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Abstract

Speculative decoding has emerged as a widely adopted method to accelerate large
language model inference without sacrificing the quality of the model outputs.
While this technique has facilitated notable speed improvements by enabling paral-
lel sequence verification, its efficiency remains inherently limited by the reliance on
incremental token generation in existing draft models. To overcome this limitation,
this paper proposes an adaptation of speculative decoding which uses discrete
diffusion models to generate draft sequences. This allows parallelization of both
the drafting and verification steps, providing significant speedups to the inference
process. Our proposed approach, Speculative Diffusion Decoding (SpecDiff), is val-
idated on standard language generation benchmarks and empirically demonstrated
to provide up to 7.2x speedups over standard generation processes and up to
1.75x speedups over existing speculative decoding approaches.

1 Introduction

As autoregressive language modeling with transformers [Vaswani et al., 2017] is scaled to larger
compute levels, performance improves and new capabilities emerge [Kaplan et al., 2020, Brown
et al., 2020]. Indeed, scaling has been shown to to improve the performance of large language models
(LLMs) for a diverse array of tasks, including code generation, question answering, summarization,
and many other use cases [Achiam et al., 2023, Gemini Team, 2023, Llama Team, 2024]. For instance,
models such as LLaMA 3.2 90B [Llama Team, 2024], ChatGPT [OpenAI et al., 2024], Cohere 52B
[Ruis et al., 2023], Google’s Gemini-ULTRA [Team et al., 2024] exemplify the ongoing trend of
deploying and releasing increasingly large models, enabling broader access and application across
various domains.

However, while these desired capability arise, running LLMs in inference mode for millions of users
produces burdensome electricity, time, and monetary demands. Many methods exist to mitigate these
costs – including sparsity, quantization, and distillation – but they often introduce new tradeoffs, e.g.,
their application can degrade the performance of the model [Hong et al., 2024].

Unlike other methods for accelerating LLM inference, speculative decoding [Xia et al., 2023,
Leviathan et al., 2023] can improve LLM efficiency by 2–3× with no degradation in the quality of
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Figure 1: Illustration of classical speculative decoding (left) and speculative diffusion decoding
(right).

the model outputs. In Leviathan et al. [2023], speculative decoding achieves this by sequentially
generating multiple tokens with a small, efficient draft model, then running the target, large, LLM
in parallel on all of the drafted tokens, simultaneously evaluating their consistency with the target
LLM’s output token probabilities. Provided that the drafting model’s tokens are frequently accepted
by the target model and that the drafting model operates substantially faster than the target model,
speculative decoding can directly match the sampling output from the target model while significantly
reducing runtime [Leviathan et al., 2023]. This functioning is shown in Figure 1 (left).

Notably, since both the drafting model’s speed and its alignment relative to the target model are
critical to the success of speculative decoding, simultaneous improvements in each of these areas
are necessary to ensure speculative decoding’s relevance to future, more capable target models.
For instance, a small GPT-2 [Radford et al., 2019] drafting model could produce drafts that are
often rejected by GPT-4 [Achiam et al., 2023], and simply scaling the drafting model to address its
weaker generations risks diminishing the speed advantage necessary to speculative decoding’s success.
To address this challenge, previous efforts have focused on introducing additional parallelization
techniques that incorporate prediction trees and branching to refine the drafting process [Fu et al.,
2024, Miao et al., 2023a, Svirschevski et al., 2024]. However, the gain in generation efficiency are at
the expense of much increased number of operations and/or memory for each generation.

This paper proposes a fundamentally different approach to improve speculative decoding: It proposes
to replace the auto-regressive drafter with recently introduced discrete diffusion models [Lou et al.,
2024, Sahoo et al., 2024]. These models offer several key advantages when used as drafters: Firstly,
they provide a smooth trade off between the compute cost of generation and the quality of generation
(via the number of reverse diffusion steps). Second, while they have historically struggled relative to
traditional language models, recent diffusion models have been shown to require 32× fewer function
evaluations than autoregressive models to produce text with comparable perplexity [Lou et al., 2024],
with more recent works reporting even further speedups [Sahoo et al., 2024]. This is a trend which
is anticipated to continue. Finally, future advances in diffusion model generation quality are highly
aligned with their ability to perform strongly as speculative drafters: as drafted tokens are accepted
by the target model at a higher rate, a larger number of proposed drafted tokens becomes optimal
from an efficiency/speed point of view, and (unlike sequential drafters) diffusion models can easily
accommodate generation of many more tokens since they are able to generate entire sequences in a
single step.

Contributions. More specifically, this paper makes the following contributions:

1. It introduces a novel integration of generative diffusion language models with speculative decoding,
schematically illustrated in Figure 1 (right).
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2. It empirically demonstrate the hybrid model’s ability to significantly accelerate inference times
while maintaining the same high-quality outputs of the original, target large language model.

3. The proposed method ensures that all generations from the diffusion language model, which are
empirically shown to produce outputs with significantly higher perplexity than current state-of-
the-art autoregressive models [Sahoo et al., 2024, Lou et al., 2024, Austin et al., 2021, Gloeckle
et al., 2024], align with the outputs generated by larger, more computationally demanding models.

4. Finally, the paper sets a new benchmark for speed in language completion tasks on the CNN/DM
Nallapati et al. [2016]and OpenWebText datasets Gokaslan et al. [2019].

2 Related Work

While autoregressive language models provide state-of-the-art performance on language generation
tasks, the incremental decoding used by these architectures results in significant overhead at inference
time [Miao et al., 2023b]. This is largely a result of the inability to parallelize the sequential
process of generating tokens in the output sequence as each token generation is dependent upon the
preceding tokens in the sequence; consequentially, scaling the compute associated with the inference
cannot directly reduce this overhead when using standard decoding schemes. In recent literature
studying how to accelerate large language model generation, two primary approaches have been
explored: (1) advanced decoding implementations that better parallelize token generation and (2)
non-autoregressive language models allowing full sequences to be generated simultaneously.

Speculative decoding. Speculative decoding accelerates autoregressive generation by leveraging
a smaller autoregressive models of the same architecture (the drafter model) to predict candidate
sequences, which the original model (the target model) then verifies [Leviathan et al., 2023, Chen et al.,
2023]. Notably, the earliest literature on speculative diffusion adapted a non-autoregressive model
to act as the drafter model [Xia et al., 2023], using a masked language model with a bidirectional
decoder [Ghazvininejad et al., 2019]. However, the integration of non-autoregressive draft models
has not received much attention due to the difficulty introduced by the necessary additional training
in existing approaches and the modest speedups that were previously reported using these methods
(less than 2x speedup over vanilla decoding schemes).

Thus, recent advancements in speculative decoding have focused on overcoming memory-related
constraints, with improvements achieved through various approaches: drafting directly with the
target model [Cai et al., 2024, Zhang et al., 2024], enhancing draft algorithms [Sun et al., 2024], and
introducing additional parallelization techniques that incorporate branching to refine the drafting
process [Fu et al., 2024, Miao et al., 2023a, Svirschevski et al., 2024].

Non-autoregressive language models. Models which stray from the autoregressive paradigm have
been shown to speedup generation by generating blocks or even entire sequences simultaneously.
Gloeckle et al. [2024] propose a method of adapting traditional autoregressive models to sample
blocks of tokens, improving inference time over similarly scaled models. In a similar vein, diffusion
language models have been recognized for their efficiency in generating extended token sequences
concurrently, offering even greater speed enhancements. These models recast language generation
as a diffusion process either across the embedding space [Austin et al., 2021] or, more recently,
through the probability distributions of generated tokens [Sahoo et al., 2024, Lou et al., 2024]. Recent
models report up to a 32x speedup over similarly sized GPT-2 models Lou et al. [2024], and current
state-of-the-art further improves runtime speed Sahoo et al. [2024]. However, despite they have
been shown to dramatically accelerate the inference time for language generation, diffusion models
typically perform less effectively than state-of-the-art autoregressive models in terms of standard
language metrics, often exhibiting significantly higher perplexity scores Zheng et al. [2024]. In the
following section, we will demonstrate, for the first time, how the speed of these models can be
leveraged without being subject to this critical limitation.

3 Preliminaries and Settings

For open-ended language generation, we focus on the task of token generation, where given a sequence
of tokens x1, x2, . . . , xi, denoted here with shorthand notation x1:i, the goal is to generate the next
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n tokens xi+1, . . . , xi+n from the conditional distributions p(xi+1|x1:i), . . . , p(xi+n|x1:i+n−1) or
more succinctly pi+1, . . . , pi+n.

Speculative decoding. Speculative decoding leverages two LLMs, Mp and Mq , to parallelize token
generation:

• Mp is the original, target, model whose output probability distributions for the tokens are
pi+1, . . . , pi+n.

• Mq is a smaller and more efficient drafter model, used to generate approximations of the distribution
of Mp as qi+1, . . . , qi+n.

This process follows a draft-then-verify approach [Stern et al., 2018], where Mq efficiently computes
a candidate sequence of tokens, which Mp then verifies in parallel.

During each speculative decoding iteration, Mq generates a subset of the total n tokens that are
required for the generation task. The size of this subset is denoted as γ. As shown in Figure 1 (left),
the tokens xi+1:i+γ sampled from Mq are then used by Mp to generate the corresponding probability
distributions pi+1, . . . , pi+γ . The distributions qi+1, . . . , qi+γ from Mq are stored for evaluating
acceptance in subsequent steps. Critically, the target model’s inference over pi+1, . . . , pi+γ can now
be run in parallel as the model has access to tokens xi+1:i+γ , alleviating the sequential dependency
for generation with Mp.

To ensure high-quality outputs despite potential discrepancies between Mp and Mq, tokens are
subjected to an acceptance criterion. For each token xj with j ∈ [i + 1, i + γ], if q(xj) ≤ p(xj),
the token is accepted. If q(xj) > p(xk), the token is rejected with a probability of 1− p(xj)

q(xj)
. This

criterion is applied sequentially from left to right; rejection of any token results in the discard of all
subsequent tokens. Hence, the token acceptance is maximized when the output distributions of Mq

and Mp are closely aligned.

Previous literature quantifies the likelihood of token acceptance, denoted α, and theoretically demon-
strate that α = 1−E(DLK(p, q)) where DLK represents a divergence measure between distributions
Leviathan et al. [2023]. This has led to the prevalent use of drafters taken from the same series as the
target models, a paradigm that we challenge in this paper.

4 Speculative Diffusion Models

Speculative decoding has provided state-of-the-art results for improving language generation inference
time but requires meticulous tuning of the associated hyperparameters to achieve optimal results.
Particularly γ, the sequence length generated by the drafter model, needs to be appropriately calibrated
not only to maximize potential speedup but to even outperform standard autoregressive decoding.
This is an important consideration when using current autoregressive draft models, provided that
the inference time to generate Mq(x), the draft logits, is directly scaled by the size of γ. Increasing
this value too high reduces the number of operations that are conducted in parallel, potentially
leading to speculative decoding increasing inference time, while reducing this value too low results
in speculative decoding “missing out” on token generations that could have been handled by the draft
model.

Leviathan et al. [2023] has conducted theoretical analysis on how to best optimize the value of γ,
however, it has been contingent upon accurately estimating the percentage of tokens in a the sequence
that will be accepted by the target model. By their own acknowledgment, it would be necessary to
predict this value for each draft and numerically solve for the optimal value of γ to fully realize the
potential speedup of speculative decoding. Thus, a significant portion of the residual suboptimality in
current implementations can be attributed directly to the sensitivity of this hyperparameter.

Diffusion language models are juxtaposed to conventional language models in that they do not sample
token sequences in a sequential manner, rather generating entire sequences in parallel. This has
resulted in significant speedup over similarly sized autoregressive models when generating extended
sequences [Lou et al., 2024]. This can particularly be observed in longer sequence generations as
scaling the draft length γ results in minimal overhead due to the ability to directly parallelize token
generation.
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4.1 SpecDiff: Formulation

Diffusion models generally operate on continuous data spaces by progressively adding Gaussian
noise to the data in a forward diffusion process and then learning to reverse this process to generate
new samples Sohl-Dickstein et al. [2015a], Ho et al. [2020], Song and Ermon [2019]. This framework
is well-suited for data types such as images, where pixel values can be treated as continuous and thus
can naturally accommodate additive Gaussian noise. However, when dealing with discrete data like
natural language (tokens), the assumption of continuous noise addition does not hold, as it would
result in non-integer values that do not correspond to valid tokens.

Discrete diffusion models address this limitation by redefining the forward processes to transition
between discrete token states, such as replacing tokens according to a transition matrix or introducing
randomness through categorical distributions Austin et al. [2021], Hoogeboom et al. [2021], Sohl-
Dickstein et al. [2015b]. This process enables the generation of coherent and meaningful sequences
in natural language processing tasks. However, unlike continuous diffusion models, traditional
score-matching techniques cannot be directly applied to learn discrete diffusion models. Instead,
various surrogate losses have been proposed for training.

In particular, Sahoo et al. introduce the Masked Diffusion Language Model (MDLM), which gradually
masks and then reconstructs tokens within a text sequence, enabling efficient text generation. MDLM
optimizes a continuous-time Negative ELBO (NELBO) objective to minimize the negative log-
likelihood over a continuous-time diffusion process, which can be formulated as follows:

LNELBO
∞ = Eq̃

[∫ t=1

t=0

(1− βt)
′

βt

∑
i

log⟨xθ(z
t
i), xi⟩ dt

]
where xθ(z

t
i) represents the model’s estimate of the original token xi at time t given the current noisy

state zti , and βt denotes the noise schedule controlling the diffusion process. Here, q̃ is the forward
noising process of in the masked diffusion, defining the distribution over the noisy latent variable zti ,
and can be related to the NELBO as described in Equation (8) of Sahoo et al., 2024. The expectation
Eq̃ signifies averaging over the possible outcomes of q̃ allowing the model to accound for all possible
variations of zt. The Noise Schedule Derivative term, (1−βt)

′

βt
, represents the rate of change in the

noise schedule βt over time, and t is a continuous timestep between 0 and 1.

Algorithm 1: SpecDiff Decoding
▷ Take T diffusion steps to generate the draft.
qTi+1,...,i+γ ∼ N (0, σT I)
for t = T to 1 do

qt−1
i+1,...,i+γ(x)←
Mq([x0, . . . , xi] + [qti+1,...,i+γ(x)], t)

xi+1,...,i+γ ∼ q0

▷ Run Mp in parallel.
pi(x), . . . , pi+γ+1(x)←
Mp(x0, . . . , xi), . . . ,Mp(x0, . . . , xi+γ)
▷ Determine the number of accepted guesses n.
ri ∼ U(0, 1), . . . , ri+γ ∼ U(0, 1)
n← min({j − 1 | i ≤ j ≤ i+ γ, rj >
pj(x)
qj(x)
} ∪ {γ})

▷ Adjust the distribution from Mp if needed.
p′(x)← pn+1(x)
if n < i+ γ then

p′(x)←
norm(max(0, pn+1(x)− qn+1(x)))

▷ Return one token from Mp, n tokens from
Mq.
t ∼ p′(x)
return x1, . . . , xn, t

This loss is directly used for pretraining
our draft model. As this process learns to
denoise over the probability mass vectors,
the output of the draft model is a matrix
of Rn×m where n = γ and m is the size
of the vocabulary. The candidate sequence
can then be generated using standard decod-
ing methods over these probability mass
vectors, the logits of which are stored to de-
termine whether to accept each draft token.

Now, the draft logits produced by the
output matrix of the discrete diffusion
drafter directly substitute the autoregres-
sive drafter used to generate Mq([x0:i] ◦
[xi+1, . . . , xi+γ ]), where ◦ is a list concate-
nation operator. This substitutes the draft
step taken by Leviathan et al. and Chen
et al. and is the primary difference between
SpecDiff and standard speculative decod-
ing approaches. The subsequent steps of
verifying this draft with the target model
follow the previously proposed decoding
algorithm, thus our proposal requires min-
imal modifications to existing speculative
decoding code bases.
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A complete overview of the SpecDiff decoding is provided in Algorithm 1 (adapted from Leviathan
et al.).

Drafter’s evaluations. Next, we highlight an important difference between standard speculative
decoding and our approach. While in standard speculative decoding the number of evaluations by
the drafter model is dictated by the value of γ (used in the first loop for Algorithm 1), in speculative
diffusion it is dictated by the number of diffusion steps, T . This allows SpecDiff to scale γ to higher
values, as discussed further in Section 6.

Instead, the value of T is selected to optimize the trade-off between draft quality and computational
overhead. While analysis by Lou et al. shows that lower values of T lead to higher perplexity in the
generated sequence, this only impacts SpecDiff with respect to its effect on the percentage of tokens
from the draft which are accepted (as can be noted in the analysis reported in Figure 2 and discussed
in details Section 6).

Sequence initialization. An important consideration in implementing SpecDiff is the initial align-
ment between the diffusion draft model and the target model’s data distribution since these models
architectures are fundamentally different one another. A key strength of SpecDiff lies in its ability to
leverage the alignment between the prefixes used in discrete diffusion and the target model’s data
distribution. Specifically, the better the prefixes align with the target distribution, the more effec-
tively the diffusion drafter can generate longer, coherent sequences matching the target distribution,
resulting in progressively higher acceptance rates.

This however, also means that when the diffusion draft model has not been finetuned, its output
distribution may initially differ from that of the target model, potentially leading to lower acceptance
rates at the beginning of the generation process. To address this, we employ standard speculative
decoding for the initial few tokens, thereby optimizing SpecDiff’s performance from the outset. This
strategy ensures that SpecDiff achieves speedups that are empirically at least as significant as those
observed with standard speculative decoding and can realize substantial improvements, as we show
in Tables 1 and 6. Moreover, once the diffusion draft model is finetuned to better match the target
distribution, this initial speculative decoding becomes unnecessary, as the drafter effectively aligns
with the target model from the beginning.

5 Evaluation

To empirically evaluate the improvements provided by using SpecDiff, the paper provides an empirical
analysis on text summarization and more general text generation, leveraging benchmarks that are
common to existing literature. Additionally, we assess the performance of our method against the
current state-of-the-art using SpecBench, a unified evaluation platform for speculative decoding
techniques Xia et al. [2024]. All evaluation is conducted on two NVIDIA A100 series GPUs (80GB)
using CUDA 12.2. Additionally, FlashAttention Dao et al. [2022] is used to optimize the performance
in all experiments.

5.1 Experimental Setup

Settings. Evaluation is conducted on three standard natural language processing tasks: (1) text
summarization using the CNN/DM dataset Nallapati et al. [2016], (2) text generation on the Open-
WebText (OWT) dataset Gokaslan et al. [2019], and (3) text generation using MT Bench Zheng
et al. [2023]. In each setting the model is queried for 1024 tokens using a greedy decoding scheme
(temperature = 0). For the experiments, we evaluate the pretrained target models Mp GPT-2 XL
(1.5B), GPT-NEO (2.7B), and Vicuna (33B). We use Masked Diffusion Language Model (110M) as
our drafter model Mq , which is a comparable size to the baseline drafter GPT-2 (86M) employed for
our standard speculative decoding baseline Sahoo et al. [2024].

Evaluation metrics. Our method is assessed empirically by walltime speedup and acceptance rate
α. The reported results are compared to recognized baselines of vanilla autoregressive decoding,
standard speculative decoding (SpS) implementations as proposed by Leviathan et al., Chen et al.,
which our method most closely resembles. Additionally, we provide comprehensive comparison to
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these method, as well as the current fastest-to-date speculative decoding approaches, detailing the
improvements SpecDiff provides in reduction of FLOPs and memory footprint in Table 3.

6 Results and Discussion

Empirically we highlight the comparison between our approach, other speculative decoding methods,
and vanilla autoregressive generation. Across the tested settings and target model architectures,
SpecDiff significantly outperforms standard speculative decoding, achieving speedups of up to 7.2x
compared to the target models and increasing the efficiency of standard speculative decoding
by more than 1.75x. Furthermore, SpecDiff matches the current state-of-the-art methods while
reducing the FLOPs/draft by over 33% and reducing memory consumption (shown in Table 3).

6.1 Comparison with Standard Speculative Decoding

Mp Mq γ α Speedup

C
N

N
/D

M Sp
S GPT-2 XL GPT-2 8 0.92 3.58x

GPT-NEO GPT-2 9 0.95 5.45x

O
ur

s GPT-2 XL MDLM 15 0.87 4.80x

GPT NEO MDLM 15 0.88 6.63x

O
pe

nW
eb

Te
xt

Sp
S GPT-2 XL GPT-2 8 0.93 3.66x

GPT-NEO GPT-2 7 0.85 4.12x

O
ur

s GPT-2 XL MDLM 15 0.89 5.38x

GPT NEO MDLM 20 0.88 7.23x

Table 1: Evaluation of walltime speedup
over autoregressive decoding using SpecD-
iff (Ours) compared to standard speculative
decoding (SpS). The best result for each set-
ting and target model is displayed in bold.

First, we compare SpecDiff to the performance of
standard speculative decoding in Table 1. Despite
SpS generally reporting slightly higher acceptance
rates, the improved parallelization provided by
SpecDiff results in greater speedups ranging from
1.45–1.75× improvement over the baseline. As
we have not finetuned the target model or draft model,
we utilize sequence initialization with SpS to enhance
generation speed by sampling the first 100 tokens of
the sequence. We ablate the performance of SpecDiff
without this enhancement in the Table 6.

6.2 Evaluation Against
State-of-the-Art Speculative Decoding Methods

To provide comparison to other state-of-the-art spec-
ulative decoding methods, evaluation is conducted
on generation prompts from MT Bench Zheng et al.
[2023] using Vicuna 33B as the target model. Generation lengths are reduced to 512 tokens to better
align with the task. For this setting, MDLM (141M) is pretrained with the Llama 1 tokenizer for
compatibility with the target model used. As Vicuna is instruction tuned, we utilize a teacher-student
instruction tuning approach resembling the knowledge distillation approach proposed by Zhou et al.
to align the output distribution of MDLM with the target model. This approach is similar to the
additional instruction tuning conducted to align Eagle and Eagle-2 on ShareGPT instruction tuning
dataset Li et al. [2024a,b]. Because of this finetuning step, it is not necessary to use sequence
initialization as with pretrained models. Notably, SpecDiff provides a speedup identical to the
state-of-the-art method Eagle-2, while requiring 33% fewer floating point operations per draft
generation. Thorough comparison to Eagle-2 and other speculative decoding strategies is highlighted
in Table 3.

M
T

B
en

ch

Mp Mq γ α FLOPs/draft Speedup

EAGLE† Vicuna 33B AR Head (990M) ≈5 0.80 N/A 2.41x

EAGLE-2† Vicuna 33B AR Head (990M) ≈6 0.84 8.35× 1010 2.60x
Ours Vicuna 33B MDLM (141M) 15 0.76 5.53× 1010 2.61x

Table 2: Evaluation on MT Bench using SpecDiff (Ours), EAGLE, EAGLE-2, and SpS with Vicuna
target models. FLOPs/step computes that floating point operations for the drafter to generate each
sequence. † denotes results collected using SpecBench Xia et al. [2024].
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Figure 2: Evaluation of SpecDiff’s sensitivity to γ and number of diffusion steps when optimizing
speed (left) and accepted tokens per draft (right) as reported on the OpenWebText task using GPT-
2 NEO as the target model. Average token acceptance increases with T (x-axis), as examined
theoretically in Appendix B. Despite this, the additional compute required as T is scaled results in
reduced speedup.

6.3 Robustness to Diverse Drafter Architectures

We finally make an important remark: while previous implementations of speculative decoding rely
on a common architecture between the drafter and target models Leviathan et al. [2023], Chen et al.
[2023], using smaller versions of the same architecture to generate draft sequences, these experiments
demonstrate a robustness to using a completely different architecture for sequence drafting. This
is particularly significant given the absence of finetuning in the reported results (Tables 1 and 6).
Pretrained diffusion models can be directly purposed as draft models requiring no additional training.

The much larger values of γ used for SpecDiff should particularly be highlighted. This is a key
discrepancy between diffusion language models, which generate entire sequences in parallel, and
autoregressive models. Hence, there is minimal overhead to increasing the sequence length generated
by the diffusion-based drafter, and γ can be significantly increased without incurring significant cost.

The hyperparameters used in the reported results have been optimized empirically. We highlight
that while in standard speculative diffusion the performance is highly sensitive to γ, SpecDiff is
robust to a range of values for γ making it unnecessary to precisely tune this hyperparameter (in our
experiments we found between 10 and 20 worked well). Rather, SpecDiff’s performance is much
more sensitive to the number of diffusion steps selected. Similar to the role of γ in an autoregressive
model, the number of diffusion steps T dictates the number of network evaluations during a single
drafting step. As reported in the Figure 2, while increasing this hyperparameter arbitrarily results
in higher values of α, SpecDiff performs best when this is optimized to balance the objectives of
maximizing the number of accepted tokens and minimizing the drafter’s overhead.

7 Limitations and Future Work

While our proposed Speculative Diffusion Decoding method represents a significant step forward in
accelerating large language model inference, several limitations warrant discussion. Addressing these
limitations highlights promising avenues for future research that could further enhance the efficiency
and applicability of SpecDiff.

Calibration of discrete diffusion models. A primary limitation of our approach lies in the challenge
of using different architectures for the drafter and verifier models. Specifically, the adopted discrete
diffusion models do not output well-calibrated probability distributions that align with those of
the target autoregressive models, particularly when the sampling temperature (T ) is greater than
zero. The diffusion models tend to produce over-confident predictions, often assigning near-certain
probability to the top-1 token while assigning negligible probabilities to all other tokens. This results
in deterministic sampling regardless of the temperature setting, challenging the applicability of
SpecDiff in scenarios where diversity and stochasticity in generation are desired.
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Thus, the development of techniques to better align the output probabilities of diffusion drafters with
the target models is an key area of future work. Achieving proper calibration would enable effective
use of SpecDiff at higher temperatures, as well as unlocking massive further speedups beyond what
we have reported, as the acceptance rates are predicted to increase dramatically.

Limited tokenization availability. We note that available discrete diffusion models are based on
the GPT-2 tokenizer, which would restrict one immediate compatibility with target models using
different tokenization schemes. For our experiments, we indeed trained a new discrete diffusion
model from scratch with a different tokenizer, a process that demanded substantial computational
resources and time. All our models will be released on HuggingFace and thus be directly used by the
community.

Performance on shorter generation tasks. We observe that SpecDiff exhibits optimal performance
on longer sequence generations. In shorter generation tasks, the benefits of parallelization are less
pronounced, and finetuning the diffusion drafter may be necessary to achieve comparable efficiency
gains. Without finetuning, the drafter may not effectively capture the target model’s token distributions
for shorter sequences.

An interesting outcome of these observations is that tailoring the drafter to better model shorter
sequences, could improve its alignment with the target model, thereby maintaining speedups even in
less extensive generation tasks. We believe that this adjustment may broaden SpecDiff’s applicability.

Stochastic sampling. Note that our experiments are conducted with the sampling temperature set
to zero, resulting in deterministic token generation. While this setting simplifies the verification
process it limits the exploration of the model’s capabilities in generating diverse outputs. In the
future, we plan to exploring SpecDiff’s performance at non-zero temperatures. As highlighted earlier,
addressing the calibration issue of the diffusion drafter would enable effective stochastic sampling.

Despite these challenges, our work lays the foundational framework for integrating discrete diffusion
models with autoregressive models in speculative decoding. Each limitation discussed highlights
a specific area where further research could yield significant benefits for the performance of the
proposed SpecDiff. We are optimistic that overcoming these challenges will not only reinforce the
strengths of SpecDiff but also unlock new possibilities for accelerating language model inference.

8 Conclusion

Motivated by the costly inference time of current large language models, this paper has proposed the
novel integration of discrete diffusion models with autoregressive language models. The proposed
method, Speculative Diffusion Decoding, alters existing speculative decoding schemes to integrate
a non-autoregressive diffusion model as the draft model. As shown by the empirical evaluation
on standard language generation benchmarks, the proposed method leverages the dramatic runtime
advantages of discrete diffusion models while also maintaining the dramatically higher generation
quality of autoregressive target models. The reported results demonstrate the utility of this approach in
effectively accelerating runtime, outperforming vanilla decoding by over 7x and speculative decoding
methods by over 1.75x.

9



References
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz

Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Gemini Team. Gemini: a family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805, 2023.

Llama Team. The llama 3 herd of models. 2024.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian,
Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny
Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks,
Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea
Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty
Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte,
Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel
Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua
Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike
Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon
Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne
Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo
Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik
Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich,
Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy
Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie
Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini,
Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne,
Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David
Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély,
Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng,
Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto,
Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power,
Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis
Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted
Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel
Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon
Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie

10



Tang, Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun
Vijayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang,
Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian
Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren
Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Laura Ruis, Akbir Khan, Stella Biderman, Sara Hooker, Tim Rocktäschel, and Edward Grefenstette.
The goldilocks of pragmatic understanding: Fine-tuning strategy matters for implicature resolution
by llms, 2023. URL https://arxiv.org/abs/2210.14986.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M. Dai, Anja Hauth, Katie Millican, David Silver, Melvin Johnson,
Ioannis Antonoglou, Julian Schrittwieser, Amelia Glaese, Jilin Chen, Emily Pitler, Timothy
Lillicrap, Angeliki Lazaridou, Orhan Firat, James Molloy, Michael Isard, Paul R. Barham, Tom
Hennigan, Benjamin Lee, Fabio Viola, Malcolm Reynolds, Yuanzhong Xu, Ryan Doherty, Eli
Collins, Clemens Meyer, Eliza Rutherford, Erica Moreira, Kareem Ayoub, Megha Goel, Jack
Krawczyk, Cosmo Du, Ed Chi, Heng-Tze Cheng, Eric Ni, Purvi Shah, Patrick Kane, Betty Chan,
Manaal Faruqui, Aliaksei Severyn, Hanzhao Lin, YaGuang Li, Yong Cheng, Abe Ittycheriah,
Mahdis Mahdieh, Mia Chen, Pei Sun, Dustin Tran, Sumit Bagri, Balaji Lakshminarayanan,
Jeremiah Liu, Andras Orban, Fabian Güra, Hao Zhou, Xinying Song, Aurelien Boffy, Harish
Ganapathy, Steven Zheng, HyunJeong Choe, Ágoston Weisz, Tao Zhu, Yifeng Lu, Siddharth
Gopal, Jarrod Kahn, Maciej Kula, Jeff Pitman, Rushin Shah, Emanuel Taropa, Majd Al Merey,
Martin Baeuml, Zhifeng Chen, Laurent El Shafey, Yujing Zhang, Olcan Sercinoglu, George Tucker,
Enrique Piqueras, Maxim Krikun, Iain Barr, Nikolay Savinov, Ivo Danihelka, Becca Roelofs,
Anaïs White, Anders Andreassen, Tamara von Glehn, Lakshman Yagati, Mehran Kazemi, Lucas
Gonzalez, Misha Khalman, Jakub Sygnowski, Alexandre Frechette, Charlotte Smith, Laura Culp,
Lev Proleev, Yi Luan, Xi Chen, James Lottes, Nathan Schucher, Federico Lebron, Alban Rrustemi,
Natalie Clay, Phil Crone, Tomas Kocisky, Jeffrey Zhao, Bartek Perz, Dian Yu, Heidi Howard, Adam
Bloniarz, Jack W. Rae, Han Lu, Laurent Sifre, Marcello Maggioni, Fred Alcober, Dan Garrette,
Megan Barnes, Shantanu Thakoor, Jacob Austin, Gabriel Barth-Maron, William Wong, Rishabh
Joshi, Rahma Chaabouni, Deeni Fatiha, Arun Ahuja, Gaurav Singh Tomar, Evan Senter, Martin
Chadwick, Ilya Kornakov, Nithya Attaluri, Iñaki Iturrate, Ruibo Liu, Yunxuan Li, Sarah Cogan,
Jeremy Chen, Chao Jia, Chenjie Gu, Qiao Zhang, Jordan Grimstad, Ale Jakse Hartman, Xavier
Garcia, Thanumalayan Sankaranarayana Pillai, Jacob Devlin, Michael Laskin, Diego de Las Casas,
Dasha Valter, Connie Tao, Lorenzo Blanco, Adrià Puigdomènech Badia, David Reitter, Mianna
Chen, Jenny Brennan, Clara Rivera, Sergey Brin, Shariq Iqbal, Gabriela Surita, Jane Labanowski,
Abhi Rao, Stephanie Winkler, Emilio Parisotto, Yiming Gu, Kate Olszewska, Ravi Addanki,
Antoine Miech, Annie Louis, Denis Teplyashin, Geoff Brown, Elliot Catt, Jan Balaguer, Jackie
Xiang, Pidong Wang, Zoe Ashwood, Anton Briukhov, Albert Webson, Sanjay Ganapathy, Smit
Sanghavi, Ajay Kannan, Ming-Wei Chang, Axel Stjerngren, Josip Djolonga, Yuting Sun, Ankur
Bapna, Matthew Aitchison, Pedram Pejman, Henryk Michalewski, Tianhe Yu, Cindy Wang, Juliette
Love, Junwhan Ahn, Dawn Bloxwich, Kehang Han, Peter Humphreys, Thibault Sellam, James
Bradbury, Varun Godbole, Sina Samangooei, Bogdan Damoc, Alex Kaskasoli, Sébastien M. R.
Arnold, Vijay Vasudevan, Shubham Agrawal, Jason Riesa, Dmitry Lepikhin, Richard Tanburn,
Srivatsan Srinivasan, Hyeontaek Lim, Sarah Hodkinson, Pranav Shyam, Johan Ferret, Steven Hand,
Ankush Garg, Tom Le Paine, Jian Li, Yujia Li, Minh Giang, Alexander Neitz, Zaheer Abbas, Sarah
York, Machel Reid, Elizabeth Cole, Aakanksha Chowdhery, Dipanjan Das, Dominika Rogozińska,
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Method Total Memory FLOPs Depth Max Extra Training

Consumption Tokens Requirements

Autoregressive Cp(1) Fp(1) Dp 1 N/A

SpS Leviathan et al. [2023]1 Cp(γ) + Cq(γ) Fp(γ) + Fq(γ) Dp + γDq 1 + γ Mq

PLD Saxena [2023] Cp(γ) Fp(γ) +O(Pn) Dp +O(n) 1 + γ None

Lookahead Fu et al. [2024]1 Cp (2γ(n− 1)) Fp (2γ(n− 1)) + Fp(1) Dp + O(1) n− 1 None

Medusa-1 Cai et al. [2024] Cp(Tn) +KCq(γ) Fp(Tn) +KFq(γ) Dp +Dq 1 + Td Mq

Medusa-2 Cai et al. [2024]2 — — — — Mp

Hydra Ankner et al. [2024]3 — — Dp +KDq — Mq

EAGLE Li et al. [2024a] Cp(25) + Cq(25) Fp(25) + 5Fq(5) Dp + 5Dq 6 Mq

EAGLE-2 Li et al. [2024b]4 Cp(Tn) + Cq(Tn) Fp(Tn) + TdFq(
Tn

Td
) Dp + TdDq 1 + Td Mq

SpecDiff (Ours) Cp(γ) + Cq(γ) Fp(γ) + TFq(γ) Dp + TDq 1 + γ Mq

Table 3: Comparison of different speculative decoding strategies and their parallel properties. The
quantities represent the cost of one additional decoding step (i.e., following the initial prompt). Note
that Mq (and related quantities such as Fq) are not constant across methods; e.g., EAGLE uses a
different draft model architecture than SpecDiff. T is the number of diffusion steps, T is a sparse
draft tree with Tn nodes and depth Td, K is the number of heads in a multi-head speculative decoder,
P is the number of prompt tokens, n is an n-gram length, and γ is the number of proposed tokens. 1

O(1) represents a database lookup. 2 Medusa-1 with target fine-tuning for Medusa-2. 3 Medusa with
sequential draft heads for Hydra. 4 EAGLE with dynamic draft trees for EAGLE-2.

A Comparative Analysis of Speculative Decoders

Table 3 compares the computational aspects of SpecDiff with state-of-the-art baselines in speculative
decoding.

According to the Work-Depth parallel computation model Blumofe and Leiserson [1999], an algo-
rithm can be represented by a DAG, in which each node is an operation and each edge is a dependency.
The longest shortest path in this computational DAG (i.e., the longest dependency chain) is called the
depth. It follows that the average parallelism of a computation is the total number of nodes divided
by the depth, and that higher depth means fewer opportunities for parallelism. We represent the
operations by the FLOPs of the model.

The table reasons about the approaches through three parameters for Mp and Mq: C (memory
consumption), F (arithmetic/floating-point operations, or FLOPs), and D (depth). Due to the
quadratic memory and computation requirements of transformers, and for simplicity, C{p,q} and
F{p,q} are represented as functions of the number of tokens after the initial prompt, i.e., Cp(k) is
the memory cost for generating P + k tokens, where P is the number of prompt tokens. The depth
D{p,q} is generally independent of the number of tokens computed and is thus represented by a scalar.

In Medusa, the prediction tree is set by a number of fixed hyperparameters Cai et al. [2024], which we
aggregate by using the number of nodes and the depth of the tree Tn and Td. Medusa-2 exhibits the
same parallel properties as Medusa-1, but requires a joint fine-tuning of Mp along with Mq . Hydra is
an adaptation of Medusa, in which the heads are applied in sequence. It thus only affects the depth of
the computations.

EAGLE uses a drafter model that contains the target embedding layer, one autoregressive layer, and
the target LM head. The fixed tree size is 5 levels deep and contains 25 nodes Li et al. [2024a].
EAGLE-2 Li et al. [2024b] dispenses with the fixed tree defined in EAGLE, and the induced dynamic
tree used in generation is represented with T .

Notice that in our method, the depth of the algorithm is dependent on T , the number of diffusion steps,
rather than γ. Empirically, T is smaller than γ, which enables more parallelism in the computation
w.r.t. the number of generated tokens. Combined with diffusion models enabling longer prediction
horizons, this allows SpecDiff to produce more speculative predictions faster.
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Practically, we observe that this enables SpecDiff to produce near state-of-the-art inference accelera-
tion while requiring significantly less computational overhead and reduced memory requirements.

B Drafter Convergence Analysis

In previous speculative decoding approaches the computational overhead of the drafting stage has
been proportional to γ, as this parameter dictates the number of network evaluations during the draft
phase. When using a discrete diffusion draft model, the number of network evaluations is dictated by
the number of diffusion steps T . The following reports an analysis of the possible speedups that can
be achieved by our approach, as a function of the diffusion steps T .

First, note that the expected number of tokens per draft can be derived from α and γ:

E(#tokens) =
1− αγ+1

1− α
. (1)

In prior studies, theoretical results have focused on determining the optimal γ to maximize the
throughput of speculative decoding methods [Leviathan et al., 2023]. For SpecDiff, extending γ
introduces minimal overhead and becomes less important to consider. The number of sequential
diffusion operations, T , instead impacts α as increasing this number improves the convergence of
Mq(x) to the learned distribution, aims to closely approximate the distribution of Mp(x). Hence, an
implicit dependency arises between T and α, which is reflected in Figure 2 (right).

First, note that the computation overhead of a single network evaluation of Mq(x) and Mp(x) is
constant. Mq(x) is scaled by the number of diffusion steps, whereas all evaluations of Mp(x) are
conducted in parallel. Now, consider that, provided Equation 1:

E(#tokens/second) =
( 1−αγ+1

1−α )

Tc1 + c2
(2)

where c1 is the computation overheads of a single network evaluation of Mq(x) and c2 is the
computation overheads of a single network evaluation of Mp(x).

Next, consider that the convergence of q(x) to the original data distribution, which we will denote as
q̂(x), is proportional to the 1/T .
Theorem B.1 (Li et al. [2023]). Under standard assumptions, the convergence rate of samplers
based on the probability flow Ordinary Differential Equation (ODE), converge at the rate

TV (q1, q̂1) ≤ c3
d2 log4 T

T
+ c3

d6 log6 T

T 2

+c3

√
d log3 Tϵscore + c3d(log T )ϵJacobi

where d is the dimensions of the sample, ϵscore is the error in the score function estimation, ϵJacobi is
the error in the Jacobian matrices, and universal constant c3 > 0.

Given that q1 ≈ q0, this result provides a practical upper bound on the distance between q(x) and
q̂(x). As Theorem B.1 provides an explicit relation to T , this can be used to determine an upper
bound on the distance between q(x) and p(x) for a given number of diffusion steps. By the triangle
inequality:

TV (p(x), q(x)) ≤ TV (p(x), q̂(x)) + TV (q̂(x), q(x)) (3)

Now, the remaining step to find the upper bound on the distance from q(x) to p(x) is to determine
TV (p(x), q̂(x)). First, consider that this relation can be expressed as follows:
Definition B.2 (Leviathan et al. [2023]). DLK(p, q) =

∑
x ∥p(x) − M(x)∥ =

∑
x ∥q(x) −

M(x)∥ where M(x) = p(x)+q(x)
2

Corollary B.3 (Leviathan et al. [2023]). α = 1− E(DLK(p, q)) = E(min(p, q))

Provided Corollary B.3, DLK(p(x), q̂(x)) can be computed empirically by setting T arbitrarily high
and evaluating α; subsequently, we will refer to this distance as c4. We note that the DLK(p(x), q̂(x))
captures any error in the draft model’s learned distribution that is introduced in Theorem B.1 as ϵscore
and ϵJacobi, so we will set these to zero when applying the theorem.

Note that the metric DLK is equivalent to the discretized total variation:
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Proof.

DLK(p, q) =
∑
x

∥p(x)−M(x)∥

=
1

2

∑
x

∥p(x)− q(x)∥

≈1

2

∫
∥p(x)− q(x)∥dx

=TV (p, q)

For practical applications such as this, the discrete total variation is used, and for the purpose of this
analysis we will consider the metrics equivalent. Now, we are ready to compute a lower bound for α
that is dependent on T , applying Equation 3:

α = 1− E(DLK(p, q)) = 1− E(TV (p, q))

≥ 1− (c4 + TV (q̂(x), q(x)))

α ≥ 1− (c4 + c3
d2 log4 T

T
+ c3

d6 log6 T

T 2
) (4)

Equation 4 provides a lower bound on α that is dependant on T . While in practice this remains
computationally intractable, given that c3 is unknown, this can be approximated using a surrogate
network to predict this constant; this is not dissimilar from the suggestion by Leviathan et al. to
optimize runtime using such an approach to predict α.

We are now ready to connect this to Equation 2:

E (#tokens/second) ≥
1−

(
1−c4−c3

d2 log4 T
T −c3

d6 log6 T

T2

)γ+1

c4+c3
d2 log4 T

T +c3
d6 log6 T

T2

× 1
Tc1+c2

This equation can now be solved analytically to optimize the lower bound. Practically, in the presence
of a surrogate network, this can be simplified further, given convergence of the diffusion model is
proportional to 1/T .

E(#tokens/second) ≥ 1−(1−c4−c5
1
T )γ+1

c4+c5
1
T

× 1
Tc1+c2

(5)

Hence, the dependency between T and α can be exploited to estimate the optimal number of diffusion
steps. In our experiments we find that the optimal value of T ≤ 5.

C Accepted Draft Lengths

We notice a starch contrast in the lengths of accepted drafts between these two settings. While the
distribution of accepted draft lengths in Figure 3 (right) is what would be anticipated given the lower
values of α, the longer generations on OpenWebText (left and middle of Figure 3) speak to the
parallelism that can be realized when the distribution is effectively aligned to the target model.

D Implementation Details

For all evaluation we utilize the following hyperparameter setups. If not explicitly noted here,
parameters are consistent with those specified by the authors of MDLM Sahoo et al. [2024]. For
reported results on CNN/DM and OWT, 200 iterations are conducted on samples randomly selected
from the datasets. For evaluation on MT bench, 480 iterations are conducted.
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Figure 3: Accepted draft lengths for OpenWebText evaluation (left and middle) and MT Bench
evaluation (right).

Mp Mq Strategy γ T Gen Length Precision

C
N

N

Ours
GPT-2 XL (1.5B) MDLM (110M) ddpm cache 15 2 1024 32 bit

GPT NEO (2.7B) MDLM (110M) ddpm cache 15 2 1024 32 bit

O
W

T

Ours
GPT-2 XL (1.5B) MDLM (110M) ddpm cache 15 2 1024 32 bit

GPT NEO (2.7B) MDLM (110M) ddpm cache 20 2 1024 32 bit

M
T Ours Vicuna (33B) MDLM (141M) ddpm cache 15 2 512 16 bit

Table 4: Additional details on parametric setups for reported results.

E Choice of Diffusion Model

The selection of a discrete diffusion model as the drafter plays a critical role in optimizing the
overall framework’s speedup performance. The models explored, MDLM and SEDD, represent the
current state-of-the-art in discrete diffusion, achieving near auto-regressive perplexity results with
comparably sized models. We observe significant speedups over SpS when using MDLM as our
drafter, as MDLM demonstrates superior generation speeds overall. These gains are not observed in
SEDD for two primary reasons: first, SEDD exhibits lower perplexity compared to MDLM, resulting
in a lower acceptance rate and second, MDLM’s generation speed surpasses that of SEDD.

Mp Mq γ α Speedup

O
W

T

O
ur

s GPT-2 XL SEDD Small 10 0.70 2.13x

GPT NEO SEDD Small 10 0.77 2.96x

Table 5: Performance of SpecDiff utilizing SEDD as the drafter. Note
that unlike experiments in Tables 1 and 6, the draft model has been
finetuned on the selected datasets; without finetuning, acceptance rates
are below α = 0.2, making SEDD impractical as a solely pretrained
drafter.

F Temperature Impact on Acceptance Rate

As discussed in Section 7, overconfidence exhibited by discrete diffusion models, a result of poor
model calibration, results in the top-1 token having a probability close to 1 for the vast majority
of generations. For these outputs, the temperature is effectively zero. In the speculative decoding
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framework, this overconfidence is reflected as higher q(x) values, which has a significant impact
on the token acceptance rate when sampling stochastically. Specifically, high q(x) values lead to
a decrease in the number of accepted tokens because it increases the frequency of q(x) > p(x).
Increasing the temperature has a smoothing effect on p(x) leading to misaligned distributions between
p(x) and q(x). Consequently, tokens are more frequently rejected with a probability of 1 − p(x)

q(x) ,
where a larger q(x) further increasing the likelihood of rejections.

This obstacle is avoided when sampling deterministically (temperature=0) as in the results reported.
This challenge motivates future study of discrete diffusion model calibration.

G Ablation Study: SpecDiff Without Initialization

While we observe a slight decrease in SpecDiff’s speed when standard speculative decoding is not
used to initialize the generation, the change in α is most noticeable when comparing to Table 1. This
reflects the poor acceptance rates at the beginning of the generation. While SpecDiff does outperform
SpS in this setting, providing up to 1.5x speedups over SpS, this highlights the benefit of adjointly
using SpecDiff and other speculative decoding methods. Such hybrid approaches can be particularly
effective for shorter generations.

Mp Mq γ α Speedup

C
N

N

O
ur

s GPT-2 XL MDLM 10 0.75 3.82x

GPT NEO MDLM 15 0.77 5.32x

O
W

T

O
ur

s GPT-2 XL MDLM 15 0.78 4.06x

GPT NEO MDLM 15 0.82 6.19x

Table 6: Performance of a “vanilla” version of SpecDiff, that does
not use SpS initialization.
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