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Abstract

The widely used ReLU is favored for its hardware efficiency, as the implementation
at inference is a one bit sign case, yet suffers from issues such as the “dying ReLU”
problem, where during training, neurons fail to activate and constantly remain
at zero, as highlighted by Lu et al. [16]. Traditional approaches to mitigate this
issue often introduce more complex and less hardware-friendly activation func-
tions. In this work, we propose a Hysteresis Rectified Linear Unit (HeLU), an
efficient activation function designed to address the “dying ReLU” problem with
minimal complexity. Unlike traditional activation functions with fixed thresholds
for training and inference, HeLU employs a variable threshold that refines the
backpropagation. This refined mechanism allows simpler activation functions to
achieve competitive performance comparable to their more complex counterparts
without introducing unnecessary complexity or requiring inductive biases. Em-
pirical evaluations demonstrate that HeLU enhances model generalization across
diverse datasets, offering a promising solution for efficient and effective inference
suitable for a wide range of neural network architectures.

1 Introduction

The “dying ReLU” problem, as observed with the ReLU activation function, occurs because ReLU
outputs zero for negative inputs. This can lead to neurons becoming inactive during training, thereby
halting their learning capability [16]. This phenomenon significantly impacts the network’s ability to
adapt and generalize effectively. Various alternatives to ReLU have been proposed [9, 10, 19, 25, 27],
which allow small negative values to persist, and thus avoid “dying ReLU” during training. However,
these modifications often come at the cost of less efficient inference time.

This inspired us to explore the use of robust mechanisms, with zero computational cost, by embrac-
ing Hysteresis. Hysteresis, derived from the Greek word meaning “lagging behind”, describes a
fundamental property observed in various physical and engineering systems, including computer
architecture. In computational contexts, hysteresis refers to the persistence of a state or behavior even
after the input conditions that triggered it have changed or been removed. In computer architecture,
hysteresis is prominently observed in memory elements such as flip-flops and in signal processing
circuits. It plays a crucial role in ensuring proper timing and synchronization, preventing unintended
state changes due to noise or transient signals. Engineers utilize hysteresis to design robust and
dependable circuits capable of maintaining stable outputs amidst varying input conditions, thereby
enhancing overall system performance and reliability.
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(a) The threshold transition of bit voltage between 0
and 1 (forward) and 1 and 0 (backward) inspired the
concept of using different thresholds for activation
functions in the forward and backward passes of the
network.
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(b) Weight distribution of all pre-activations of Wide
ResNet 40-4. In the image classification task with
over parametric network, we see that majority of the
pre-activation features are negative. In red we mark
the pre-activations that we allow regret with HeLU.

By introducing hysteresis, which adjusts the activation threshold, used during backpropagation, the
proposed HeLU mitigates the “dying ReLU” problem without incurring additional computational
costs during inference and only negligible costs during training. This approach enables neurons
to remain active even for inputs that would otherwise result in zero activation in traditional ReLU
networks. By maintaining non-zero gradients and promoting continuous learning in potentially
dormant neurons, Hysteresis ReLU offers a promising direction for achieving attractive inference
properties in lean networks with comparable performance. For instance, we observed a performance
gain of +2.96 on CIFAR10, +2.19 on CIFAR100 and +1.23 over Imagenette in the computer vision
domain, and +0.51 on the GLUE benchmark across 8 datasets, all compared to the simple ReLU.

2 Related Work

To increase throughput and reduce energy consumption in growing DNN models for deployment
on edge devices, common methods include pruning and quantization. Pruning techniques remove
less significant weights or features, requiring sophisticated re-routing in hardware to achieve actual
benefits [6, 22]. Quantization, another prominent approach, reduces the precision of weights and
activations to fixed precisions such as INT8 or INT4, or even binary representation [2, 26], and mixed-
precision [17, 24, 12]. This reduces the memory footprint and enables faster matrix multiplications,
which are the most common operations in DNNs.

We argue that for accelerated inference, focusing on the most fundamental building blocks, such
as activation functions, can reveal further improvements in throughput. These improvements are
particularly significant for more efficient models.

Traditional methods may overlook the computational efficiency of simpler components like activation
functions, which, when optimized, can lead to substantial performance gains. Specifically, the ReLU
activation function, due to its simplicity and computational efficiency, demonstrates the potential
for enhanced throughput without the need for additional multiplications. Here we explore some
alternative activation functions that does not benefit from this property.

2.1 Activation Functions

A deep neural network (DNN) is a parametric approximation of a function, constructed by repeatedly
applying a linear transformation to the input followed by a non-linearity. These non-linear functions,
known as activation functions, are crucial for enabling the network to learn complex mappings. Over
time, the selection of activation functions has been influenced by both engineering and scientific
considerations [7]. Enhancing the power of activation functions can improve the performance of
models like transformers, often by incorporating additional operations such as products and linear
projections, as seen in Gated Linear Units (GLUs) [27].

Sigmoid (f(x) = σ(x) = 1
1+e−x ), which was designed to mimic the firing rate of biological neurons.

However, the Sigmoid function is susceptible to the “vanishing gradients” problem, where repeated
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multiplications during backpropagation result in gradients that approach zero, hindering the training
process [29].

ReLU (f(x) = max{0, x}) [20] activation function is the most prominent one in DNNs for many
years, due to its empirical success. It is simple to implement in hardware, as signed representations
simply look at the sign bit (MSB) and pass forward the number itself, or zero if negative. This
means it does not require any intermediate calculations or additional parameters. In other words, the
Arithmetic logic unit (ALU) of a processor does not need to execute any mathematical unit, unlike
other cased activation functions. ReLU does not suffer from vanishing gradient, but from “dying
ReLU” phenomenon, where a neuron might be deactivated during training producing a constant
output of 0, and gradient updates would not change that.

In the recent years, GELU (f(x) = xΦ(x)) [10] where Φ(x) is the Gaussian Error function, has
proven great success in many transformer models and has become a standard to use. Typically used

with approximation x
2 [1+Tanh(

√
2
π (x+0.044715x3)], that even if faster, still require computation

of the Tanh function. Other similar functions such as Swish (f(x) = xσ(x)) [25], have become
common in vision models. GELU is inspired by stochastic regularization and was formulated with
a probabilistic approach of gating. It views the activation of a neuron and the following dropout
as a single component, that is produced by the neuron. One thing to note about GELU is its curve,
where its derivative is negative. This is in contrary to the former known activation functions, that
are monotonic, and serves as a mean of regularization over the gradients, encouraging optimization
to be more robust to sub-optimums, as local minima and saddle points. We refer the reader to
LLMCompas [34], that analyze the hardware complexity and utilization of LLMs, showing that for
GPT3, the GELU operations cause 400-500 G elements per second on NVIDIA A100. Moreover, the
analysis shows that specifically for GPU usage, GELU can cause around 6% of the latency of GPT3,
where quantized models become more popular, increasing this number significantly.

A recent trend of trainable activation functions gains popularity, with the notable Kolmogorov-Arnold
Network (KAN) [15]. However empirical evident shown learnable activation functions are extremely
inefficient, as they can take up to 10 times longer to train, and do not have any inference utilization
grantees [7], they left out of the scope of this work.

Despite the advancements in activation functions, many of these alternatives do not benefit from
the computational simplicity of ReLU, which merely requires a single-bit condition check and no
multiplications. This makes ReLU particularly attractive for applications requiring fast and efficient
inference, highlighting the trade-off between the advanced capabilities of newer functions and the
hardware efficiency of ReLU, such as this work.

3 HeLU

Our formulation leverage the robustness of hysteresis, that preforms regularization by setting different
threshold for the forward and backward steps on neurons of network, during training, as seen in
Figure 2. HeLU is defined exactly like ReLU, for the forward pass, but for the backpropagation, it is
shifted backwards by a hyperparameter, α ∈ R.

We define the Hysteresis Rectifier Linear Unit (HeLU) as:

Definition 1 (HeLU) HeLUα(x) = ReLU(x) = max{0, x}

Whereas, we override the autograd derivative that is used during backpropagation, and use instead
the following term, lightly abusing the notation:

Definition 2 (HeLU Modified Derivative) d
dx HeLUα(x) ={
0 x ≤ −α
1 −α < x

}
Shifting back the derivative, essentially, refines the trigger of “dying ReLU”, by demanding a greater
step to turn off the neuron. For convenience, we added a simple implementation of HeLU in Torch-like
pseudo code in Algorithm 1.
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Figure 2: ReLU, GELU and HeLU functions and their derivatives

Algorithm 1 HeLU Function in PyTorch Style

1: class HeLUFunction(torch.autograd.Function)
2: @Staticmethod
3: def forward(ctx, z, alpha)
4: ReLU← torch.where(z > 0, z, 0)
5: ctx.save_for_backward(z)
6: ctx.alpha← alpha
7: return ReLU
8: @Staticmethod
9: def backward(ctx, grad_output)

10: z,← ctx.saved_tensors
11: alpha← ctx.alpha
12: grad_positive← torch.ones_like(z)
13: grad_HeLU← torch.where(z > -alpha, grad_positive, 0)
14: return grad_HeLU * grad_output

4 Experiments

We evaluate the performance of HeLU along with common counterpart activations (GELU, ELU,
and ReLU) across two prominent domains: computer vision and natural language processing,
specifically for discriminative tasks. Our results indicate that HeLU performs comparably to GELU
and outperforms ReLU while retaining the computational efficiency of ReLU. Consequently, our
experiments emphasize the accelerated paradigm of the aforementioned tasks, as described in this
section.

4.1 Image Classification

We conducted experiments on CIFAR10 and CIFAR100 datasets [13], as well as on a subset of
ImageNet containing 10 common classes, known as Imagenette [11]. Consistent with [10], all image
classification experiments employed the 40-4 Wide ResNet architecture [33]. For the CIFAR datasets,
we trained for 100 epochs with a learning rate of 0.01, utilizing the momentum SGD optimizer with
standard horizontal flip and crop augmentations. For Imagenette, we trained for 50 epochs with the
same optimization algorithm but without augmentations. As shown in Table 1, HeLU demonstrates
superior performance compared to the non-shifted threshold ReLU function, outperforming other
methods or being second only to GELU in certain cases, such as CIFAR.

4.2 General Language Understanding Evaluation

Model Architecture and Training

Our experiments were conducted using Cramming [8], a highly optimized training framework of
BERT-base-uncased [5] model, including many techniques to boost the training and the inference of
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Table 1: Image classification Accuracy of Wide ResNet 40-4 with various activations.
Activation Function CIFAR10 CIFAR100 Imagenette

ReLU 92.84± 0.34 75.31± 0.94 76.76± 1.50
ELU 93.59± 0.75 71.85± 1.77 76.67± 2.00
GELU 96.11± 0.51 79.26± 0.95 78.45± 2.51
HeLU (α = 0.001) 95.80± 0.63 77.51± 1.20 77.99± 1.21
HeLU (α = 0.05) 95.31± 0.73 75.62± 1.47 76.67± 2.35
HeLU (α = 0.01) 95.35± 0.94 75.84± 1.95 75.73± 2.85
HeLU (α = 0.1) 95.10± 0.77 68.75± 1.45 72.32± 4.52

Table 2: Comparison of different activation functions on GLUE tasks (Larger is better).
Name MNLI Accuracy QQP QNLI SST-2 STS-B MRPC RTE WNLI Avg

(m) (mm) F1 Acc Acc Spearman F1 Acc Acc

GELU 81.9 82.52 86.6 89.3 90.8 82.4 82.0 53.1 56.3 78.32
ReLU 82.7 82.9 85.7 87.8 90.3 74.3 83.2 55.2 47.9 76.67
HeLU α = 0.05 82.0 82.59 86.0 89.3 90.6 76.9 81.6 56.3 57.7 78.02
HeLU α = 1 81.4 81.62 84.7 88.0 86.5 18.2 81.3 54.2 57.7 70.4
HeLU α = 2 32.7 32.95 70.0 78.0 50.9 13.2 81.2 54.5 53.5 51.88

models, like automatic mixed precision (AMP) [18], flash attention [4], torch compile [1]. All the
added optimizations are orthogonal to HeLU, and we believe one might like to use them in parallel
with HeLU, to speed up inference. The training objective was also slightly modified, compared
to the original BERT, including only masking loss, and not next sentence prediction, as shown in
RoBERTA [14]. The pretraining phase took 3327000 steps, out of them, 1% for warmup.

Hyperparameters for BERT pretraining were selected by ablation and are specified in Table 4. At first,
we performed a hyperparameter search on the GELU baseline, mainly to find the appropriate learning
rate. After that, we used the selected hyperparameters to train another 3 HeLU models, where all
GELU activations were replaced with HeLU with the following alphas: 0.05, 1, 2, and one ReLU
model with ReLU activations. We used wikipedia-bookcorpus as Pretraining Data, similar to the
original paper of BERT.

Evaluation Benchmarks

After pretraining, we evaluated the models on 8 out of the 9 natural language understanding tasks
included in GLUE [30]. Every model was fine-tuned for each of the tasks, using the Cramming code
base. The results reflected from Table 2 shows an improvement using HeLU α = 0.05 over ReLU.
Inline with the Vision results, GELU still achieves more accurate results on most datasets. Note that
HeLU aim to bridge the gap between ReLU and GELU without memory and compute additional cost.

Another experiment conducted on QBERT [28], a post-training quantization of the BERT model
without any post-training calibration, as shown in Table 3, highlights the gap in performance between
QBERT and BERT. The results indicate that the tested activation functions suffer a small degradation
in performance when quantized to 8-bit, whereas HeLU shows a mild improvement.

Table 3: Comparison of different activation functions on GLUE tasks, showing the difference between
QBERT-INT8 and BERT performance (Larger is better).

Name MNLI Accuracy QQP QNLI SST-2 STS-B MRPC RTE WNLI Avg
(m) (mm) F1 Acc Acc Spearman F1 Acc Acc

ReLU -0.4589 -0.2238 0.0726 0.0915 0.4587 0.0284 0.1316 0.3610 -2.8169 -0.2617
GELU -1.4978 -2.0952 -0.1234 0.0732 0.3440 -0.0123 0.0535 1.0830 0.0000 -0.2417
HeLU α = 0.05 0.1822 1.6273 -0.1400 -0.0549 0.3440 0.2296 0.1251 0.7220 4.2254 0.8067

Training Environment

We used 3 × NVIDIA GEFORCE RTX 2080 TI. Each GPU has memory capacity of close to
12GB. Each pretraining took us approximately 1 week. The seed for the pretraining, fine-tuning and
evaluation of all tested models is 42.
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The pretraining of the GELU models was using CUDAGraphs [21], an optimization mechanism that
allows a series of CUDA kernels to be executed as a single unit, reducing the launching overhead and
achieving speedup, provided by the training framework. However, we had to omit the optimization
when pretraining HeLU and ReLU models due to a lack of memory required for torch compilation.
Thus, we consider a further optimized version of the GELU model in our comparison.
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Figure 3: Comparing HeLU and GELU in BERT. Top figures are Inference time by dataset, using
half precision and QINT8 versions. Bottom figures are Throughput using half precision and QINT8.
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4.3 Computational Analysis

We assess the inference time and throughput of BERT with and without QINT8 quantization (using
only AMP for the latter) by running quantized models on a CPU and non-quantized models on
an NVIDIA L40 GPU. The evaluation iterates over batches of 256 drawn from a subset of up to
1024 randomly selected samples from the validation set of each GLUE benchmark dataset, with
measurements repeated 10 times. The results of this experiment are illustrated in Figure 3. Our
findings reveal a notable trend: HeLU achieves faster inference times, particularly in the non-quantized
model, and higher throughput, especially in the quantized model, where memory constraints are more
pronounced. The reported standard deviation is calculated based on batch-wise processing rather than
individual samples, reflecting the variability introduced by the random selection of samples from the
validation set. Consequently, datasets with considerable variation in sequence length may exhibit
high variance, though this pattern remains consistent across different non-linearity functions.

Another experiment presented in Figure 4, shows inference time per sample using various transformer
architectures, namely BERT [5], RoBERTa [14], XLNet [32], GPT-2 [23] and Electra [3] on single
NVIDIA T4 GPU. We denote the original implementation from [31] as Original, since some models
like GPT-2 used a modified version of GELU. In all models we observed a reduction in inference time,
where the experiment averaged over 100, 000 examples. The total timing of the examples benefit
range from 121.63 seconds (GPT-2) to only 4.735 seconds (BERT). While BERT seem insignificant,
we show in Figure 3 that in some cases, like the CoLA or STSB datasets it can be very significant.

Hyperparameter Value

Batch Size 288
Gradient Clipping 0.5
Optimizer AdamW
Learning Rate 0.0001
Betas [0.9, 0.98]
Epsilon 1E-12
Weight Decay 0.01
Total Steps 3,327,000
Warmup Steps 33,270
Scheduler Budget-One-Cycle

Table 4: Pretraining Hyperparameters of BERT

5 Conclusion

In this study, we advocate for using shifted activation threshold during training, HeLU, a novel hys-
teresis activation function designed to enhance the robustness of activations against the “dying ReLU”
phenomenon. By leveraging the gradients of a shifted activation function, our approach maintains
simplicity while improving performance across various domains. Our empirical results indicate
that a relatively straightforward modification can yield significant performance gains, highlighting
the potential of HeLU for universal application. This study paves the way for exploring efficient
activation functions that are both computationally and environmentally sustainable. While extremely
efficient, one drawback of HeLU is the search for the optimal hyper-parameter; Future research
should further investigate the pre-activation statistics and find an optimal value for α. It is important
to note that HeLU is intended to enhance efficiency rather than replace activation functions in systems
where accuracy is paramount.
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