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Abstract

The deployment of large language models (LLMs) is often hindered by the extensive
memory requirements of the Key-Value (KV) cache, especially as context lengths
increase. Existing approaches to reduce the KV Cache size involve either fine-
tuning the model to learn a compression strategy or leveraging attention scores
to reduce the sequence length. We analyse the attention distributions in decoder-
only Transformers-based models and observe that attention allocation patterns stay
consistent across most layers. Surprisingly, we find a clear correlation between
the Lo norm and the attention scores over cached KV pairs, where a low Lo norm
of a key embedding usually leads to a high attention score during decoding. This
finding indicates that the influence of a KV pair is potentially determined by the
key embedding itself before being queried. Based on this observation, we compress
the KV Cache based on the Ly norm of key embeddings. Our experimental results
show that this simple strategy can reduce the KV Cache size by 50% on language
modelling and needle-in-a-haystack tasks and 90% on passkey retrieval tasks
without losing accuracy. Moreover, without relying on the attention scores, this
approach remains compatible with FlashAttention, enabling broader applicability.

1 Introduction

Handling long contexts is desirable for large language models (LLMs), as it allows them to perform
tasks that require understanding long-term dependencies |Liu et al.|[2024], |Fu et al.| [2024],/Chen et al.
[2023]], |Staniszewski et al.|[2023]],|Zhao et al.|[2024]], Tworkowski et al.|[2024]. A key component for
modelling long context is the KV Cache, which stores the keys and values of past tokens in memory
to avoid recomputing them during generation. However, processing long-context inputs often results
in a high decoding latency since it requires repeatedly reading a potentially large KV Cache from
high-bandwidth memory (HBM) to the streaming multiprocessor (SM) during decoding [Ful[2024].
Consequently, the practical deployment of LLMs is frequently hindered by hardware limitations. To
address the issue of KV Cache growth, various KV Cache compression methods have been proposed.
These methods can be broadly categorised into trainable approaches, which involve modifications
to the model architecture |Ainslie et al.| [2023]], or fine-tuning regime to inherently manage KV
Cache size Nawrot et al.|[2024], and non-trainable approaches, which apply post-hoc compression
techniques to reduce the cache footprint without altering the underlying model Li et al.|[2024],|Zhang
et al.| [2024b], |Ge et al.|[2023b]]. While these methods have shown promise, they often involve
complex algorithms or significant computational overhead, limiting their practicality; for example,
post-hoc compression algorithms usually evict KV pairs based on attention scores, which is not
compatible with FlashAttention [Dao et al. |2022]] and thus prevents their applications in modern
LLMs inference systems.
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Figure 1: Five heads at layer 9 of Llama2-7b. Attention score (top) and Lo norm (bottom) are highly
correlated. We observe similar patterns across most layers and for a wide range of inputs. More
examples provided in Appendix |§|

We show that, surprisingly, the Lo norm of cached keys has a high correlation with attention scores.
More specifically, we observe that a low Ls norm of a key embedding usually leads to a high
attention score during decoding. Based on this observation, we propose a simple and highly effective
strategy for KV Cache compression: keeping in memory only the keys with lowest Lo norm, and
the corresponding values. Unlike many existing methods, our heuristic can be applied off-the-shelf
to any transformer-based decoder-only LLM without the need for additional training or significant
modifications. More importantly, our method estimates the influence of cached key-value pairs
without the need to compute the attention scores. Therefore, unlike other compression methods
[Holmes et al.l 2024, |Li et al., [2024]], it can be easily integrated with the popular FlashAttention [Dao
et al.,[2022].

Our experimental results demonstrate that this heuristic allows maintaining model performance in
language modelling tasks and in tasks that require the model to store and retrieve the most critical
information, such as passkey retrieval [Mohtashami and Jaggil [2023|] and needle-in-a-haystack
tasks [Kamradt, [2023]].

2 Background on LLM Inference

In transformer-based LLMs, the input sequence is represented as a tensor X € R”*¢, where n is the
sequence length and d is the token embedding dimension. Each x; corresponds to an embedding of a
token in the sequence. The tensor X is processed by a series of transformer blocks, each composed
of a multi-head self-attention and a feed-forward layer.

Given an input X € R™*4, the multi-head attention mechanism performs multiple attention operations
in parallel, allowing the model to attend to information from different representation subspaces. It
does so by first computing three projections: the query, key, and value matrices, denoted as Q, K,
and V, respectively. These are obtained by linear transformations of the input X:

Q=XWg,, K=XWg, V=XWy, ()
where W, W, Wy, € R4 are learned projection matrices, and d, is the dimensionality of the

queries and keys. Next, the output is computed using the scaled dot-product attention. The attention
output is calculated as follows:

Attention(Q, K, V) = softmax (QKT) A% )
Y Vi,

In the multi-head attention mechanism, this process is repeated h times, each with different learned

projections Wg), Wg?, Wg) for each head h, resulting in H separate attention outputs. These



outputs are concatenated and projected back to the original dimension d using a final learned matrix
Wo € Rhdexd;
MultiHead(Q, K, V) = Concat(head,, ..., headg )Wy 3)

where each attention head head), is defined as head;, = Attention(Q™, K() v (")),

KV Cache During autoregressive inference, where tokens are generated sequentially, the model
has to compute the attention distributions over all previously generated tokens at each step. Without
optimisations, this would involve recalculating the key (K) and value (V) projections for every past
token at each new step. The KV Cache addresses this inefficiency by storing the key and value
projections for each token after they are first computed. Instead of recalculating these projections for
past tokens, the model retrieves the cached K and V values during subsequent inference steps.

When generating a new token at time step ¢, the attention computation is performed as:
Attention(Qy, [Ki1.t—1; K¢, [V1:e—-15 Vi]) “)

where [; ] denotes concatenation along the sequence dimension, and K;.;—1 and V1., are retrieved
from memory. The key K and value V; for the current token are computed normally.

The KV Cache can significantly reduce computational costs by avoiding redundant calculations.
However, storing the cached key and value matrices for every token in the sequence incurs substantial
memory usage, which grows linearly with the sequence length. For a model with L layers, H attention
heads, and a sequence length of n, the total memory required is L X H X n X di x 2x, where the
factor of 2 accounts for both the key and value matrices and precision represents the number of bytes
used to store each value in the memory, typically corresponding to the bit-width of the data type (e.g.,
16 bits for half-precision or 32 bits for single-precision floating point).

Though the KV Cache improves the computational efficiency, it requires repeatedly reading potentially
large KV Cache from high-bandwidth memory to the streaming multiprocessor during decoding. To
address this, recent works [Zhang et al.| [2024b} |Ge et al.,[2023a} [Li et al., 2024, [Luohe et al.||2024]
have proposed compressing the KV Cache to reduce memory usage.

3 Analysis of the Attention Distributions

We first examine the attention scores on the language modelling task for a range of popular LLMs. By
analysing the key embeddings and the attention distribution, we observe that key embeddings with
low L norm are often associated with higher attention scores. In Figure|[I] we provide an example
using Llama-2-7b [Touvron et al.,|2023]], where the columns represent different heads, the first row
presents the attention distribution over the KV pairs, and the second row presents the Lo norm of
each key embedding. We observe that the tokens with high attention scores, such as "<s>" and ".",
have significantly lower Ly norm values than others. While Xiao et al.| [2024] already observed
peaked attention distributions for specific tokens, and|Darcet et al.|[2024]] pointed out the influence of
high L, norm hidden states on attention maps, we are the first, to the best of our knowledge, to point
out the correlation between the Ly norm of the key embeddings and attention score. Based on our
observation, we consider the following research question: can we compress the KV Cache based on
the Lo norm of the key embeddings?

An intuitive way to estimate the influence of compressing the KV Cache is by examining the attention
scores that are dropped due to the compression. In the following, we formally define this influence.

Given a prompt consisting of n tokens (z1, 9, ..., 2, ), the LLM first encodes them into a KV Cache—
this step is referred to as the pre-filling phase. Then, the model autoregressively generates the next
token x,,41. When performing KV Cache compression, some key-value pairs may be dropped and
thus cannot be attended to. We define the attention loss caused by the compression as the sum of the
attention scores associated with the dropped KV pairs:

L= D ahp 5)
pED; 1

where a; 1, is the attention score of the p-th token in the layer I, head h. In Equation (3), Dy
denotes the positions of m pairs of dropped KV, |D; ;| = m, which depends on the compression
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Figure 2: ALR, as defined in Equation , for each head and layer in Llama2-7b (left) and Llama2-
7b-32k long context model (right). A lower value means a higher correlation between Ly norm and
attention score.

method. An ideal compression algorithm aims to drop the KV pairs with the lowest attention scores,
which will have less impact on the output. However, such attention scores are unavailable for a
compression algorithm since it needs x,,11 to query the full KV Cache in advance. Instead, we
drop KV pairs with the highest L, norm in key embeddings and use attention loss caused by ideal
compression as the reference:

Vi =Ly, — L7 (©6)

where ET}; is the reference attention loss, and y;j; is a non-negative value. A lower y;j; indicates
a lower difference and thus a higher correlation between the attention score and the Ly norm. To
measure the overall difference between ideal attention score-based compression and Lo norm-based
compression, we sum up the ", over different numbers of compressed KV pairs:

ref

Vin=> Vi )
m=1

We name the ) j, as ALR, which denotes the attention loss (Equation @)) for a compression method
using the ideal attention loss as reference. In Figure 2] we plot the ) across layers and heads. We
observe that heads in the first two layers and some middle layers around the 12th layer have relatively
high ) values. The heads in other layers have lower ) values, indicating a high correlation between
L5 norm and attention score.

By leveraging this correlation, we can compress the KV Cache based on the Lo norm of key
embeddings. Optionally, we can skip the compression at the layers with low correlation. We show
ablation experiments skipping layers in Appendix [A]

4 Experiments

We evaluate our method on language modelling and two long-context modelling tasks, i.e., needle-
in-a-haystack and passkey retrieval. In addition, we test on tasks from LongBench [Zhang et al.|
2024al, specifically devised to evaluate the model’s long context abilities. Based on the observation
supported by Figure 2] the heads in the first two layers usually have a low correlation between Lo
norm and attention score, so we do not perform compression on these layers as default. We conduct
experiments to investigate the impact of compression on different layers in Appendix [A]

Language Modelling Tasks For language modelling, we let the KV Cache grow until a specific
pre-defined length and subsequently start to discard the tokens with the highest L, norm. We show
in Figure [3] that evicting even up to the 50% of KV Cache does not impact perplexity. Perplexity
increases, as expected, once we exceed the pre-training context length. We show more results,
including next token accuracy in Appendix[A] To further verify that keys with low Ly norm capture
significant information, we test other eviction strategies, i.e. keeping tokens with highest Ls norm
and keeping random tokens. It is clear from Figure [3| that discarding tokens with low L, impairs
performance, even more so than random discarding, thus highlighting the importance of these low Lo
norm keys.
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Figure 3: Perplexity for Llama 2-7b, Llama 3-8b and Gemma on language modelling task on
wikipedia dataset.Additional results on coding dataset are available in Appendix E|

Pressure Test on Long-Context Tasks The needle-in-a-haystack task [Kamradt, 2023]] and passkey
retrieval task [Mohtashami and Jaggi, [2023]] are two synthetic tasks that are widely used to pressure
test the long-context modelling capability of LLMs. In both tasks, the model needs to identify and
retrieve the important information from a long context to generate correct answers. Thus, these tasks
test the compression method’s ability to keep important KV pairs and drop redundant ones.

In Figure ffa) and Figure [db] we present the experimental results of Llama-2-7b-80k [Fu et al, [2024].
We analyse additional models in Appendix [B] As shown in Figure[da] the model can preserve its
performance on the needle-in-a-haystack task while compressing 30% of the KV Cache, and maintain
99% accuracy when compressing 50% of the KV Cache. Additionally, the model can achieve 100%
accuracy on the passkey retrieval task even when compressing 90% of the KV Cache, as shown in
Figure [4b]

Moreover, we compare other eviction strategies, like keeping KV pairs with low Ly norm, keeping
KV pairs with high L, norm, and keeping random KV pairs. In Figure [#al and Figure[db] we observe
that the model cannot answer correctly when keeping only high Ly norm KV pairs, obtaining near
zero and zero accuracy on the needle-in-a-haystack and passkey retrieval tasks, respectively. When
we randomly compress the KV Cache, the performance decreases significantly faster than keeping
low Lo norm KV pairs. The above analysis indicates that KV pairs with low Lo norm are critical to
generating the correct answer and thus contain important information.

Experiments on LongBench Additionally, we evaluate on LongBench [Zhang et al.,|[2024a]. We
test on several subsets, including NarrativeQA [Kocisky et al.| [2018]], Qasper [Dasigi et al.| [2021]],
HotpotQA [[Yang et al., 2018, 2WikiMQA [Ho et al., [2020]], and QMSum [Zhong et al.| 2021]]. We
report the results for the recently released long context Llama3.1 and Llama 2-7b 80k in Figure[] In
addition, we show the complete per-subset results in Appendix |B| The experimental results show that
compressing the KV Cache with low Ly norm only introduces a small accuracy decrease even when
compressing 50% KV Cache, while compressing KV Cache with high Ly norm results in almost zero
accuracy.
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(a) Accuracy on the needle-in-a-haystack task. (b) Accuracy on the passkey retrieval task.

Figure 4: Overall accuracy of llama-2-7b-80k on the needle-in-a-haystack task passkey retrieval task.



average average

50 50
40 40
30 = z - 30 :
wn 1%
o o
o o
S 20 \ 20 -\
no compression - no compression
10 keep low norm 10 keep low norm
T — keeprandom —— keep random
0 —— keep high norm 0 —— keep high
10% 30% 50% 70% 90% 10% 30% 50% 70% 90%
Compression Ratio Compression Ratio

Figure 5: Overall scores on LongBench [Zhang et al.,[2024a] of Llama3.1-8b (left) and llama-2-7b-
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Figure 6: Perplexity and next token accuracy of Llama3-8b on the wikipedia dataset when compared
to FastGen [Ge et al.,[2023a]] (only local, special and punctuation tokens).

Comparison with FastGen We use FastGen [Ge et al.,[2023a], a popular method for KV Cache
compression, as a baseline for assessing the effectiveness of our method. It is important to note
that, like the majority of methods in the literature, FastGen utilises attention scores, which makes it
incompatible with the popular FlashAttention [Dao et al}2022], thereby limiting its efficiency and
usability. For a fair comparison, we implement FastGen without using the attention scores, i.e., we
only consider local, punctuation and special tokens. We perform experiments on language modelling
with the Llama3 model [Dubey et al.,|2024]. Our method still outperforms FastGen with up to 50%
KV Cache eviction. We show the results in Figure 6]

5 Analysis

Attention score loss when using L, norm We discuss further the correlation between Lo norm and
attention scores. We already displayed in Figure[2]the L, norm and attention correlation across heads
and layers using the original Llama2-7b and the long context Llama2-7b-32k and Llama2-7b-80k.
We can see that patterns are quite consistent across all the models. To better visualise how correlation
varies across different heads, in Figure[/| we only consider two heads from layer 10 and layer 0 and
show the ALR from Equation (5). As expected, we see that in layer 0, the difference is larger due to a
lower correlation.

Relationship between embedding and L, norm So far, we have identified a correlation between
the Lo norm of token key embeddings and the corresponding attention scores. This observation,
while primarily empirical, it offers a direction for further explorations. Our investigation into the
distribution of key embeddings revealed that tokens with lower Ly norm tend to exhibit sparse
activations with only a few dimensions showing significantly high values, while the majority of the
dimensions remain near zero. This pattern suggests that the embeddings of these tokens are not
fully utilising the available vector space, focusing their activations on a narrow subset of dimensions.
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Figure [§illustrates several examples of such tokens, highlighting the difference between tokens with
high and low Lo norm.

Interestingly, this sparsity aligns with the concept of "sink" tokens, as identified in previous studies
[Xiao et al.,|2024]]. These tokens capture a direction in the embedding space such that many queries
align closely with it, leading to increased attention scores for these tokens. In simpler terms, when
the key embeddings of certain tokens are dominated by a small number of dimensions, it appears
to create a situation where a large number of queries - regardless of their specific content - are
naturally drawn to these tokens, increasing their attention weight. We hypothesise that the lower Lo
norm reflects a partial use of the available embedding space, leading to increased attention for these
tokens. To test this, we zeroed out the dimensions responsible for the peaked activations in low-norm
key embeddings and observed significant changes in attention maps (Figure [J). Randomly altering
dimensions did not produce the same effect, suggesting that the specific active dimensions play a
critical role in attention distribution. This finding suggests that the Lo norm may serve as a proxy for
the extent to which an embedding utilises the available vector space and, consequently, the degree
to which it influences attention. Lower Lo norm appears to correspond to embeddings that drive
disproportionately high attention values due to their alignment with a common "sink" direction.

6 Related Work

Recently, various long-context LLMs, such as Gemini-Pro-1.5 [Reid et al., 2024]], Claude-3 [An-
thropicl [2024]], and GPT4 [Achiam et al. [2023]], have shown the promising capability to process

0 50 100 0 50 100 0 50 100

political philosophy and

0 50 100 0 50 100 0 50 100

Figure 8: Key projections of the bos token < s > vs other tokens. Each value represents the activation
in a specific dimension for the embedding of the key projection. We found similar patterns across
almost all heads and layers and in multiple texts. Only a few peaked activations (~ 50, ~ 56 and
~ 120) control the attention mechanism (see Figure E[) More plots like this in Appendix@]
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Figure 9: How the attention maps change if we set to zero a random activation (top) vs the specific
peaked activations in the keys (bottom). We are setting the values at iteration 5.

hundred thousands of tokens in the context. The increased number of input lengths results in a high
decoding latency; thus, there has been a growing interest in speeding up the decoding with long con-
texts. Some works propose efficient memory management strategies to reduce the IO time overheads,
e.g., PageAttention [Kwon et al.l |2023]], Infinite-LLM [Lin et al., 2024] and vAttention [Prabhu
et al.| 2024]. Another line of research focuses on compressing the KV Cache to improve efficiency.
DMC [Nawrot et al.| 2024]] compresses KV Cache by dynamically merging tokens while requiring ex-
pensive continual pre-training. For fine-tuning free compression strategy, H20 [Zhang et al., [2024b]
identifies important KV pairs by leveraging the attention scores from all queries, FastGen [Ge et al.,
2023al| leverages the different attention patterns in different heads for compression, and SnapKV [Li
et al.2024] selects KV pairs based on attention scores from user’s query. Unlike these works, our
method only utilises the Lo norm of embedding for compression without leveraging the attention
information, and to the best of our knowledge, we are the first to find that the influence of a KV
pair can be determined by Lo norm. Previous work [Darcet et al., 2024 finds the hidden states with
high Ls norm usually aggregate more important and global information. On the other hand, our
findings indicate that a low L2 norm of key embedding generally results in a high attention score.
Concurrently to this work,|Guo et al|[2024] uses the L; norm of values in the KV Cache and attention
scores for compression.

7 Conclusions

In this paper, we introduced a simple yet highly effective strategy for KV Cache compression in
LLMs based on the Ly norm of key embeddings. We show that there is a significant correlation
between the L, norm of a key embedding and its attention score. Leveraging this observation, we
compress the KV Cache by retaining only those keys with the lowest Lo norm. Our experimental
results on various tasks show that our compression strategy maintains the predictive accuracy of the
model while significantly reducing the memory footprint. Our approach is straightforward and can be
applied directly to any transformer-based, decoder-only LLM.

8 Limitations

While our research offers valuable insights, we tested only on relatively small models (Llama family
and Gemma up to 8 billion parameters). In future work, we will assess our method on larger-scale
models to ensure our findings generalize Additionally, while we show that the L, norm played a
significant role in our experiments, we do not have a comprehensive theoretical explanation for why
this is the case. Understanding the underlying reasons behind the importance of the Lo norm would
require further theoretical exploration and empirical validation. Finally, we observed (Figure 2) that
compressing based on Ly norm can be less effective depending on the layer and head considered, and
we intend to investigate per-head compression ratios to leverage this observation.
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Figure 11: Results on language modelling task when skipping the first two layers.

0.80 1 —_— noicompressionI 2.50 1
: max kv 1000 (sKip 0,1,12) 2.25 !
—— max kv 1500 (skip 0,1,12) ) :
0.75 1 —— max kv 2000 (skip 0,1,12) 200 . :
—— max kv 3000 (skip 0,1,12) : T
0.70 1 —— max kv 4000 (skllp 0,1,12) § 1.75 4 !
1 1
0.65 1 1 E 1.50 - =—— no_compression
: max kv 1000 (skip 0,1,12)
0.60 1 i 1.25 —— max kv 1500 (sKip 0,1,12)
H = max kv 2000 (skip 0,1,12)
0.55 1 i 1.00 1 — max kv 3000 (sKip 0,1,12)
! —— max kv 4000 (skip 0,1,12)
1 1
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Input Length Input Length

Figure 12: Results on language modelling task when skipping layers 0,1 and 12.
Figure 13: Skipping compression at different layers with Llama2-7b

More results on Language modelling task

In the following, we show results when performing compression only on layers that show a lower
correlation between Ly norm and attention score. We show in Fig. [3|that for language modelling
tasks, the different layer drop has little impact on final accuracy and perplexity. The difference
becomes significant only when the KV Cache is pruned to retain only one thousand pairs. All
experiments are averaged over 50 chunks from English Wikipedia.
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B More Results on Long-Context Modelling Tasks

In addition to llama-2-7b-80k [Fu et al.,|2024], we test the compression method using llama-2-7b-
longlora-32k-ft [|Chen et al.,[2023]] on the needle-in-a-haystack and passkey retrieval tasks. As shown
in Fig. [T5a we can see that compressing 30% of KV Cache only results in a slight performance
degradation on the needle-in-a-haystack task. We also observe that the performance even increases
slightly when we compress 10% of KV Cache. In figure Fig.[I5b] we observe that the llama-2-7b-
longlora-32k-ft maintains 100% performance when compressing 80% of KV Cache and only as a
slight decrease when compressing 90% of KV Cache. Furthermore, the model fails to generate correct
answers if we compress KV pairs with low Lo norm and keep high Ly norm ones. The evaluation
results of llama-2-7b-longlora-32k-ft are consistent with the llama-2-7b-80k, which further indicates
the effectiveness of compressing KV Cache using Lo norm.

B.1 Analysis of Skipped Layers

As shown in Fig. 2] we find heads in the first two layers and the middle layers have a relatively
low correlation between attention scores and Lo norm. Thus, we conduct experiments to analyse
the impact of skipping layers that have a low correlation for compression. As shown in Fig. [I6a]
and Fig. we observe that only skipping the first layer (layer-0) decreases the performance on
the needle-in-a-haystack task significantly. We can see that skipping the first two layers (layer-0,1)
has a similar performance compared to skipping the first three layers (layer-0,1,2). Furthermore, as
shown in Fig.[T6b|and Fig.[T6d] only skipping the first layer can result in significant performance
degradation. We also find that the compression ratio is not proportional to the overall accuracy of
models in the passkey retrieval task when we compress the first layer, where the accuracy shows a
U-shape curve regarding the compression ratio.

100 100 rr——— ;
> 80 t<m—=cc—— e > 80
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o 60 o 60 .
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< K ; <
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(a) Overall accuracy of Llama-2-7b-longlora- (b) Overall accuracy of Llama-2-7b-longlora-
32k-ft on the needle-in-a-haystack task. 32k-ft on the passkey retrieval task.

Figure 15: Evaluation results of Llama-2-7b-longlora-32k-ft on the needle-in-a-haystack and passkey
retrieval tasks.

13



100 f—————— - e 100
S 80 S 80
c o
S 60 3 60
% Skip Layers <L() Skip Layers
% 40 no compression % 40 0
5 0,1,12 5 — 0,1
3 20— 012 3 20— 0oL2
— 0,1 — 0,1,12
0 — 0 0 w/0 compression
10% 30% 50% 70% 90% 10% 30% 50% 70% 90%
Compression Ratio Compression Ratio
(a) Overall accuracy of Llama-2-7b-80k on the (b) Overall accuracy of Llama-2-7b-80k on the
needle-in-a-haystack task. passkey retrieval task.
100 100 :
—
O 80— S 80
o o
S 60 3 60
i Skip Layers % Skip Layers
% 40 no compression % 40 0
5 0,1,12 5 — 01
& 201 — 012 & 20y OL2
— 0,1 — 0,1, 12
0 — 0 0 w/0 compression
10% 30% 50% 70% 90% 10% 30% 50% 70% 90%
Compression Ratio Compression Ratio

(c) Overall accuracy of Llama-2-7b-longlora-32k-ft  (d) Overall accuracy of Llama-2-7b-longlora-
on the needle-in-a-haystack task. 32k-ft on the passkey retrieval task.

Figure 16: Analysing of skipping different layers for compression.
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(c) Llama-2-7b-80k, skip layer-0 and layer-1, compression ratio 20%
Figure 17: Detailed results of Llama-2-7b-80k on the needle-in-a-haystack task.
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Pressure Testing llama-2-7b-longlora-32k-ft, skip layers: 0, keep ratio: 1.0. Overall score: 0.639
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Figure 18: Detailed results of Llama-2-7b-longlora-32k-ft on the needle-in-a-haystack task.
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Figure 19: Accuracy on the passkey retrieval. The z-axis presents the position of the passkey, and the

y-axis presents the accuracy.
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Figure 20: Accuracy on the passkey retrieval. The x-axis presents the position of the passkey, and the

y-axis presents the accuracy.
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Figure 21: Evaluation results of Llama-2-7b-80k on long context tasks from Longbench, including

narrativeqa and gasper, hotpotqa, 2wikimqa, and gmsum.

B.2 Longbench Evaluation

In this section we show detailed results from the LongBench dataset [Zhang et al., 2024a]]. In
Figure 21| we show results for Llama2-80k, while in Figure [22] we show results for the long context

model Llama3.1-8b.

C More Visualizations
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Figure 22: Evaluation results of Llama-3.1-8B on long context tasks from Longbench, including

narrativeqa and qasper, hotpotqa, 2wikimqga, and gmsum.
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D Additional token embeddings plots

We show in Figure 29 some additional figure that represent Llama3-8b token embeddings sparsity.

E Experimental setup

In all experiments, we used the HuggingFace library and did not change the model’s default hyperparameters.
For language modelling, results are averaged across 50 samples. The Fig.[7/and Fig. 2] are the average results
of 1024 examples with a chunk size of 1024 using Wikipedia.
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Figure 29: Key projections of Llama3-8b of the bos |beginoftext| token vs other tokens. Each value
represents the activation in a specific dimension for the embedding of the key projection. We found similar

patterns across almost all heads and layers and in multiple texts.
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