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Abstract

Transformers are widely used across various applications, many of which yield
sparse or partially filled attention matrices. Examples include attention masks
designed to reduce the quadratic complexity of attention, sequence packing tech-
niques, and recent innovations like tree masking for fast validation in MEDUSA.
Despite the inherent sparsity in these matrices, the state-of-the-art algorithm Flash
Attention still processes them with quadratic complexity as though they were dense.
In this paper, we introduce Binary Block Masking, a highly efficient modifica-
tion that enhances Flash Attention by making it mask-aware. We further propose
two optimizations: one tailored for masks with contiguous non-zero patterns and
another for extremely sparse masks. Our experiments on attention masks derived
from real-world scenarios demonstrate up to a 9x runtime improvement. The
implementation will be publicly released to foster further research and application.

1 Introduction

Transformers [26] revolutionized sequence modeling by using self-attention mechanisms, enabling
efficient parallelization and handling of long-range dependencies. A key component of transformers
is the attention mechanism. However, in many practical scenarios—such as when processing very
long sequences, reducing computational costs, or working with structured data like graphs — it
becomes advantageous to restrict the range of elements each item can attend to. This leads to the
development of masked attention mechanisms, which limit interactions to a subset of elements.

One application that leads to such partially filled masks is the creation of efficient transformers. Ap-
proaches like LongFormer and BigBird [2, 29] employ fixed sparsity patterns to alleviate the quadratic
complexity inherent in self-attention, while other approaches exploit low-rank approximations to
achieve similar objectives [27, 9]. Despite the theoretically lower computational complexity of these
methods, many results fail to translate to reduced wall-clock runtimes. The currently prevalent
practical solution is instead to simply implement dense attention more efficiently. Flash Attention
[10, 8, 21] is a such a hardware-aware algorithm sufficient to boost the speed of dense attention and
obviate the need for a more efficient attention in many applications.

However, because the initial flash attention implementation was written with only causal masks in
mind, research using alternative attention patterns has slowed down. A previous approach to remedy
this, [18], enables a few types of mask in flash attention, but only considers a small subset of cases and
requires the user to carefully change the GPU kernel parameters for every new mask. To overcome
these limitations, we introduce Binary Block Masking (BinBlkMsk) - a novel algorithm that extends
Flash Attention to support any attention masks while also being user-friendly. Our approach builds
on two key insights: (1) Flash Attention processes attention matrices in blocks, so we only need to
handle blocks containing at least one non-zero mask value, and (2) these blocks are independent
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Figure 1: Proposed algorithm for masking flash attention

and can be preprocessed in parallel with minimal runtime overhead and then shared across multiple
heads, layers, or runs depending on the use case. We further enhance the algorithm’s efficiency for
masks with contiguous non-zero blocks. Finally, we discuss how off-the-shelf graph optimization
algorithms allow these gains to be realized even for relatively unstructured attention patterns, which
can be preprocessed into low bandwidth layouts to improve block sparsity.

Our method introduces efficient support for custom masks in flash attention. With this improvement,
we achieve up to a 9x reduction in runtime for real-world sparse and partially filled attention
matrices. We validate the performance gains of our method using masks derived from three practical
applications: packed fine-tuning on the ALPACA dataset [23], tree attention masks for MEDUSA [4],
and sparse attention matrices from Longformer[2].

Our method’s key advantages can be summarized as:

1. Universal Mask Compatibility: Our algorithm is the first to support any custom mask,
providing a generalized solution without the need for user adjustments.

2. Performance Consistency: Our implementation significantly outperforms Flash Attention
for partially filled or sparse attention masks, while matching its performance for almost
filled attention masks.

We implement our algorithm using Triton [25], leveraging its device agnosticism, readability, and
ease of integration. Our implementation and scripts for processing various attention masks will be
made available to support further research.
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2 Related Work

Since their inception, transformers have employed masked attention for various applications. The
original transformer[26] uses causal masking to maintain the sequential nature of text, and standard
techniques, such as in [20], utilize attention masks to ‘pack’ multiple sequences into one block during
pretraining. Masking has also been utilized to create efficient transformers [15, 24]. Models like
Star Transformer[11], Longformer[2], Big Bird[29], and ETC[1] use attention masks with global and
local token windows to speed up attention calculations while preserving information flow. Sparse
transformers [6] use factorized attention mask to attend to different parts of input across different
heads and Reformer[13] uses locality-sensitive-hashing (LSH) to select keys which limit attention to
keys and queries that collide to the same hash.

However, masked attention is a natural building block in a number of applications across domains,
such as graph learning with transformers [3] or selective perception in vision transformers [28]. On
the other hand, inference techniques to speed up generation in text generation, such as [4, 16, 22] all
also use some form of a tree attention mask to increase the number of candidates validated at each
step of speculative decoding[14, 5]. All these approaches utilize masked attention, but ours is the first
method to combine the advantages of state-of-the-art Flash Attention with masking, achieving the
best of both techniques.

Our method closely relates to two previous approaches: Block Sparse Attention[10] and Faster Causal
Attention[18]. In Block Sparse Attention[10], authors skip processing some blocks randomly, but
unlike our approach, they do not use a mask to guide this, resulting in a mask-agnostic method
that provides only approximate attention, whereas ours offers exact calculations. Faster Causal
Attention[18] handles only two specific masks—QK masks (dropping random query keys) and hash
sparse masks—but it lacks flexibility for general masks and requires significant adaptation for new
methods. In contrast, our method is generalizable and intuitive across different masking strategies.

This method we described was developed as part of a course project in Spring 2024 and is contempo-
rary with PyTorch’s new FlexAttention [12]. Both approaches rely on a similar principle of reducing
mask attention computations through block structures that are dispatched intelligently. However,
while FlexAttention is a JIT-compiled “functional” approach in which the mask is provided as a
function over block indices, our method is a conceptually more straightforward tensor-to-tensor
interface that directly consumes inputs and masks as tensors. We provide a detailed comparisons
of the performance characteristics of both approaches in Appendix B, where we show that our
tensor-to-tensor approach is conceptually simpler, yet competitive in both dispatch speed and runtime.

3 Method

3.1 Background

Standard Attention In standard self-attention[26], the Query (Q) and Key (K) matrices, both of size
N ×D (where N is the number of tokens and D is the dimensionality), are multiplied to produce an
N ×N attention matrix. This matrix is normalized using softmax to form a probability distribution,
which is then multiplied by the Value (V) matrix (N ×D) to generate the final output. In multi-head
attention, this process is repeated across multiple heads, and typically processed over batches to
enhance parallelism and capture diverse patterns.

Flash Attention Flash Attention[10, 8] improves self-attention efficiency through two key opti-
mizations. First, it computes the attention matrix in blocks using a running softmax, reducing data
transfers from High Bandwidth Memory (HBM). Second, it recomputes the attention matrix during
the backward pass, saving memory and optimizing IO operations. These techniques make Flash
Attention particularly effective for large models and long sequence lengths.

Flash Attention with naive masking. Flash Attention currently only supports standard causal masks.
Extending Flash Attention to handle custom masks using a naive approach would involve reading the
corresponding mask block for each Flash Attention block. While this method would correctly apply
the mask, it introduces additional memory accesses for reading the mask and extra computation for
applying it, resulting in a slower runtime than the base Flash Attention. We refer to this method as
Naive Attention Masking, and benchmark its performance to highlight the trade-offs.
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(a) Bandwidth
reduction of a sparse
mask through RCM (b) Performance Gains achieved through RCM preprocessing

Figure 2: The result and performance of RCM bandwidth reduction for a sparse attention mask.

3.2 Our Approach

Binary Block Masking Our method focuses on optimizing Flash Attention by processing only the
blocks of the attention matrix that have non-zero entries in their corresponding mask blocks. We
first preprocess the attention mask to create a binary matrix, termed the "Binary Block Matrix"
(BinBlkMat). This matrix has dimensions N//BLOCKSIZE_I× N//BLOCKSIZE_J where N is the
size of the attention mask and BLOCKSIZE_I and BLOCKSIZE_J represent the block sizes in the
row and column dimensions respectively. Each entry in BinBlkMat is set to 1 if any value in the
corresponding mask block is non-zero.

During the attention step, the relevant block is processed only if its corresponding entry in BinBlkMat
is non-zero, reducing unnecessary computations. When masks are fixed, BinBlkMat can be precom-
puted. For dynamically changing masks, BinBlkMat can be calculated in parallel for all blocks and
shared across transformer layers and heads. Thus, BinBlkMat introduces minimal runtime overhead
while significantly improving the efficiency.

Dense Binary Block Masking In natural language processing, masks often contain contiguous non-
zero blocks. To optimize for such cases, we leverage the insight that only the edges of these contiguous
blocks need to be checked, as the center is entirely ones. We introduce two additional arrays,
"total_ones" and "offset", both of size N//BLOCKSIZE_I×1. "total_ones" stores the number
of consecutive blocks filled with ones, while "offset" stores the position of the first such block.

During the attention step, we parallelize across the Q dimension and iterate over blocks of K. Thus,
while processing ith block of Q, the mask is read only if the current iteration is less than the
offset_i or greater than the offset_i + total_ones_i, and if the corresponding BinBlkMat
value is 1. For iterations within the range of the contiguous block, the mask read is skipped, as it
consists entirely of ones. This significantly reduces the number of mask reads from HBM, speeding
up processing. Similar to BinBlkMat, the total_ones and offset arrays can be computed in
parallel with minimal overhead and shared across layers and heads.

Binary Block Masking with Reverse Cuthill-McKee (RCM) In highly sparse scenarios, such as
masked transformers for graph datasets [3], processing entire blocks due to a single non-zero entry can
lead to inefficiencies, as every block may be required, but only filled with a few non-sparse entries. To
mitigate this, we can make use of the Reverse Cuthill-McKee (RCM) [7] algorithm as a preprocessing
step. RCM is a well-established graph reordering technique that minimizes the bandwidth of sparse
matrices by treating them as connected graphs, effectively increasing the matrix’s "fill-in".

While standard Binary Block Masking provides a performance improvement, RCM significantly
amplifies this benefit in cases of extreme sparsity. By reorganizing the matrix structure, RCM reduces
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the number of blocks that must be processed. Figure 2a illustrates a case where RCM reduces the
number of blocks by 50%. Figure 2b shows results on a synthetic mask where RCM preprocessing
reduces the number of blocks by 90%, resulting in a significant performance gain. However, it is
important to note that the extent of the performance gain is dependent on both the sparsity and the
structure of the mask.

Although we focus on the RCM algorithm in this work, other reordering techniques that increase
matrix "fill-in" could also yield similar improvements in performance when working with sparse
matrices. This approach is especially advantageous when the sparsity pattern of the attention mask is
either known in advance or can be efficiently computed.

4 Experiments

In the following section, we evaluate the performance of our "Binary Block Masking" algorithm using
attention masks from three real-world use cases: (1) tree attention masks for Speculative Decoding in
MEDUSA[4], (2) masks from packed finetuning[20] of an LLM on the ALPACA dataset[23], and (3)
fixed masks from the LongFormer paper[2].

4.1 Experimental Setup

Evaluation Metrics All experiments report total runtime (forward and backward pass) averaged over
100 runs, with a batch size of 4 and 32 attention heads. The BLOCKSIZE for Flash Attention[10, 8]is
fixed to (128, 32), which is fine-tuned to achieve optimal performance on our hardware configuration.

Baselines We compare against two baselines: the Triton implementation[25] of Flash Attention[10, 8]
and a naive masking algorithm that applies masks block by block, as previously described. Although
Flash Attention is mask-unaware (and hence does not actually produce a correct result), it serves
as a useful baseline to display performance gains with our method. We use Flash Attention’s
Triton implementation (instead of the CUDA implementation [17]) for fairer comparisons, as Triton
introduces its own overhead.

Hardware and Precision Experiments were conducted on an RTX 3060 (6GB memory) using
bfloat16 precision for query, key and value vectors. For a more detailed analysis on different
hardware, please consult Appendix D.

4.2 Preprocessing

We implement a Triton kernel to preprocess the attention mask into the binary block mask format.
The preprocessing runtime is comparable to the forward pass of a single attention head. However, this
overhead is minimal as the Flash Attention runtime is dominated by the backward pass. Additionally,
preprocessing is done once and shared across multiple heads and transformer layers. The following
table provides runtime comparisons for various mask dimensions.

Table 1: Binary Block Preprocessing Time vs Total Runtimes of Flash Attention Algorithm For
Varying Head and Batch Sizes

Mask Size Prepro. Time (ms) Forward Pass (ms) Total Runtime (ms) Total Runtime (ms)
(B=1, H=1) (B=1, H=1) (B=4, H=32)

4096 0.176 0.306 1.348 96.076
8192 0.687 0.886 3.986 377.625

16384 2.598 2.935 13.239 1524.763

4.3 Evaluation on MEDUSA Tree Masks

Figure 3 shows the results for tree masks derived from the MEDUSA architecture[4], a speculative
decoding approach that speeds up inference by using multiple heads to predict future tokens in
parallel. MEDUSA generates several candidate tokens per head, verified through a tree-based
attention mechanism. We evaluate performance gains from using these tree attention masks.
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(a) Tree Attention
Mask(K=3, sk=3)

(b) Performance with varying Heads and fixed Candidates(sk=3)

(c) Performance with varying Candidates and fixed Heads(K=4)

Figure 3: Mask Visualization and Performance Comparison for MEDUSA tree mask

The size of a MEDUSA tree mask is given by
∑K

k=1

∏k
i=1 si, where K is the number of decoding

heads and sk is the number of candidates per head. Our current configuration uses 4 heads with 4
candidates each, resulting in a 340x340 attention matrix. At this scale, Flash Attention shows no
significant speedup, so we use the native PyTorch implementation as baseline.

Our experiments demonstrate scalability with minimal computational overhead, allowing more
decoding heads and candidates per head. Figures 3b, and 3c show two scenarios: one with fixed
number of candidates per-head(sk=3) and varying decoding heads(K), and another with fixed
decoding heads(K = 4) and varying number of candidates(sk). It is important to note that in the
first scenario, the size of the attention matrix grows exponentially with K. Therefore, while in other
cases the attention matrix typically doubles at each step, here it quadruples in the final step, resulting
in a sudden increase in compute time for naive masking and base flash attention cases. In both,
our method outperforms base Flash Attention, showing promise for applications requiring longer
sequences and greater variety.

4.4 Evaluation on packed ALPACA finetuning

Alpaca[23] is an instruction fine-tuning dataset comprising input, instruction, and output components.
We combine the input and instruction into a single input and pack multiple sequences into longer ones,
using masks to prevent cross-sequence attention. Figure 4 demonstrates our algorithm’s performance
on two instruction tuning workloads: (1) Causal Masks: Input and output are concatenated, with
tokens attending only to previous tokens. And (2) Input-Bidirectional Mask: Input tokens attend
to each other, while output tokens attend to input and preceding output tokens. Both masks consist of
contiguous non-zero blocks, enabling the use of our Dense BinBlkMsk algorithm variant. Packing
improves upon padding, where shorter sequences in a batch are extended with a special token to
match the longest sequence’s length. While padding wastes GPU resources, it is more compatible
with Flash Attention. Our experiments show that our algorithms efficiently combine the benefits
of Flash Attention with packing, resulting in approximately a 9x performance increase in both cases.
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(a) Packed Causal
Mask

(b) Performance comparison on Causal Mask

(c) Packed
Input-Bidirectional

Mask

(d) Performance comparison on Input-Bidirectional Mask

Figure 4: Mask Visualization and Performance Comparison for packed ALPACA dataset

4.5 Evaluation on LongFormer Attention Masks

We evaluate our algorithm across three LongFormer[2] masking patterns: Windowed, Dilated, and
Global. For the Windowed mask, we use the Dense BinBlkMsk, while the base algorithm is used
for the other two masks. The performance results, along with the corresponding masks, are presented
in Figure 5. Our findings demonstrate that our method consistently outperforms the baseline Flash
Attention algorithm across all three masks. Moreover, these results highlight that the performance
improvements gained through sparsity are complementary to those achieved via FlashAttention.
By leveraging our mask-aware algorithm, we can construct more efficient architectures capable of
processing longer sequences with faster processing.

5 Discussion, Limitations, and Future Work

Our experimental results demonstrate that the proposed algorithm effectively leverages the mask
structure to achieve notable speedups, though the extent of these improvements is highly dependent
on the mask’s fill pattern. Specifically, as the mask becomes increasingly filled, the processing time
grows correspondingly. However, even in extreme cases—such as a fully dense mask (composed
entirely of ones) or a causal mask—our algorithm maintains performance that is competitive with
Flash Attention[10, 8]. This is primarily due to the optimization introduced by the Dense BinBlkMsk
representation, which ensures that the only additional overhead compared to the base implementation
is the reading of binary values for the Binary Block Mask (Appendix E).

One scenario where our method may exhibit slower performance than Flash Attention arises when
the mask is nearly full but consists of non-contiguous non-zero blocks. In such cases, Flash Attention
may outperform our algorithm in raw speed. However, it is important to note that Flash Attention is
mask-agnostic, meaning the output it generates does not inherently respect the mask constraints. To

7



(a) Longformer -
Windowed Mask

(b) Performance comparison on Windowed Mask

(c) Longformer -
Dilated Mask

(d) Performance comparison on Dilated Mask

(e) Longformer -
Global Mask

(f) Performance comparison on Global Mask

Figure 5: Mask Visualization and Performance Comparison for Longformer

apply masking with Flash Attention, a post-processing step is required, which can negate its initial
speed advantage and make the overall process slower.

For future work, a key direction would be migrating our custom Triton kernels[25] to CUDA[17] and
integrating them with the state-of-the-art Flash Attention framework to further enhance performance.
Additionally, it is crucial to evaluate the algorithm on real-world, end-to-end tasks rather than focusing
solely on isolated mask cases. Another avenue is exploring alternatives to Reverse Cuthill-McKee[7]
for increasing matrix fill-in, enabling us to extend the approach to more general sparse matrices,
including asymmetric matrices or matrices without underlying connected graph structures.

6 Conclusion

In this paper, we present our implementation of Binary Block Masking that optimizes Flash
Attention for partially filled attention masks. By preprocessing the mask blocks in parallel, our
method identifies non-zero blocks and restricts attention computation to these blocks, enhancing
efficiency. This approach is both general-purpose and easy to integrate, making it broadly applicable.
Our experiments demonstrate substantial performance improvements over base Flash Attention and
highlight the versatility of our method across diverse applications. We will release our Triton kernels
and mask-processing code to encourage further research in this area.
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APPENDIX

A Algorithm For Binary Block Masking

In this section, we present the algorithm for the forward pass of Binary Block Masking. In the
following algorithm, the Query vectors are already read into the SRAM. Thus, the given algorithm
will be executed in parallel across the Query blocks. The number of such blocks is given by ⌈ M

Bm
⌉,

where M is the total number of Query vectors.

A key distinction from the base Flash Attention mechanism lies in the reading and verification of
pre-processed binary block values, followed by the application of the mask on a block-by-block basis.
A similar change can also be made for the backward pass.

Algorithm 1 Masked Flash Attention Forward Pass

Require: Query block Q ∈ RBm×d, Key blocks K ∈ RBn×d, Value blocks V ∈ RBn×d

Require: Attention mask M ∈ RBm×Bn , Binary block mask B ∈ {0, 1}⌈
N
Bn

⌉

Require: Block sizes Bm, Bn, sequence length N , scaling factor α
Ensure: Output O ∈ RBm×d

1: Initialize O ← 0, l← 0, m← −∞
2: for j ← 0 to ⌈ N

Bn
⌉ − 1 do

3: if B[j] = 1 then ▷ Process block only if binary mask indicates non-zero values
4: S ← QKT /

√
d ▷ Compute scaled dot product

5: S ← APPLYMASK(S,M) ▷ Apply attention mask
6: m′ ← max(m,max(S)) ▷ Update maximum value
7: P ← exp(S −m′) ▷ Compute attention weights
8: l′ ←

∑
P ▷ Compute row sums

9: α← exp(m−m′) ▷ Compute scaling factor
10: O ← αO + PV ▷ Update output
11: l← αl + l′ ▷ Update normalizing factor
12: m← m′ ▷ Update maximum value
13: end if
14: end for
15: return O, l,m ▷ Return normalized output

B Comparison with FlexAttention

In this section, we compare our method with the FlexAttention method and show their performance
on two masking scenarios—causal and bidirectional input-output masking—using the ALPACA
dataset. Both methods preprocess the mask to enable blockwise sparsity in attention computation.
However, our method has distinct advantages:

1. Faster Preprocessing Runtimes: As seen in Table 2, our preprocessing step is easily
parallelized across blocks, incurring minimal runtime overhead, while FlexAttention’s
preprocessing is significantly slower.

2. Optimized Masking Capabilities: Our method introduces optimization for the "Sparse
Attention Mask" cases by using the RCM algorithm.

3. Ease of Use: Since our method utilizes a direct tensor-to-tensor approach, it is much more
user-friendly as it does not require the explicit torch.compile() step for every different
instantiation, and the user does not need to consider the functional representation of the
masks.

We also see in Figure 6 that our method has comparable performance with the FlexAttention method.

FlexAttention has two practical advantages: it is integrated into the PyTorch library and supports
direct modification of attention scores.
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(a) Performance comparison for Causal Mask

(b) Performance comparison for ALPACA input-bidirectional mask

Figure 6: Runtime Comparisons FlexAttention vs Binary Block Masking

Table 2: Flex Attention vs BinBlkMat: Preprocessing Time
Mask Size BinBlkMat (ms) Flex Attention (ms)

256 0.06 0.19
512 0.06 0.26

1024 0.06 0.45
2048 0.08 5.05
4096 0.19 16.92
8192 0.67 67.45

16384 2.92 265.51

C Preprocessing BinBlkMat: Method Description and Analysis

We explored several different kernel implementations to compute BinBlkMat. In the following
descriptions, N refers to the sequence length or the dimension of the original mask, BLOCKSIZE_I is
the block size along the rows, and BLOCKSIZE_J is the block size along the columns. The output

13



BinBlkMat has a shape of N//BLOCKSIZE_I×N//BLOCKSIZE_J. The approaches we tested are
as follows:

1. Convolutional approach: We used torch.nn.functional.conv2d with a stride of
BLOCKSIZE.

2. Direct kernel grid: We launch a grid of N × N kernels, where each kernel Kij checks
whether the corresponding entry (i,j) in the original mask was 0 or 1. If the value was 1,
it assigned 1 to the index (i//BLOCKSIZE_I, j//BLOCKSIZE_J) in BinBlkMat.

3. Block-based summation kernel: We launched a grid of size N//BLOCKSIZE_I ×
N//BLOCKSIZE_J, where each kernel operated over a block of size BLOCKSIZE_I ×
BLOCKSIZE_J. The kernel computed the sum of the block elements, assigning a 1 to
the corresponding block in BinBlkMat if the sum was greater than zero.

4. In-built Torch operations: Similar to the third approach, but using native PyTorch[19]
operations for block summation and assignment.

Among these methods, the third approach provided the best performance. Moreover, the sum output
from this approach is also used to calculate total_ones and offset for Dense Binary Block
Masking cases, enabling the efficient computation of two outputs with minimal overhead. The
runtime for the third approach is reported in Table 3

Table 3: Preprocessing runtime for BinBlkMat
Mask Size BinBlkMat (ms) BinBlkMat with total_ones and offset (ms)

256 0.06 0.12
512 0.06 0.12
1024 0.06 0.12
2048 0.08 0.14
4096 0.19 0.26
8192 0.67 0.73

16384 2.92 2.96

D Performance Comparison On Different GPUs

In the main paper, we use an RTX 3060 GPU with 6GB of VRAM for benchmark evaluations. In
this section, we extend the analysis to include runtimes on four additional GPUs: A100, H100, T4,
and RTX 6000 Ada Generation. We begin by presenting the runtimes of our preprocessing kernels,
followed by the performance results on the Input-Bidirectional ALPACA mask[23].

D.1 Preprocessing Runtime Comparisons

Tables 4,5,6,7 give the performance comparison for A100, H100, T4, and RTX 6000 Ada Generation
respectively. Apart from T4, the preprocessing times decrease even further for more powerful GPUs.
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Table 4: Preprocessing runtime for BinBlkMat: RTX 3060 vs. A100
Seq. Length RTX 3060 A100

BinBlkMsk BinBlkMsk with BinBlkMsk BinBlkMsk with
total_ones and offset total_ones and offset

256 0.06 0.12 0.07 0.16
512 0.06 0.12 0.07 0.16
1024 0.06 0.12 0.07 0.16
2048 0.08 0.15 0.07 0.16
4096 0.19 0.25 0.10 0.19
8192 0.67 0.73 0.20 0.29
16384 2.92 2.96 0.64 0.73

Table 5: Preprocessing runtime for BinBlkMat: RTX 3060 vs. H100
Seq. Length RTX 3060 H100

BinBlkMsk BinBlkMsk with BinBlkMsk BinBlkMsk with
total_ones and offset total_ones and offset

256 0.06 0.12 0.05 0.11
512 0.06 0.12 0.05 0.11
1024 0.06 0.12 0.05 0.11
2048 0.08 0.15 0.05 0.11
4096 0.19 0.25 0.07 0.13
8192 0.67 0.73 0.15 0.21
16384 2.92 2.96 0.47 0.53

Table 6: Preprocessing runtime for BinBlkMat: RTX 3060 vs. T4
Seq. Length RTX 3060 T4

BinBlkMsk BinBlkMsk with BinBlkMsk BinBlkMsk with
total_ones and offset total_ones and offset

256 0.06 0.12 0.11 0.21
512 0.06 0.12 0.11 0.24
1024 0.06 0.12 0.11 0.23
2048 0.08 0.15 0.15 0.27
4096 0.19 0.25 0.30 0.41
8192 0.67 0.73 1.05 1.17
16384 2.92 2.96 4.66 4.80

Table 7: Preprocessing runtime for BinBlkMat: RTX 3060 vs. RTX 6000 Ada
Seq. Length RTX 3060 RTX 6000 Ada

BinBlkMsk BinBlkMsk with BinBlkMsk BinBlkMsk with
total_ones and offset total_ones and offset

256 0.06 0.12 0.06 0.13
512 0.06 0.12 0.06 0.13
1024 0.06 0.12 0.06 0.13
2048 0.08 0.15 0.06 0.14
4096 0.19 0.25 0.12 0.19
8192 0.67 0.73 0.41 0.49
16384 2.92 2.96 1.48 1.54
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D.2 ALPACA Input-Bidirectional Mask Runtime Comparison

The tables 8,9,10,11 present the runtime comparisons for the A100, H100, T4, and RTX 6000
Ada Generation GPUs, respectively. We employed a BLOCKSIZE of (128, 32), originally fine-tuned
for the RTX 3060. While these performance metrics are not optimized for the specific hardware
configurations tested, the results still clearly demonstrate the advantages of using the Binary Block
Masking algorithm. Further optimization could potentially yield even better runtimes across different
hardware.

Table 8: Performance comparison on ALPACA Input-Bidirectional mask: RTX 3060 vs. A100
Seq. Length RTX 3060 A100

Base Flash Attention BinBlkMsk Base Flash Attention BinBlkMsk
256 0.58 0.59 0.17 0.23
512 1.50 1.32 0.33 0.44
1024 4.45 2.64 0.86 0.80
2048 15.06 5.68 2.26 1.74
4096 54.32 13.82 7.69 4.22
8192 213.92 33.80 28.38 10.01
16384 909.90 97.34 107.92 33.75

Table 9: Performance comparison on ALPACA Input-Bidirectional mask: RTX 3060 vs. H100
Seq. Length RTX 3060 H100

Base Flash Attention BinBlkMsk Base Flash Attention BinBlkMsk
256 0.58 0.59 0.19 0.16
512 1.50 1.32 0.18 0.24
1024 4.45 2.64 0.42 0.43
2048 15.06 5.68 1.16 0.90
4096 54.32 13.82 3.82 2.16
8192 213.92 33.80 13.78 5.85
16384 909.90 97.34 50.99 18.44

Table 10: Performance comparison on ALPACA Input-Bidirectional mask: RTX 3060 vs. T4
Seq. Length RTX 3060 T4

Base Flash Attention BinBlkMsk Base Flash Attention BinBlkMsk
256 0.58 0.59 0.97 1.19
512 1.50 1.32 1.84 2.52
1024 4.45 2.64 5.15 3.36
2048 15.06 5.68 15.95 7.57
4096 54.32 13.82 57.14 19.30
8192 213.92 33.80 215.30 49.26
16384 909.90 97.34 869.90 137.02

16



Table 11: Performance comparison on ALPACA Input-Bidirectional mask: RTX 3060 vs. RTX 6000
Ada

Seq. Length RTX 3060 RTX 6000 Ada
Base Flash Attention BinBlkMsk Base Flash Attention BinBlkMsk

256 0.58 0.59 0.14 0.26
512 1.50 1.32 0.28 0.29
1024 4.45 2.64 0.71 0.56
2048 15.06 5.68 2.30 1.16
4096 54.32 13.82 8.03 2.61
8192 213.92 33.80 30.69 6.48
16384 909.90 97.34 113.76 18.06

E Performance Comparison on Causal and All-Ones mask

In this section, we present the performance of our algorithm under two extreme masking conditions:
the Causal Mask (Figure 7) and the All-Ones Mask (Figure 8). Our approach leverages partial
mask fill to optimize computational efficiency. As the mask becomes denser, the performance of
the algorithm can degrade. However, even under these extreme cases, our "Dense Binary Block
Masking" technique effectively exploits the contiguous structure of the masks, resulting in comparable
performance.

It is important to note that, for the purpose of this evaluation, we treat our method as mask-agnostic.
While we skip most computations for the masked parts of the input, some overhead remains due to
the need to read binary mask values to determine which parts of the matrix to bypass. In practical
applications, our algorithm can be integrated directly with kernels optimized for causal masks. In
such cases, we would achieve optimal performance by eliminating the unnecessary mask value
reads entirely. Therefore, the results presented here are intended to demonstrate the efficiency
gains achieved by "Dense Binary Block Masking" under extreme conditions, rather than serve as a
performance baseline for causal masks.

(a) Causal Mask

(b) Performance comparison on Causal Mask

Figure 7: Mask Visualization and Performance Comparison for Causal Masks
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(a) All-Ones Mask

(b) Performance comparison on All-Ones Mask

Figure 8: Mask Visualization and Performance Comparison for Causal Masks

F Forward and Backward Pass Performance Comparisons

In the main paper, we reported performance benchmarks based on total runtimes. In this section, we
provide a detailed breakdown of the forward and backward pass runtimes for MEDUSA masks[4]
(Figures 9 and 10), ALPACA masks[23] (Figures 11 and 12), and Longformer masks[2] (Figures 13,
14, and 15)

(a) Forward Pass (b) Backward Pass

Figure 9: MEDUSA: Varying Decoding Heads, Number of Candidates Fixed

(a) Forward Pass (b) Backward Pass

Figure 10: MEDUSA: Varying Number of Candidates, Fixed Decoding Heads
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(a) Forward Pass (b) Backward Pass

Figure 11: ALPACA: Sequential Mask

(a) Forward Pass (b) Backward Pass

Figure 12: ALPACA: Input-Bidirectional Mask

(a) Forward Pass (b) Backward Pass

Figure 13: LongFormer: Windowed Mask
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(a) Forward Pass (b) Backward Pass

Figure 14: LongFormer: Dilated Mask

(a) Forward Pass (b) Backward Pass

Figure 15: LongFormer: Global Mask

G Dataset and Code License Declaration

This section provides details on the licenses and sources of the code and datasets utilized in this study.

1. ALPACA: We obtain the ALPACA dataset from Hugging Face (URL: https://
huggingface.co/datasets/tatsu-lab/alpaca) [23]. The dataset is licensed under
the Creative Commons NonCommercial (CC BY-NC 4.0) License.

2. MEDUSA: We have developed our own code to generate MEDUSA masks based on the
guidelines provided in the official report [4].

3. Longformer: We implement our own code for generating Longformer masks, as described
in the original research paper [2].

4. Flash Attention: For our baseline, we use the public implementation of Flash Attention 2,
available at URL: https://github.com/triton-lang/triton/blob/main/python/
tutorials/06-fused-attention.py.

All other code used in this paper was developed by us.
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