SS (ours) 6.88 0 157.04 89.34

Dialogsum
OPT-1.3b Two-model SD 11.65 42.59 493.59 43.40/35.60

SS (ours) 13.41 0 248.26 44.07/35.99

OPT-6.7b Two-model SD 12.15 35.76 555.99 44.40/36.60
SS (ours) 14.45 0 444.67 44.42/36.81

E2E-NLG
OPT-1.3b Two-model SD 8.86 31.47 345.72 69.48/50.17

SS (ours) 9.80 0 164.23 69.32/50.51

OPT-6.7b Two-model SD 8.90 31.58 412.02 69.34/49.88
SS (ours) 10.31 0 244.80 69.45/49.78

find that across a variety of downstream tasks, the walltime speedups and call reduction ratios of
Speculative Streaming are consistently higher than alternatives while incurring significantly lesser
parameter overhead. Furthermore, as summarized in Table 2, our approach achieves better wall-time
latencies than the standard draft-target speculative decoding since the difference in the number of
target calls between both approaches is not large enough to offset auto-regressive drafting overhead.
Please refer to Appendix G for more insights. Finally, it is worth noting that the generation metrics of
our method are consistently better than next token prediction based fine-tuning making it an excellent
alternative to LoRA based next-token prediction fine-tuning. Speedup gains of our approach remain
consistent in generic conversational tasks evaluated on MT-Bench. Our approach achieves better
speedup than alternatives across Vicuna and Llama models of various scales (see Figure 3, Figure 4)
in lossless settings while incurring significantly lesser memory access and compute overhead (see
Figure 5, Figure 6) demonstrating generalizability and scalability of our approach.

4.1.2 Why Does It Work?

Generation Metrics: To investigate the improvements in generation quality achieved by our approach,
we designed an experiment where the model predicts the next token while attending to a set of future
γ ground truth tokens beyond the next token. Our hypothesis was that by granting the model access
to these future tokens, the attention mechanism would enhance its ability to anticipate and plan for
the next token, thus improving generation quality. Specifically, we postulated that:

p(yt = gt|y<t, yt+1..t+γ , x) > p(yt = gt|y<t, x) (6)

Here, gt represents the ideal ground truth token that maximizes the generation quality metrics. To
validate this hypothesis, we modified the attention mask, allowing the model’s residual states to
"peek" into future residuals. As shown in Figure 13, this modification led to significant improvements
in generation metrics.

While such access to future tokens is not feasible during inference—where future states are unavail-
able—our approach enables the model to approximate future residual states using speculative streams.
As demonstrated in Figure 12, these speculative streams, Stj , progressively align with the true
residual states of the next tokens as they propagate through the model layers. Crucially, our method
allows the primary stream, Mt, to attend not only to the current context up to token yt but also to the
speculative streams Stj . This multi-stream attention mechanism refines the transformations within
Mt, aligning them more closely with the context of the upcoming γ tokens. As a result, the model
effectively "plans" for future tokens, leading to measurable improvements in generation quality.

Speedup: Medusa attempts to generate the hidden states of speculative tokens y(t+1...t+γ) by applying
a simple linear transformation to the last hidden state of the current token yt. However, this method
has significant limitations. The absence of attention mechanisms or non-linear transformations results
in lower similarity metrics between the speculative hidden states generated by Medusa and the true
hidden states, which are obtained by feeding the actual next token into the model (see Figure 12). In
contrast, our proposed technique leverages multi-stream attention, wherein speculative streams are
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allowed to attend to each other as well as to the main stream. As these streams propagate through the
model layers, they more closely approximate the true hidden states of the actual next tokens, resulting
in higher similarity, thereby increasing the acceptance rate of the speculated tokens.

4.2 Ablations

We conducted extensive ablation studies to identify the optimal draft size and to evaluate the impact of
tree pruning, as illustrated in Figure 7. Tree pruning enhances speedup by eliminating less probable
speculative paths, thereby preventing the model from entering a compute-bound phase. Further
details are provided in Appendix B. Additional ablations were performed to determine the ideal
number of Multi-stream Attention (MSA) layers and their influence on fine-tuning performance, as
well as the effects of value projection rotation and Top-k sampling. An increase in the number of
MSA layers consistently improves generation metrics across all downstream tasks, supporting the
hypothesis that Multi-Stream Attention facilitates effective planning. Our method also demonstrates
robustness to non-greedy Top-k sampling, which is critical for maintaining diversity and quality
control in generated text. Please refer to Appendix B for comprehensive results.

5 Conclusion

In this paper, we proposed Speculative Streaming, a method to accelerate decoding of large language
models. Compared to the standard speculative decoding approaches, Speculative Streaming removes
the need for an auxiliary “draft” model. Instead, it unifies speculation and verification by efficiently
fusing multiple speculative streams into a single “target” model. Speculative Streaming simplifies
the fine-tuning process and achieves better generation quality and speedup compared to previous
approaches. It is also parameter efficient and removes the need for loading two models into the
memory, making it a suitable approach for resource-constrained scenarios.
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A Implementation Details

A.1 Acceptance Criteria

Acceptance of draft tokens from each path in pruned tree ( Section 3.1.3) is run as per rejection
sampling scheme and longest accepted path is used to advance decoding. To conform to rejection
sampling, we replace draft model distribution with virtual distribution that uses prophet streams.
Specifically, we replace p(x|(x1..xn+t−1)) in algorithm 2 in [6] with q(x|(x1..xn, sn0..sn(t−1))) so
our acceptance criteria becomes

r<min

(
1,

{
q(x|(x1,...,xn+t−1))

q(x|(x1,...,xn,sn0,...,sn(t−1)))

})
(7)

where p and q denote draft and target distributions in [6], r ∼ U [0, 1] and 1 <= t <= γ. We sample
correction as

xn+t ∼ q(x | (x1, . . . , xn+t−1))− q(x | (x1, . . . , xn, sn0, . . . , sn(t−1))) (8)

A.2 Tree Draft Management

In this section, we go into more detail of tree draft sampling, flattening, and pruning. As shown in
the main paper, when processing prompt (x1...xt), we insert speculative streams along with the last
token to generate logits, zt corresponding to main stream and (zt1...ztγ) corresponding to speculative
streams. Tree draft is sampled following the procedure described in Section 3.1.2. The sampled
draft is then flattened along the sequence length dimension and the attention mask is composed such
that child nodes attend to their predecessors starting with root as shown in Figure 9 and Figure 10.
The root token of the tree draft is the correction issued by main stream. Each iteration after prompt
processing involves verifying the previous tree draft and sampling a new one. After passing the tree
draft through N −Ns layers, we use contextual features learned by middle layers to approximate
transition probability between parent and child tokens. As shown in Figure 9, since the transition
probability between token “parameter′′ and “compare′′ is less than a set threshold, we prune the
sub-tree starting from “compare” in the feature domain , and m2,m5,m6 are pruned. Please note
that the key value cache of layers 0..(N −Ns − 1) before the pruning layer is not trimmed at this
point to keep pruning latency overhead minimal. Key value cache backtracking is done lazily after
each generation step. Speculative streams are inserted alongside each node in the pruned draft.
Layers (N −Ns..N) use Multi-stream attention as described in Equation (1) and Equation (2). The
verification procedure finds the longest matching path in the pruned tree that main stream can accept.
As shown in Figure 9, path (“parameter′′, “efficient′′, “speculative′′) is accepted. Correction
token sampled from logits of main stream corresponding to last accepted token, m1 becomes new
root while tokens sampled from logits of streams (s10, s11) form the sub-tree.
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Figure 7: As more tokens (k) are sampled for tree
drafting, speedup initially increases. This trend
reverses as k continues to increase as the model
transits to the compute-bound phase. Pruning less
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Figure 9: Parallel tree draft speculation and verification: Tree draft from the previous iteration
is flattened for verification. After N − Ns MHA layers, the tree pruning procedure obviates less
probable tokens based on transition probability between parent and child tokens. In this illustration
Zi denotes normalized early exit logits corresponding to main stream at index i, mi, while Zij

denotes transition probability between token at index i and j in flattened tree draft. The verification
procedure is subsequently run on the pruned tree and speculative tokens are sampled from streams
corresponding to the latest accepted token. In above illustration, “speculative′′, “fine, decoding′′
and “looking, tuning′′ are sampled from streams m1, s10 and s11.

B Ablation:

B.1 Speculative Draft Size.

To improve the acceptance rate of the tree draft, we try various settings of γ, the number of speculative
positions, and k, the number of sampled tokens per speculative position. Figure 7 shows walltime
speedup for γ = 3. As we sample more tokens from each speculative position, advancement per
forward pass, β increases since more candidates are available for verification, leading to more speedup.
However, as we continue to increase k, forward pass latency overhead becomes more prevalent as the
model transitions into compute-bound phase and the speedup reverses the course. This is because
naively forming a tree draft leads to an exponential increase in batch size with k as described in 3.1.3.
We insert a tree pruning layer to remove less probable paths and reduce the size of the tree draft.
Pruning tree draft reduces forward pass latency, and a well calibrated threshold ensures that only
noisy paths in the tree get pruned. Tree pruning tends to help with walltime speedup as k continues
to increase as shown in Figure 7.

B.2 Number of MSA Layers

There are trade-offs involved in deciding the number of MSA layers to incorporate in terms of
downstream generation metric, training time, and FLOPs increase. As we increase the number
of MSA layers, the generation metric improves and this trend remains the same across different
downstream tasks. Typically incorporating MSA in the top 2 - 8 layers offers a good trade-off
between metric, FLOPs increase and training time. Figure 8 shows the generation performance of the
OPT-1.3b model on Structured Query and Summarization tasks.
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Figure 10: Attention mask for tree draft is composed in such a way that child tokens can attend to
all predecessors starting from root, root being correction issued by main stream. In this illustration,
“early“ attends to “parameter“ and “efficient“ and itself since “parameter−efficient−early“
forms one path in tree. “early“ is also replicated to form another path “parameter − compare−
early“. This attention mask allows batching multiple paths and increasing acceptance rate as number
of candidates increase.

B.3 Value Rotation

We analyzed more ways of differing computation of main stream from speculative streams. Apart from
using dedicated stream embeddings, one way to differentiate the computation while incorporating
a sense of relative position is simply rotating streams relative to each other. In this ablation, we
initialize each stream with the main stream hidden state and rotate the value projection during
attention computation in the proportion of the relative distance from main stream as :

V k
tn = V k

t eiϵn (9)

Where 1 <= n <= γ is stream index, V k
t denotes value projection of main stream at time step t and

layer k, while V k
tn denotes value projection of stream n, 0 ≤ ϵ ≤ π

2N denotes an arbitrary rotation
step and N denotes the sum of maximum sequence length and number of streams. Figure 11 (a)
shows the effect of using value rotation on Rouge scores on the Dialog Summarization task with
the Phi-1.3b model. Downstream metric for value rotation-based approach tends to be lower than
using dedicated stream embeddings across different settings of MSA layers, however, the trend of
increasing metric with added MSA layers remains the same. It is worth noting that for Ns = 16,
simply rotating value projections achieve better metrics than using Ns = 4 with dedicated stream
embeddings.

B.4 Top-k Sampling

In the main paper, we reported speedup results using greedy sampling and T=0. To further analyze
speedups in the Top-k sampling regime, we try various values of k and T = 1 for both Medusa style
and Speculative Streaming approaches. Figure 11 (b) shows the effect of increasing k on the walltime
speedups and call reduction ratios. Although increasing k leads to lower wall-time speedups for
both baseline and target methods due to stochastic rejection of tokens, our approach retains its lead
achieving better call reduction ratios and walltime speedups across different values of k.
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(a) (b)

Figure 11: (a) We analyze the effect of value projection rotation on RougeLSum scores of the Dialog
summarization task using PHI-1.3b as the base model for different numbers of MSA layers. Each
stream is rotated in proportion to the distance from the main stream. (b) We study the effect of
top-k sampling on wall-time speedups and call reduction ratios for Speculative Streaming (SS) and
Medusa-style approaches using OPT-1.3b as a base model on the Meaning Representation task.

Figure 12: Normalized cosine similarity be-
tween speculative residual states and residual
state of actual ground truth tokens with Specu-
lative Streaming and Medusa. As the streams
propagate through the model, their repre-
sentations become increasingly aligned with
the ground-truth tokens, whereas Medusa
speculative residuals are generated from last
layer residuals and is less aligned with actual
ground truth residuals.

Figure 13: Generation performance of the Phi-
3 model when trained to attend to γ ground
truth tokens beyond the immediate next to-
ken during prediction. The case of γ = 0
represents the baseline next-token prediction
training. Incorporating future ground truth
tokens into the attention mechanism leads to
substantial improvements in generation per-
formance.

C Segment Attention

Naive training with speculative streaming increases batch dimension along sequence length axis by γ
causing attention computation to hit peak memory with larger batches. We propose a segment based
attention method that helps reduce peak memory consumption and increases training throughput
significantly. We divide each training sample into prompt and multiple segments of completion. Since
each stream corresponding to each token needs to attend to it’s previous streams of same token and
prompt tokens, prompt streams are not required . Moreover, by dividing completion into segments,
we just keep streams of current segment in the memory and make them attend to main stream of
previously processed segments as depicted in Figure 14.

D Training cost

Since speculative streaming is parameter efficient, training involves fine-tuning only LoRA parameters
of MSA layers and it’s comparable to training Medusa heads. We finetuned Vicuna-7B model on
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Figure 14: Streams corresponding to prompt are not required while training. Completion is divided
into multiple segments and streams of each segment only attend to streams from same segment and
main stream of previous segments. Uncolored portion indicates those tokens/streams are not required
to be kept in memory. Using segment attention, required peak memory goes down substantially.

the ShareGPT dataset in ∼ 5 hours using segment attention, comparable to the 3-4 hours required
for training Medusa heads. We also managed to train 33B Vicuna models on a single 80-GB GPU
by loading the base model in nf-4 precision and keeping only the adapters of 4 MSA layers in full
precision.

E Compute and Memory Profiling

The draft overhead associated with the standard draft-target speculative decoding approach tends to be
non-trivial especially when the latency ratio between target and draft models ctarget/cdraft <= 10.
This is because speculation and verification procedures are run in serial manner. Figure 15 shows
the kernel utilization timeline when OPT-125m is used as a draft while OPT-1.3b model is used
as the target. Auto-regressive draft generation decreases overall kernel utilization in draft-target
approach, while additional computation involved in MSA layers increase kernel utilization in case
of Speculative Streaming thereby efficiently utilizing the accelerator and speeding up the decoding
process. Negligible cost draft models may offer a better choice to keep kernel utilization at higher
levels in case of draft-target approach, however, acceptance rates tend to drop as draft model size
decreases.

MSA Layers MSA LayersMHA Layers MHA Layers

Target call k Target call k+1

Target call k Target call k+1Draft call 0 Draft call 1 Draft call 2 Draft call 3

(a) Speculative Streaming

(b) Two Stage Speculative Decoding

Figure 15: Kernel utilization timeline for speculative streaming and the standard draft-target spec-
ulative decoding. Draft-target approach runs speculation and verification in serial manner while
it is parallelized in Speculative Streaming. Auto-regressive draft generation often has low kernel
utilization as shown leading to decreased overall kernel utilization while MSA layers in Speculative
Streaming increase kernel utilization by generating a non-autoregressive draft and speeding up decod-
ing significantly.
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F Batching

All the results presented in Section 4 are with batch size of 1 for on-device setup. We also experiment
with batching for server setup where queries from multiple users are batched to increase throughput
and accelerator utilization. To achieve maximum throughput with batching, we disable tree decoding
and tree pruning and use only best speculated path for each decoding step for every sequence in a
batch. Since our method primarily relies on utilizing flops to accelerate decoding, with batching we
do see some degradation in speedup per sample as depicted in Figure 16, however we consistently
achieve >2X speedups while keeping throughput same as batched autoregressive decoding.

2 2.2 2.4 2.6 2.8 3 3.2 3.4

1
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Walltime Speedup with Batching

Vicuna 13b Vicuna 7B

Figure 16: Walltime speedup for different
batch sizes with Vicuna Models.

0% 20% 40% 60% 80% 100%

2-stage SD

Medusa SD

Speculative
Streaming

Kernel Memory

Figure 17: Kernel and Memory utilization
comparison on Nvidia A-100.

G Analysis of 2-model speculative decoding

Speculative Streaming consistently achieves significantly lower walltime latency than standard draft-
target speculative decoding as depicted in Table 2. It is worth noting that, target model calls of
draft-target speculative decoding are slightly lower than Speculative Streaming, however, it comes at
the cost of auto-regressively running draft model γ times to generate speculative draft. On the other
hand, draft generation with Speculative Streaming incurs almost no additional latency overhead, as
target model decoding tends to be memory-bound even with increased tree draft size. This translates
to increased kernel utilization and arithmetic intensity as shown in Figure 17.

An argument could be made that a smaller draft model may perform better since drafting should cost
less, but acceptance rates may drop as well as the draft model size is decreased. To formalize the
comparison with standard draft-target speculative decoding, we do the following analysis, let’s say,
Cdraft is the latency cost associated with forward pass through the draft model, Ctarget is the cost
associated with forward pass through target model, while Css is cost associated with speculative
streaming forward pass. ζ is the number of decoding tokens advanced during the verification step for
the draft-target approach while β is the number of tokens advanced in Speculative Streaming. We
equate latency cost associated with single token advancement to compare both approaches.

(γ ∗ Cdraft + Ctarget)/ζ = Css/β (10)
(γ+Ctarget/Cdraft)/ζ = (Css/Cdraft)/β

Assuming γ = 4, Ctarget/Cdraft = 10, and Css ≈ Ctarget, ζ = 1.4β, meaning that advancements
per verification step in standard draft-target approach have to be 1.4X of Speculative Streaming to
achieve wall time latency parity. Note that, this analysis ignores cache adjustment overhead and
prompt processing overhead, but provides valuable intuition to guide the choice between draft-target
vs Speculative Streaming approaches. We also analyze under which settings speculative streaming
is likely to offer more benefits as compared to the standard draft-target approach. Fig. 1b shows
theoretical speedups of Speculative Streaming over draft-target based approach for different Target to
draft latency ratios. As the latency ratio increases, the draft-target approach is likely to offer more
speedup benefits when ζ/β > 1, meaning that when the draft model is accurate enough to achieve
more token advancements per target model verification step than Speculative Streaming and also
small enough to yield higher latency ratios, it is likely to benefit more. Finding/creating such a
model usually requires significant engineering efforts. In downstream application settings, finding
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ideal draft models becomes even more challenging since ζ tends to vary based on application. If
applications share the draft model and only train adapters, the draft model may not remain small
enough to meet target-to-draft latency ratios, making it challenging to achieve more speedups than
Speculative Streaming.

G.1 Experimental Setup Details

For experiments described in 4, our recipe involves training LoRA adapters for 5 epochs on the
downstream datasets in BFloat16, using the AdamQ optimizer, a learning rate of 5e-4, and a linear
scheduler. For tree pruning (see Section 3.1.3), we use a low-rank linear transformation of rank 8 to
keep parameter overhead minimal. We set α0 = 1 and αj = 0.1 for j = 1...γ to weigh speculative
loss relative to next token prediction loss. We experimented with linear transformations of different
ranks to initialize speculative streams from main stream as described in Equation (3), however we
find that simply using identity transformation achieves similar performance with much less parameter
overhead. We use identity transformation for all the experiments described in Section 4. We report
best results for Medusa and our approach over different γ and k values, while for standard draft-target
speculative decoding approach k is fixed to 1. We also report accelerator agnostic speedups (call
reduction ratios) assuming negligible verification and draft composition overhead as latency of
forward pass, verification and draft composition procedures vary greatly depending on accelerator (a
mobile device neural engine Nvidia A100), while call reduction ratio metric tends to serve as roof-line
for achievable speedup. Lastly, we use “hard“ matching criteria for verification of speculative draft.
Relaxing this criteria to “soft“ matching may yield higher speedups [5]. To compare with Medusa [5]
style approach, we use pre-trained base models with LoRA adapters [16] of rank 32 and Medusa
heads as the baseline, and Speculative Streaming with the same base models, stream embeddings
and LoRA adapters as target. Medusa heads are trained following the recipe described in [5]. Both
Medusa heads and the number of maximum streams are fixed to 4 and the residual blocks per head
used in Medusa are set to 1. For comparison with standard draft-target speculative decoding [19], we
use OPT models since they come with different configurations and sizes. OPT-125m is deployed as
a draft model while OPT-1.3b and OPT-6.7b are used as target models since a ratio of 10-100X is
typically considered to be optimal. We compare our approach with LookAhead decoding using best
configuration reported in [14].

H Parameter Overhead

In terms of parameters, each Medusa head adds about h2 + hv parameters, where h is the hidden
size and v is the vocabulary size. The number of Medusa heads also scales linearly γ, the length of
the speculative window, which in turn increases parameter overhead linearly with γ. On the other
hand, Speculative Streaming uses speculative adapters which do not scale with γ. Although, Stream
identifier embeddings scale with γ, the parameter overhead associated with each embedding is linear
to h. Furthermore, in fine-tuning settings “speculative adapter" parameters are shared with base
model adapters, therefore, parameter overhead associated with our approach is just γh.

I Additional Related works

The inference of large language models is often limited by the sequential nature of auto-regressive
decoding, where each token generation requires a complete network forward pass. Several approaches
have been proposed to address the high inference latency by directly decreasing the memory footprint
of LLMs. Model quantization [13, 31, 10], knowledge distillation to a smaller a model [15, 2], and
pruning [12, 24] are among these techniques. Recently, speculative decoding (SD) has emerged as a
vital technique to accelerate autoregressive decoding.

J Qualitative Examples

In this section, we present qualitative examples to illustrate the effectiveness of Speculative Streaming.
By examining specific instances, we aim to highlight how this approach enhances the overall
performance of the decoding process. An example of the SQL query generation task is shown in
Figure 18, while a dialog summarization example is shown in Figure 19. Each row indicates the
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SELECT  in _ count y 

SELECT  in _ count y _ tu ition _ per 

SELECT  in _ count y _ tu ition _ per_ credit _ credit _ 

SELECT  in _ count y _ tu ition _ per_ credit _ hour __ fall _ _ 

SELECT  in _ count y _ tu ition _ per_ credit _ hour __ fall _ 2009 _  FROM  table _ 

SELECT  in _ count y _ tu ition _ per_ credit _ hour __ fall _ 2009 _  FROM  table _ 22 30 88 81 _ 

SELECT  in _ count y _ tu ition _ per_ credit _ hour __ fall _ 2009 _  FROM  table _ 22 30 88 81 _ 2  WHERE  college  = " 

SELECT  in _ count y _ tu ition _ per_ credit _ hour __ fall _ 2009 _  FROM  table _ 22 30 88 81 _ 2  WHERE  college  = " Mer Er " College <\s>  

SELECT  in _ count y _ tu ition _ per_ credit _ hour __ fall _ 2009 _  FROM  table _ 22 30 88 81 _ 2  WHERE  college  = " Mer Cer " <\s>

Figure 18: Speculative streaming on SQL generation task for γ = 4 and k = 1, each pass verifies
the previous draft and generates a maximum of 5 tokens. For instance in pass 4, “credit” and “_”
(shown in red) are rejected and “hour”, “_”, “fall”, “_”, “_” are speculated.

# Person 2 #  and 

# Person 2 #  thinks  Lincoln is a  character 

# Person 2 # thinks  Lincoln was  a  character  and  he 

# Person 2 # thinks  Lincoln  was  a man  of  character and  he 

# Person 2 # thinks  Lincoln  was  a  man of sound character and # person 

# Person 2 # thinks  Lincoln  was  a  man of sound character and # person 1 #  adm ires  him 

# Person 2 # thinks  Lincoln  was  a  man of sound character and # person 1 #  adm ires  him for his courage and and 

# Person 2 # thinks  Lincoln  was  a  man of sound character and # person 1 #  adm ires  him for his courage and rights and humility . </s>

Figure 19: Speculative streaming on Dialog Summarization task for γ = 4 and k = 1, each
pass verifies the previous draft and generates a maximum of 5 tokens. For instance, in pass 3,
“is”, “a”, “character” are rejected and “was”, “a”, “character”, “and”, “he” are speculated.

previous sequence of accepted draft tokens (in black) and the new sequence of generated tokens
in green/red. We use γ = 4 and k = 1 to illustrate the decoding process. Green tokens in each
row indicate tokens accepted in the next forward pass, while red tokens indicate tokens rejected
in the next forward pass. Speculative Streaming appears to generate meaningful drafts with high
acceptance rates by capturing dependencies between tokens quite effectively, despite generating them
in a non-auto-regressive manner.
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