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Abstract

In this paper, we present a comprehensive study and propose several novel tech-
niques for implementing 3D convolutional blocks using 2D and/or 1D convolutions
with only 4D and/or 3D tensors. Our motivation is that 3D convolutions with 5D
tensors are computationally very expensive and they may not be supported by some
of the edge devices used in real-time applications such as robots. The existing
approaches mitigate this by splitting the 3D kernels into spatial and temporal do-
mains, but they still use 3D convolutions with 5D tensors in their implementations.
We resolve this issue by introducing some appropriate 4D/3D tensor reshaping as
well as new combination techniques for spatial and temporal splits. The proposed
implementation methods show significant improvement both in terms of efficiency
and accuracy. The experimental results confirm that the proposed spatio-temporal
processing structure outperforms the original model in terms of speed and accuracy
using only 4D tensors with fewer parameters.

1 Introduction

During the past few years, 3D convolutional neural networks have become dominant in the area
of video analysis, especially for action recognition [3, 7, 6, 38, 23, 26, 22, 41, 25, 40, 36, 15].
However, 3D convolution is computationally very expensive, which may cause problems in real-time
applications. That is mostly because the common strategy in video processing models is to expand a
well-known 2D image architecture into a 3D spatio-temporal model [8]. For example, C3D [32] and
I3D [3] are the 3D versions of VGG-16 [28] and Inception-V1 [31], respectively. Although this type
of architectures could reach the state-of-the-art in accuracy, it has been proved that this 2D to 3D
expansion approach is not optimal in terms of computational costs [6].

For example, the 3D version of ResNet used in video processing uses around 27 times more mathe-
matical operations than its 2D version used in image recognition [16, 38].

In order to increase the efficiency of deep learning models, different strategies have been proposed in
the literature [1, 2, 18, 12, 10, 14, 13, 9, 11]. In video processing applications, early attempts were
mostly focused on using 2D convolutions with some tricks in order to include the motion analysis
as well. Two-stream networks are examples of this type of methods in which one stream is used for
spatial processing while motion analysis is performed in the second stream using 2D convolutions
[27, 37]. However, the computational costs added by the optical flow calculation in the motion
stream prevent these methods from being efficient in real-time applications. On the other hand, there
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are some other 2D based networks e.g. TSM [23] and TIN [26] that perform the motion analysis
by shifting some of the features along the temporal dimension in order to provide the ability of
information exchange between the adjacent frames.

Another straightforward approach is to split the network architecture by performing the 2D convolu-
tions in some layers of the network for spatial processing while applying the 3D convolutions for
spatio-temporal analysis in the rest of the model. In [39], it is shown that efficiency and accuracy
could be improved by applying 2D convolutions to the early layers of the network to extract high-level
semantic information from frames. The temporal representation learning is then performed at the top
of the network by applying 3D convolutional layers to these high-level features. ECO architecture is
one of the most famous networks in this category [42].

A similar strategy is to use different pathways for spatial and temporal analysis as proposed in the
SlowFast architecture [7]. In that network, the spatial processing is performed in the Slow pathway
using more features at a lower frame rate, while the temporal analysis is done in the Fast pathway
using less features at a higher frame rate. They then extended their work to a single path architecture
called X3D, in which a tiny 2D network is progressively expanded in different dimensions to a 3D
architecture instead of just adding an extra temporal dimension to a 2D image based network [6].

On the other hand, instead of splitting the network into 2D and 3D layers or different pathways,
another alternative solution is to factorize each 3D layer into spatial and temporal domains throughout
the network. In this approach, every 3D convolutional block is decomposed into a spatial 2D
convolution followed by a temporal 1D convolution. S3D [39], P3D [24] and R(2+1)D [35] are some
of the well-known architectures in this category. As presented in R(2+1)D architecture, one benefit of
this approach is that the network capacity could be doubled by adding an extra non-linear function in
between the 2D and 1D convolutions while preserving the number of parameters [35]. This could
lead to a higher accuracy and efficiency comparing to the original 3D convolutional networks.

Factorization of the 3D blocks can go even deeper by decomposing the kernels into a consecutive
sequence of one-dimensional filters across all directions in order to improve the efficiency even more
[19]. However this implies a strong assumption that the convolutional kernels are of rank-1 so that
the matrix decomposition is reversible by cross production of all 1D components [21].

On the other hand, some networks take advantage of channel-wise separable convolutions or group
convolutions. In CSN architecture for example, it is shown that separating channel and spatio-
temporal interactions could improve both efficiency and accuracy at the same time as it acts as a
regularization technique [34]. In that method, all 3D convolutional blocks are split into a point-wise
(1× 1× 1) convolution for inter-channel processing and a depth-wise (3× 3× 3) convolution for
spatio-temporal analysis inside each channel.

In video analysis, the input to the network is a 5D tensor with the following shape:

Tensor Shape = [B, T , X , Y , C]

in which B, T , X , Y and C represent batch size, number of frames, width, height and number of
channels, respectively. In 3D convolution, although the kernels are assumed to be 3 dimensional, in
reality the following 4D filter is applied to the input tensors:

Filter Shape = [t, w, h, c]

where t, w, h and c are the dimensions of filters in time, horizontal, vertical and channel domains.
Note that in regular 3D convolutions, the kernel’s channel dimension c is equal to the number of
channels in the input tensor C (c = C). Therefore, all the features are collapsed into a single channel
and this process is repeated until the desired number of output channels is achieved. On the other
hand, in group convolutions, channels are divided into different groups and all features within a group
are collapsed into a single channel. Finally in depth-wise convolution, no interaction between the
channels is performed and so it is assumed that c = 1, which means that in each input channel, a 3D
filter of shape t× w × h is applied independently [5]. For the sake of simplicity in presentations, we
omit the channel dimension of the filters and assume 3D kernels of shape t× w × h throughout the
rest of this paper.

Although in theory, the above-mentioned techniques simulate the 3D convolution using a combination
of 2D and/or 1D convolutions, in their implementation codes they still use 3D convolutions with 5D
tensors, but with specific parameters for spatial and temporal analysis. In other words, instead of
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applying a 3D convolution with a t×h×w kernel to the 5D input tensor of shape B×T×X×Y ×C,
3D simulation approaches apply two different 3D convolutions to the 5D tensors, one with a 1×w×h
kernel and another one with a t× 1× 1 kernel for spatial and temporal analysis, respectively. While
this approach of modeling the 3D convolutions may work when training on powerful multipurpose
systems, it may cause complications and limitations for some of the edge devices. Furthermore, in
almost all of the existing methods, the spatial and temporal convolutions are applied in a sequential
form in which, temporal analysis is applied to the output of the spatial analysis. However, other
combination options e.g. parallel spatial and temporal processing and different ways of combining
them e.g. by summation, concatenation, etc. are not fully studied.

In this paper, we study and propose some new alternative operations for modelling the 3D convolutions
using either 2D convolutions with 4D tensors, 1D convolution with 3D tensors, or a combination of
them. This is done by splitting the 4d filters used in the 3D convoluitons into spatial and temporal
domains with appropriate reshaping and combinations of the tensors. For each method, different
ways of combining spatial and temporal analysis i.e. sequential, parallel, summation, concatenation
and etc.,are also explored in order to find the most efficient and accurate combination method.
The proposed simulation techniques show significant improvement both in terms of efficiency and
accuracy.

2 Proposed Method

A regular 3D convolutional layer and its 5D input/output shapes are shown in Fig.1. As shown in

Figure 1: A regular 3D convolutional layer applied to 5D tensors.

this figure, it applies a 3D convolution operation to both special (X , Y ) and temporal dimensions
(T ) at the same time to extract the spatio-temporal information. Note that in almost all of the video
analysis models, spatial dimensions w and h of the kernels are the same. Therefore, we assume:
w = h = d for the sake of simplicity in representations. The output would have the shape of
B × T ′ ×X ′ × Y ′ × S, where T ′, X ′ and Y ′ are the new temporal and spatial dimensions and S is
the number of output channels.

In order to avoid using 5D tensors, we first reshape the input data into 4D format by multiplying its
first 2 dimensions as shown in Fig.2. Then, in order to avoid applying 3D operations, we replace the

Figure 2: Reshaping the input 5D tensor into 4D.

3D convolutional layer in Fig.2 with the proposed structure shown in 3.

As shown in Fig.3, we apply the spatial and temporal processing independent from each other in two
parallel branches: spatial branch which analyses the data in its X and Y dimensions, and temporal
branch which analyses the input in its temporal domain T .

2.1 Spatial Analysis

Each frame of the video can be considered as a static image with spatial 2D data. In the spatial
analysis branch, the first 2D convolution applies the spatial analysis to each frame by multiplying the
X and Y dimensions with a d× d kernel. This will generate a 4D tensor of size: [B×T, X

s ,
Y
s , S] in

which the lowercase “s” is an integer representing the stride. After the spatial analysis is finished, in
order to keep the tensor dimension under 4D, we now multiply the number of vertical and horizontal
pixels of each frame by reshaping the tensor into: [B, T, X

s × Y
s , S]. After that, a 1-by-1 convolution

3



Figure 3: The proposed architecture which replaces the regular 3D convolutional layers.

with stride of s is applied to the temporal dimension (if necessary) in order to pool the temporal
dimension by s. The output of the spatial branch will then have the following size: [B, T

s ,
X
s × Y

s , S].

2.2 Temporal Analysis

On the other hand, in the temporal analysis branch, we only analyze the relationship between each
pixel of the images in consecutive frames. To do this, the input tensor is first reshaped by multiplying
the vertical and horizontal pixels of the frames: [B, T,X × Y,C]. Then, a 2D convolution with
kernel d× 1 and strides of (s, s2) is applied to the 2nd and 3rd dimensions of the 4D tensor which
performs both the temporal analysis and spatial striding at the same time. The reason behind using
s2 as our spatial stride is that the X and Y dimensions are multiplied and applying an s2 stride to
the 3rd dimension will shrink each of X and Y dimensions by a factor of s. Therefore, this square
stride guarantees that the output of the temporal branch will have the exact same size as that of the
spatial branch. This will make combining the output of two spatial and temporal branches very
straightforward by simply adding them together. The resulting tensor generated by adding of two
branches outputs will also have the same size as each of the branch outputs: [B, T

s ,
X
s × Y

s , S].

3 Experimental Results

We choose ECO-Lite architecture (with a minor modification) as the baseline in our experiments [42].
This architecture is composed of two parts: a set of 2D layers called 2D-Net for spatial analysis of
individual frames, and a set of 3D layers called 3D-Net for spatio-temporal analysis of the feature
representations learned from the 2D-Net. The first few layers of Inception-V3 [30] (originally BN-
Inception [17] in the ECO paper) is used as the 2D-Net while the last few layers of 3D-Resnet18 [33]
is adopted for the 3D-Net. The modified ECO-Lite architecture is presented in Table 1.

There are multiple reasons for choosing the ECO-Lite architecture in our experiments. First of all, it
is simple for implementation and efficient during both training and inference. Second of all, almost
half of the architecture consists of 2D convolutional layers from Inception-V3 which we do not need
to change during our experiments with different 3D simulations techniques in the 3D-Net. This will
provide us with a huge benefit in terms of training time as we can initialize the 2D-Net using the
Inception-V3 pre-trained weights on a large image dataset e.g. ImageNet [4]. This will also enable
us to transfer knowledge between our different 3D simulation experiments as we only change the
3D-Net during our experiments while 2D-Net stays untouched.

Experiments are performed on NVIDIA V100 GPUs. In the experiments, all 3D Convolutional layers
in ECO-Lite architecture are replaced by one of the equivalent structures in literature that resemble
the 3D convolution including: R(2+1)D [35], P3D-A, -B, and -C [24] and Rank-1 [21]. Two versions
of the proposed structure are also implemented, in which the last block in Fig.3 (the yellow add
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Layer Name Output Size Filters
2D-Net

conv2D-1 121× 121 [3× 3, 32]
conv2D-2 119× 119 [3× 3, 32]
conv2D-3 119× 119 [3× 3, 64]

pool1 59× 59 [3× 3]
conv2D-4 59× 59 [1× 1, 80]
conv2D-5 57× 57 [3× 3, 192]

pool2 28× 28 [3× 3]
inception (3a) 28× 28 [−256]
Inception (3b) 28× 28 [−288]
Inception (3c) 28× 28 [−96]

3D-Net

conv3D-1 N × 28× 28

[
3× 3× 3, 128
3× 3× 3, 128

]
× 2

conv3D-2 N
2 × 14× 14

[
3× 3× 3, 256
3× 3× 3, 256

]
× 2

conv3D-3 N
4 × 7× 7

[
3× 3× 3, 512
3× 3× 3, 512

]
× 2

pool3 1× 1× 1 [N4 × 7× 7]
fc, softmax 1× 1× 1 [1× 1× 1, #classes]

Table 1: The modified ECO-Lite architecture, assuming that the input is a video clip with N frames
of size 243× 243 [42]

Method #Params(M) FPS FLOPs(G)
Conv3D 33.7 773 35.6
R(2+1)D 33.7 764 36.9

Proposed-Cat 32.2 774 32.7
Proposed-Add 16.3 865 17.1

P3D-A 22.5 824 19.5
P3D-B 23.5 791 20.9
P3D-C 22.8 758 19.6
Rank-1 13.7 724 14.7

Table 2: Comparison of the efficiency of different structures resembling the Conv3D module

block) that combines the temporal and spatial branches are adding (Proposed-add) or concatenation
(Proposed-cat) operations. Concatenation is done along the last dimension of the tensors (channels).

The number of training parameters, floating points operations per second (FLOPs) and inference
speed in terms of frame per second (FPS) of all of the structures are also compared with that of the
baseline Conv3D module in Table 2. As seen in this table, the proposed method with adding block
(Prop-Add) has only 16.3 million parameters which is 51% less than the baseline (Conv3D). the
FLOPs also drops by 51% and the inference speed improves by 12%, which is the highest speed-up
among all other implementations.

In order to evaluate the performance of different structures, we use two datasets including Kinetics-
400 [20] and UCF-101 [29]. The experimental results for the different structures on these datasets
are shown in Table 3. In this table, the 3D layers of ECO-Lite architecture are trained from scratch
while the 2D blocks are initialized using the ImageNet weights of Inception-V3. The performance
results of pretraining on Kinetics dataset and then finetuning on UCF is also reported in Table 4. In
this experiment, the model is first trained on Kinetics dataset for 50 epochs and then finetuned on
UCF for 100 epochs.
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Method 2D-Net Pre Kinetics UCF
Conv3D ImageNet 55.63 72.85
R(2+1)D ImageNet 57.91 69.00

Proposed-Cat ImageNet 59.41 70.15
Proposed-Add ImageNet 57.90 75.79

P3D-A ImageNet 56.77 67.88
P3D-B ImageNet 57.83 69.62
P3D-C ImageNet 59.40 71.56
Rank-1 ImageNet 56.14 64.12

Table 3: Accuracy comparison when training the 3D layers from scratch on Kinetics-400 and
UCF-101, using ImageNet weights for the 2D layers

Method Pretrained Top-1(%)
Conv3D Kinetics 88.48
R(2+1)D Kinetics 90.31

Proposed-Cat Kinetics 91.21
Proposed-Add Kinetics 90.62

P3D-A Kinetics 90.44
P3D-B Kinetics 90.31
P3D-C Kinetics 91.01
Rank-1 Kinetics 86.41

Table 4: Accuracy comparison when training the model on Kinetics-400 for 50 epochs and then
fine-tuning on UCF-101

As seen in these tables, the proposed technique is more efficient and even more accurate than the other
methods, even the baseline 3D-CNN which uses 5D tensors. More specifically, the Proposed-Cat
method has the highest accuracy on both Kinetics and UCF datasets in both cases, even better than the
baseline. The possible reason could be the higher non-linearity caused by the new structures which
increases the capacity of the networks. If the number of parameters is not an issue, the Proposed-Cat
structure is the best choice among all of the techniques. The Proposed-Add shows the highest
speed-up among all of the techniques although it does not have the highest accuracy. However, it still
preserves the accuracy higher than the baseline. Therefore, it could be a good choice when the speed
and efficiency is a priority. This fact is shown in Fig.4, in which the compression ratio is depicted as
a function of the speed multiplied by accuracy improvement.

Figure 4: Number of parameters vs. speed and accuracy improvement for different methods. Note
that the lower the number of parameters and the higher the speed and accuracy, the better the model.
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4 Conclusion

In this work, we studied some techniques for implementing the 3D convolutional layers using 2D
and/or 1D convolutions with only 4D and/or 3D tensors. The existing approaches reshapes the 5D
tensors at the begigning of the models and analyses the data in two different branches including
spatial and temporal domains. We performed this by introducing some appropriate 4D/3D tensor
reshaping as well as new combination techniques for spatial and temporal splits. The proposed
implementation methods show significant improvement both in terms of efficiency and accuracy.
We have performed multiple experiments on both NVIDIA’s GPUs as well as Huawei’s Ascend AI
accelerators. In summary we solved the existing problems with conventional 3D-CNN as follows:

• Appropriate reshaping techniques in the parallel structure of the proposed method allows us
to use 4D tensors throughout the entire system instead of 5D

• Also, the 4D tensors in both branches will have the same shapes after processing which
makes them more efficient to combine by adding

• Using only 2D kernels enables us to implement the spatial and temporal processing much
more efficiently with significantly lower memory consumption, which are critical in real-time
applications especially for edge devices in real-world applications.
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