
Post-Training Statistical Calibration
for Higher Activation Sparsity

Vui Seng Chua∗ Yujie Pan∗ Nilesh Jain

Intel Corporation
{vui.seng.chua; yujie.pan; nilesh.jain}@intel.com

Abstract

We present Statistical Calibrated Activation Pruning (SCAP), a post-training acti-
vation pruning framework that (1) generalizes sparsification by input activations of
Fully-Connected layers for generic and flexible application across Transformers,
and (2) features a simple Mode-Centering technique to pre-calibrate activation
distributions for maximizing post-training sparsity. Our results demonstrate robust
Pareto efficiency compared to prior methods, translating to a 1.5× additional LLM
decoding speedup against CATS[12] at iso model quality. SCAP effectiveness is
empirically verified across a wide range of models, including recent Transformer
Decoders, MoE, Mamba2, Encoding Transformer, and pre-quantized models, high-
lighting its practicality and scalability. The code is available here.

1 Introduction

Activation sparsity is an emerging model optimization method for efficient deployment of Large
Language Models (LLMs). Extensive studies in Lazy Neuron Phenomenon[13] reveal a high preva-
lence of activation sparsity at the output of ReLU after pretraining, in both encoder or decoder
Transformers, across different model sizes and tasks, including language and vision. Intriguingly,
larger models tend to exhibit greater sparsity. Deja Vu[15] coined the term of contextual sparsity and
uncovered that, along with the feed-forward networks (FFN), sparsity also exists within the activation
of attention layers on a per-input basis. To utilize this sparsity for inference efficiency, sparse neuron
predictors [15, 1] have been introduced to dynamically forecast and skip the redundant operations in
attention heads and FFNs. [25, 2] further leverage the locality of sparse neurons to develop efficient
weight partitioning strategies, addressing the memory challenges when deploying LLMs on consumer
CPU-GPU systems.

While sparse activation can be exploited for accelerating inference, prior methods hinge on the
inherent sparsity of ReLU, which presents a challenge as ReLU has fallen out of favor in recent
LLM families (see Table 1). Due to their greater training convergence[23], SiLU and GELU have
seen increased adoption, prompting new methods to induce sparsity in their dense activations (see
Fig. 1). Relufication[17] advocates the reinstatement of ReLU as the primary activation function and
as a means for pruning activations within the LLMs. Variants of Relufication have been explored to
maximize sparsity on non-ReLU LLMs. ReLU2[32] chains two ReLUs as the activation function
while dReLU[26] discards the SiLU but places ReLU at the output of Up and Gate projections,
respectively in the GLU-based FFN. Despite attaining high sparsity, the representation of Relufied
LLMs is significantly disrupted, necessitating extensive full-model uptraining and advanced recipes
[24] to restore the model’s capabilities. This process demands cluster-level compute resources, which
are often inaccessible to many. Along with prolonged turnaround times, Relufication inflates costs
and limits the scalability of LLM deployment.

∗equal contribution

4th NeurIPS Efficient Natural Language and Speech Processing Workshop (ENLSP-IV 2024).

https://github.com/IntelLabs/SCAP

LLM family Release
Year/Month

Activation
Function

T5 2019/10 ReLU
GPT3 2020/06 GELU
PaLM 2022/04 SiLU
OPT 2022/05 ReLU
BLOOM 2022/07 GELU
Llama 2023/02 SiLU
Falcon 2023/05 GELU
MPT 2023/05 GELU
Llama2 2023/07 SiLU
Mistral 2023/09 SiLU
ChatGLM3 2023/10 SiLU
Gemma 2024/02 GELU
Llama3 2024/04 SiLU
Qwen2 2024/06 SiLU
Gemma2 2024/06 GELU
Mamba2 2024/06 SiLU
Phi3.5 2024/08 SiLU

Table 1: Decline usage of ReLU in recent LLMs

0 5 10 15 20 25 30
Layers

0

20

40

60

80

100

A
ct

iv
at

io
n

S
pa

rs
it

y

OPT 6.7B (ReLU)

Llama 7B (SiLU)

Falcon 7B (GELU)

Figure 1: ReLU output is sparse while SiLU and
GELU outputs are dense. Extracted from [17].

In contrast, post-training optimization offers a simpler and more cost-effective approach, as ex-
emplified by weight quantization methods such as GPTQ[8] and AWQ[14]. These techniques
determine quantization parameters through calibration with a small set of text prompts on pretrained
or instruction-tuned LLMs, making them highly efficient and potentially allowing the optimization to
be executed directly on the target deployment device rather than computing clusters.

To our knowledge, CATS[12] represents the first instance of post-training activation sparsification in
the LLM era. Similar to the magnitude-based weight pruning [10, 27], CATS masks out post-SiLU
activations of Mistral-7B and Llama-7B based on a calibrated threshold. Unlike the rigidly sparse
Relufied LLMs, CATS outperforms Relufication by demonstrating that activation sparsity of the
GLU-FFNs can be controlled to trade off downstream task performance within 1-2% of the original
models, all without any additional training.

In this early work, we extend the generality of the post-training activation pruning framework with a
statistical pre-processing technique, which we refer to as Statistical Calibrated Activation Pruning
(SCAP). Our contributions include:

1. Generalized Activation Pruning for Pareto Efficiency: SCAP proposes to sparsify input
activations of Fully-Connected (FC) layers, entailing a universal pruning and kernel im-
plementation across all FCs within Transformer architectures. This approach goes beyond
conventional post-activation sparsification, allowing for flexible sparsity across different
layers without requiring additional predictor training or custom inference patterns. We
demonstrate that SCAP surpasses the prior post-training CATS method in both accuracy
and sparsity, achieving a more optimal trade-off between computational efficiency and task
performance. Notably, with only a -1.5% deviation from the baseline on Mistral-7B across
a set of zero-shot tasks, SCAP attains 48.5% FFN sparsity compared to CATS’ 33.3%,
translating to a 1.5× additional speedup in decoding latency over CATS, a 27.1% overall
improvement against the dense model.

2. Mode-Centering for Enhanced Sparsity: We empirically observed that skewed and shifted
activation distributions, artifacted by preceding layer, limit prunability. To address this, we
introduce a novel Mode-Centering pre-calibration technique that estimates the mode of an
activation distribution and shifts it to zero while preserving computation outcomes. This
approach effectively maximizes sparsity opportunities for L1-based pruning, particularly
in the Down projection of non-GLU FFNs. Empirical results show up to a 44.7% increase
in input sparsity with negligible loss in performance of MPT-7B, along with a substantial
increase in Falcon-7B and Vision Transformer.

3. Extensive Model Coverage: We showcased the applicability of SCAP to a wide range of
models, including Transformer Decoders, MoE, Mamba2 and Vision Encoding Transformers,
as well as pre-quantized models (see Table 4). This highlights the advantages of SCAP
in terms of turnaround time and scalability, emphasizing the practicality of post-training
activation sparsification.

2

2 Generalized Post-Training Activation Pruning

The premise of acceleration through sparsity lies in the elimination of ineffectual operations involving
zeros. During the decoding phase of LLMs, each newly generated token serves as input for subsequent
forward pass, necessitating matrix-vector multiplications (GEMV) at every fully-connected (FC)
layer. A sparse input vector (activation) forms a dot product with a correspondingly structured sparse
matrix, leading to computational efficiency. The resultant dot product reduces memory bandwidth
requirements by eliminating the need to fetch sparse weight channels, a critical improvement since
memory bandwidth is the primary bottleneck during the decoding phase[20]. It also reduces multiply-
add-accumulate compute cycles along the sparse inner dimensions.

Challenges of reliance on post-activation sparsity often involves intricate execution schemes to
maximise sparse execution. For instance, CATS[12] adopts post-SiLU activation pruning. To attain
higher sparsity in the GLU-based FFNs, it is necessary to compute the Gate projection, followed by
SiLU and pruning operator in advance to identify redundant output channels in the Up projection.
However, this approach may be suboptimal when the Up and Gate projections are consolidated into
a single execution, or in cases such as parallel Attention-FFN architectures[5, 29, 3], where Query,
Key, Value, Up, and Gate projections are typically fused for efficiency[20]. An alternate approach
is to employ predictors [15, 25, 1, 26] to estimate a priori the locations of sparse neurons in the
post-activation, thereby avoiding unnecessary output channels in the Up projection.

Contrary to recent activation pruning techniques, which predominantly target the output of activation
functions in FFNs, we propose a generalization by sparsifying only the input activations to FC
layers. This approach enables a unified calibration process and a generic sparse kernel implementation
across any FC layers within Transformers, including those in attention blocks. It decouples targeted
FCs, allowing for a flexible combination of input sparsities, resulting in more and sparser FCs for
greater acceleration. In addition, direct pruning on the input activation of the Up/Gate projection also
eliminates the additional cost of training predictors, streamlining the optimization process, as well as
reducing the inference overhead associated with runtime predictions.

ReLU

Norm

ReLU

(a) Relufication [17]

ReLU

Norm

Mask

+

ReLU

Predictor

(b) TurboSparse [26]

SiLU

Norm

+

Pruner

1

2

3

Compute
Order

(c) CATS [12]

SiLU

Norm

Pruner

+

Pruner

(d) SCAP (Ours)

Figure 2: Activation Sparsification across methods on SwiGLU

Concretely, consider a linear layer in Transformer with input activation X ∈ RN×IC , weight matrix
W ∈ RIC×OC and bias b ∈ ROC , the output activation Y ∈ RN×OC is given by:

Y = XW + b (1)
where N is batch size, IC and OC are input and output channel dimensions of the weight. The
goal is to induce sparsity in input activation X with a pruning operator. The pruner measures the
importance of neurons (activations) on-the-fly and only propagates downstream the neurons with
importance above a calibrated threshold.

Pruner(X) =

{
Xij , if |Xij | > τ

0, otherwise
, where τ = Quantile(|Xcalib|, s) (2)

Considering the cost of online computation, the importance of each activation (neuron) is calculated
using the L1 norm |Xij |, which is simply the absolute value of the activation. The pruning threshold

3

τ is a hyperparameter that correlates with the intensity of pruning and can be determined through
calibration. By feeding few-shot of data, the activation tensors of interest can be saved, forming
a representative sample for estimating population importance. Subsequently, a quantile function
applied to this sample identifies the corresponding importance value for a desired sparsity s. For
example, setting τ = Quantile(|Xcalib|, 0.3) implies that thresholding on |X| with value of τ is
expected to yield 30% of sparsity in activation X .

The formulation presented thus far is conceptually similar to CATS[12], except that our approach
applies pruning to the input activations of the projection layers in Transformers instead of activation
function in FFN. The resulting dynamic sparse FC is

Sparse FC, Y ′ = X ′W ′ + b (3)

In the results, we demonstrate that this approach leads to a more favorable Pareto front and execution
scheme. Appendix A provides empirical evidence showing that the observed sparsity, on average,
aligns closely with the target sparsity across a set of 10 downstream tasks. In the subsequent section,
we will detail further strategies to enhance the sparsity level of activations with skewed and shifted
distributions.

3 Activation Mode Centering

The prunability of input activations of FC layers depends on the preceding layer. Empirically, we
found that not all activations can be sparsified to high levels without compromising task performance.
Upon analyzing the distribution of these activations, we identified two primary patterns: one with the
mode centered around zero (Fig. 3a, 3b), and another with the peak away from zero (Fig. 3c).

L1-based pruning inherently targets elements within a narrow range around zero, making it partic-
ularly effective for zero-centered distributions due to the dense concentration of near-zero values.
However, for distributions with a mode away from zero, near-zero elements are less frequent, and
achieving higher sparsity requires raising the threshold. This, in turn, introduces non-trivial distortions
to the activation representation.

To overcome this limitation, we propose a Mode-Centering Calibration that statistically conditions
the targeted activations to center their mode to a near-zero value, which in turn improving prunability
with L1 thresholding. This calibration, applied prior to activation pruning forms the main ingredient
of our proposal, which we name our method as Statistical Calibrated Activation Pruning (SCAP).

(a)

1 0 1
0

2

4

D
en

si
ty

Layer 0

1 0 1

Layer 6

1 0 1

Layer 12

1 0 1

Layer 18

1 0 1

Layer 24

1 0 1

Layer 30

zero
mean
median
KDE peak

(b)

0.1 0.0 0.1
0

10

20

D
en

si
ty

Layer 0

0.1 0.0 0.1

Layer 6

0.1 0.0 0.1

Layer 12

0.1 0.0 0.1

Layer 18

0.1 0.0 0.1

Layer 24

0.1 0.0 0.1

Layer 30

zero
mean
median
KDE peak

(c)

0.2 0.0 0.2
0

5

10

15

D
en

si
ty

Layer 0

0.2 0.0 0.2

Layer 6

0.2 0.0 0.2

Layer 12

0.2 0.0 0.2

Layer 18

0.2 0.0 0.2

Layer 24

0.2 0.0 0.2

Layer 30

zero
mean
median
KDE peak

Figure 3: Activation distributions for (a) post-normalization inputs to FCup and FCgate; (b) inputs
to FCdown from gated activations in SwiGLU; and (c) inputs of FCdown with a preceding GELU.

The intuition: Fig. 3c shows GELU output of Falcon-7B at various Transformer blocks, but the peak
is at value away from zero, especially those at the deeper Transformer blocks. By shifting the mode
(peak) of the activation distribution where the density is highest to zero, more elements with value

4

around zero, further L1 thresholding around this region naturally lead to higher sparsity. Refer to
Fig. 4 how mode-centering enhances sparsity.

0.2 0.0 0.2
Activation X

Density

Original
Mode Centering

(a) Original and mode-centered dis-
tributions of an FC input with a pre-
ceding GELU.

0.00 0.05 0.10 0.15 0.20 0.25
Importance |X|

Density

Original
Mode Centering

(b) Mode-centered activation results
in high density around zero in its L1

importance distribution.

0.00 0.05 0.10 0.15
Threshold

0

20

40

60

80

100

S
pa

rs
ity

 (
%

)

Original
Mode Centering

(c) CDF of importance |X| reflects
anticipated sparsity. At a threshold
of 0.05, mode-centering increases
sparsity by about 40 points.

Figure 4: Effect of Mode-Centering Calibration on Activation Sparsity

Mode-Centering Calibration: Consider a FC layer (Eq. 1) where its input activation X is the target
of sparsification. Let η be the mode of X , η is introduced to shift the value of elements in X , and a
compensating η is added to maintain functional equivalence.

Y = (X − η + η)W + b (4)

Algebraic manipulation results in the following computation should η is designed to be determined
online and is changing for every input to the model.

Y = (X − η)W + ηW + b (5)

Dynamic mode η incurs higher cost due to just-in-time mode estimation and realization of the
compensating ηW . If η is static where its value is determined offline during pre-deployment,
the compensating term can be fused to the bias b since W, η, b are frozen during deployment.
The inference overhead is minimal since η is a scalar, requiring only broadcast and element-wise
subtraction from X .

Y = (X − η)W + bfused (6)

Determination of mode value, η: A fast estimation of mode η can be obtained through an empirical
mean or median of the activations collected over a calibration dataset. As illustrated in Fig. 3c,
both the mean and median can approximate the actual mode of a distribution. For a more precise
estimation of the mode, a probability density estimation algorithm can be employed, many of which
are readily available in statistical software. One such example is Kernel Density Estimation (KDE),
which is implemented in Scipy. The KDE can be looked up for its the mode value. Since this
estimation is typically performed during offline, more involved algorithms are also feasible.

Pruner
(eq. 2)

Figure 5: Computational graph of an FC layer with mode-centered and pruned input activation

We note that the mode and pruning threshold determination can be carried out sequentially within
the same calibration process, hence the optimization turnaround remains largely unaffected. Mode-
centering, however, has minimal impact when the peak density of the target activation is already near
zero.

5

4 Results and Discussions

Implementation: Our experiments compared SCAP to contemporary activation sparsification meth-
ods, including post-training CATS[12] and TurboSparse[26], a state-of-the-art Relufication technique.
We closely aligned our setup with these works by focusing on sparsity within the FFN layers, as
most of these methods do. Specifically, we targeted two pruning locations: one at the input of the Up
projection or the common activation that fans into the Up and Gate projections of the GLU-FFN, and
the other at the input of the Down projection.

We grouped activations by these locations across Transformer blocks to prune at a uniform target
sparsity, hence requiring two sparsity levels corresponding to the two groups. We swept the two axes
in grid, with increments of 10% (or down to 5% in some cases) within the 20-80% range. SCAP used
a calibration set of 64 text slices, each consisting of 256 tokens sampled from the C4 dataset[21], a
validation set from WikiText[16], and downstream tasks aligning with the target comparison method
as the test set. We note that mode-centering calibration was only applied to non-GLU FFN, as
activations in GLU were observed to be centered. Further details on the experiments discussed below
can be found in Appendix D.

4.1 Pareto Efficiency in Tasks vs. Activation Sparsity

25 35 45 55 65
FFN Sparsity (%)

65.0

67.5

70.0

72.5

75.0

Z
er

o
S

ho
t T

as
ks

 (
%

) baseline

1% tolerance

Mistral7B

CATS
SCAP

25 35 45 55 65
FFN Sparsity (%)

62

64

66

68

70

Z
er

o
S

ho
t T

as
ks

 (
%

) baseline

1% tolerance

Llama27B

Figure 6: Pareto front of CATS and SCAP (Ours) across LMs, with numbers provided in Section D.1

Compared to CATS across the Mistral-7B-v0.1 and Llama-2-7B models, SCAP consistently maintains
accuracy close to baseline zero-shot tasks while achieving higher FFN sparsity. This demonstrates
SCAP’s Pareto-efficient trade-off between sparsity and task performance. Although the task trade-off
is use-case dependent, SCAP offers multiple viable candidates within the commonly accepted -1%
tolerance in task accuracy, as highlighted in the shaded region of the Fig. 6.

The sharper decline observed in CATS is attributed to its sole reliance on post-SiLU sparsification,
limiting optimization to a single axis and enforcing shared sparse channels between the Up and Down
projectors, thereby forgoing alternative sparsity combinations. CATS also overlooks the sparsity
opportunities in the Gate projection. In contrast, SCAP applies sparsification more broadly across
input activations of FC layers, leading to higher FFN sparsity that effectively utilizes all three FC
layers in the SwiGLU FFN.

A detailed breakdown of sparsity in the accompanying Table 5 and 6 further illustrates that the
Down projector’s activations are more prunable than those of the Up projector. This highlights
the importance of flexibility in layer-specific sparsification to achieve robust compression. Our
preliminary results, obtained through a grid search on two group-level sparsity, validate the trade-off
efficiency of this approach. The exploration of a more fine-grained, layer-wise sparsity search is
deferred to future studies.

4.2 Decoding Speedup

Our kernel implementation is discussed at length in Appendix B and the latency is confirmed to be
comparable to CATS’ which scales proportionally to sparsity. The primary interest of this section
is the actual acceleration of decoding stage by activation sparsity. From Fig. 6, we selected a pair
of CATS and SCAP-pruned Mistral-7B models that are near-equivalent in task performance, and
benchmarked them for 128-token generation with varying input prompt lengths. The results are
presented in Table 2.

6

Table 2: Inter-Token Latency Speedup (against
dense) on Mistral-7B at Iso-Quality.

CATS SCAP
FFN Sparsity 33.3% 48.5%

Zero-shot Tasks 74.2% 74.2%

Prompt Length Decoding Speedup
256 19.9% 30.4%
512 18.3% 27.9%

1024 16.5% 25.0%
2048 16.4% 25.5%

Geomean 17.7% 27.1%

The table reveals that SCAP consistently out-
performs CATS in decoding speedup. Un-
derscored by the geometric mean across ex-
perimented prompt lengths, SCAP achieves a
speedup of 27.1%, compared to CATS’s 17.7%.
Crucially, SCAP extends CATS’s speedup by
1.5× (27.1%/17.7%). This gain stems from the
higher FFN sparsity achievable by SCAP while
maintaining quality at the same level.

The diminishing speedup with increasing
prompt length in both methods is expected, as
the growing runtime contribution of attention re-
duces the impact of sparse GEMV layers. This
could be mitigated by combining activation spar-
sity with efficient attention or KV compression
methods.

4.3 Ablations of Activation Mode Centering

Non-GLU based LLMs like the Falcon[3] and MPT[22] families exhibited limited prunability with
post-training sparsification methods, particularly in the input activation to the Down projection which
originates from the GELU function. As shown in Fig. 7, at a -1% relative drop in a set of zero-shot
tasks, Falcon-7B achieved only 30.5% sparsity, while MPT-7B struggled even more, with only 12.7%
sparsity.

Applying SCAP’s Mode-Centering technique, where activations are shifted by the estimated mode,
allows for significant sparsity through subsequent L1 magnitude thresholding without compromising
quality. Notably, for Falcon-7B, the exploitable sparsity in the Down projector increased by 1.6
times, rising from 30.5% to 50.3%. MPT-7B showed an even more remarkable improvement, with
sparsity jumping by 44.7 points, from 12.7% to 57.4%. We further confirm that mode-centering is
also applicable to Transformer encoder and vision modalities (see bottom 2 rows of Table 4).

0 10 20 30 40 50 60 70

FCdown Sparsity (%)

50

55

60

65

70

75

Z
er

o
S

ho
t T

as
ks

 (
%

)

+19.8 pts
30.5% 50.3%

1% tolerance

Falcon7B

Baseline
SCAP
SCAP (Mode Centering)

(a) Mode estimated by Median

0 10 20 30 40 50 60 70

FCdown Sparsity (%)

50

55

60

65

70

75

Z
er

o
S

ho
t T

as
ks

 (
%

)

+44.7 pts
12.7% 57.4%

1% tolerance

MPT7B

(b) Mode estimated by Scipy KDE

Figure 7: Activation Pruning with and without Mode Centering on input of Down Projection (GELU
output) for Falcon-7B and MPT-7B.

4.4 Comparison to SOTA Relufication

More elaboration on TurboSparse and the consideration of SCAP input model can be found in
Section D.4. From Table 3, TurboSparse [26] achieved significantly higher FFN sparsity levels
compared to SCAP, reaching 82.2% versus SCAP’s 42.3%. This was primarily driven by two factors:
(1) the retrofitting of two ReLUs, enabling a staggering 91.1% sparsity in the Down projector, and
(2) the use of a predictor that identified and skipped sparse output channels in the Up and Gate FCs.
TurboSparse also demonstrated a higher average score across the tasks governed by the OpenLLM
leaderboard. This was largely due to its outsized performance on GSM8K (65.7% vs. 37.9%), which
significantly elevated its overall average. It is important to note that TurboSparse benefited from a set

7

curated pretraining and SFT data, including math-related [19, 18], which contributed to its efficacy
on the Math dataset GSM8K and MMLU.

For the remaining tasks, SCAP-pruned Mistral Instruct models outperformed TurboSparse while
achieving 42.3% FFN sparsity. This was accomplished without the need for hundreds of billions of
tokens of uptraining, downstream instruction tuning, predictor training, or the significant demands of
datacenter-class GPUs. While TurboSparse’s task performance may potentially benefit from further
training for greater language modeling, post-training methods like SCAP democratize activation
sparsification with its drastic lower computing resource needs, and controllable sparsity-task trade-off
as shown in Section 4.1. On sparsity front, we hypothesize that combining SCAP with parameter-
efficient fine-tuning could push further.

Table 3: Post-Training vs Training-based Activation Sparsification (SCAP vs TurboSparse)
Mistral-7B SCAP TurboSparse

(Instruct v0.2)

ARC-challenge (25-shot) 63.0 63.0 62.5
Hellaswag (5-shot) 84.8 84.5 82.0
MMLU (5-shot) 60.8 60.0 64.0
TruthfulQA (0-shot) 68.2 67.3 52.6
WinoGrande (5-shot) 76.6 76.4 74.6
GSM8K (5-shot) 39.0 37.9 65.7
OpenLLM Leaderboard Average 65.4 64.8 66.9
Input Sparsity
Up - 32.4 77.8
Gate - 32.4 77.8
Down - 62.3 91.1

FFN - 42.3 82.2
Optimization Infrastructure 1×A100-80GB 64×A800-80GB

5 Conclusions

In this work, we developed Statistical-Conditioned Activation Pruning (SCAP), a post-training method
that effectively induces activation sparsity in LLMs without the need for sparsification training. By
focusing on input activations to FC layers, SCAP generalizes both pruning and implementation within
Transformer, achieving a greater trade-off between computational efficiency and task performance
compared to prior methods. The introduction of Mode-Centering pre-calibration addresses the limited
post-training sparsity in activations with non-zero mode, leading to substantial increases in their
sparsity. Our experimental results validate these findings. We further present Table 4 detailing
SCAP’s applicability across a range of Transformer models, including pre-quantized ones and the
emerging MoE and Mamba2, all within a -1% relative task accuracy from their baselines while
attaining sufficient sparsity at targeted activations. This work highlights the potential of post-training
method for activation sparsity, while laying aspects for future explorations in Appendix C.

Table 4: More SCAP-pruned models. * indicates mode-centering. Details are at Appendix D.5.
Model Task Relative (%) Sparsity Target Sparsity, slayer (%)
Llama-2-7B -0.8% 42% sup/gate: 35, sdown: 55
Llama-2-13B -0.7% 47% sup/gate: 40, sdown: 60
Llama-2-70B -0.9% 50% sup/gate: 45, sdown: 60
Llama-2-70B (4-bit) -0.9% 43% sup/gate: 35, sdown: 60

Llama-3.1-8B-Instruct -0.7% 43% sup/gate: 40, sdown: 50
Llama-3.1-8B-Instruct (8-bit) -0.8% 43% sup/gate: 40, sdown: 50

Falcon-7B* -0.8% 38% sup: 30, sdown: 45

MPT-7B* -0.6% 43% sup: 40, sdown: 45

Mixtral-8x7B-Instruct-v0.1 -0.8% 43% sup/gate: 40, sdown: 50
Mixtral-8x7B-Instruct-v0.1 (4-bit) -1.0% 43% sup/gate: 40, sdown: 50

Mamba2-2.7B -0.8% 40% sin: 30, sout: 60

DeiT-base* -0.9% 51% sqkv: 40, so: 50, sup: 55, sdown: 55
DeiT3-large* -0.9% 59% sqkv: 60, so: 30, sup: 60, sdown: 65

8

https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-13b-hf
https://huggingface.co/meta-llama/Llama-2-70b-hf
https://huggingface.co/TheBloke/Llama-2-70B-Chat-AWQ
https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct
https://huggingface.co/tiiuae/falcon-7b
https://huggingface.co/mosaicml/mpt-7b
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/casperhansen/mixtral-instruct-awq
https://huggingface.co/state-spaces/mamba2-2.7b
https://huggingface.co/timm/deit_base_patch16_224.fb_in1k
https://huggingface.co/timm/deit3_large_patch16_384.fb_in1k

Acknowledgments and Disclosure of Funding

The authors would like to thank Intel Labs and the OpenVINO team for their valuable discussions
and support throughout this work. We are especially grateful to Tingqian Li, Cheng Luo, Xian Fu
Wong, Gopi Krishna Jha, Nikita Savelyev, and Alexander Kozlov for their collaborative efforts and
contributions, which enriched the development of this work.

References
[1] Yash Akhauri, Ahmed F. AbouElhamayed, Jordan Dotzel, Zhiru Zhang, Alexander M. Rush,

Safeen Huda, and Mohamed S. Abdelfattah. ShadowLLM: Predictor-based Contextual Sparsity
for Large Language Models, June 2024. arXiv:2406.16635 [cs].

[2] Keivan Alizadeh, Iman Mirzadeh, Dmitry Belenko, Karen Khatamifard, Minsik Cho, Carlo C.
Del Mundo, Mohammad Rastegari, and Mehrdad Farajtabar. LLM in a flash: Efficient Large
Language Model Inference with Limited Memory, July 2024. arXiv:2312.11514 [cs].

[3] Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxandra
Cojocaru, Mérouane Debbah, Étienne Goffinet, Daniel Hesslow, Julien Launay, Quentin Malar-
tic, Daniele Mazzotta, Badreddine Noune, Baptiste Pannier, and Guilherme Penedo. The Falcon
Series of Open Language Models, November 2023. arXiv:2311.16867 [cs].

[4] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul
Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra,
Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer,
Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code, 2021.

[5] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker
Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes,
Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson,
Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier
Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David
Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani
Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat,
Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei
Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei,
Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. PaLM: Scaling
Language Modeling with Pathways, October 2022. arXiv:2204.02311 [cs].

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, 2009.

[7] Clémentine Fourrier, Nathan Habib, Thomas Wolf, and Lewis Tunstall. Lighteval: A lightweight
framework for llm evaluation, 2023.

[8] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: Accurate Post-
Training Quantization for Generative Pre-trained Transformers, March 2023. arXiv:2210.17323
[cs].

9

[9] Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles
Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas
Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron,
Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 12 2023.

[10] Song Han, Jeff Pool, John Tran, and William Dally. Learning both Weights and Connections for
Efficient Neural Network. In Advances in Neural Information Processing Systems, volume 28.
Curran Associates, Inc., 2015.

[11] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu,
Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large lan-
guage model serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium
on Operating Systems Principles, 2023.

[12] Je-Yong Lee, Donghyun Lee, Genghan Zhang, Mo Tiwari, and Azalia Mirhoseini. CATS:
Contextually-Aware Thresholding for Sparsity in Large Language Models, April 2024.
arXiv:2404.08763 [cs].

[13] Zonglin Li, Chong You, Srinadh Bhojanapalli, Daliang Li, Ankit Singh Rawat, Sashank J Reddi,
Ke Ye, Felix Chern, Felix Yu, Ruiqi Guo, and Sanjiv Kumar. The Lazy Neuron Phenomenon:
On Emergence Of Activation Sparsity In Transformers. 2023.

[14] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. AWQ: Activation-aware Weight Quantization
for LLM Compression and Acceleration, July 2024. arXiv:2306.00978 [cs].

[15] Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivas-
tava, Ce Zhang, Yuandong Tian, Christopher Ré, and Beidi Chen. Deja Vu: contextual sparsity
for efficient LLMs at inference time. In Proceedings of the 40th International Conference on
Machine Learning, volume 202 of ICML’23, pages 22137–22176, Honolulu, Hawaii, USA, July
2023. JMLR.org.

[16] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

[17] Seyed Iman Mirzadeh, Keivan Alizadeh-Vahid, Sachin Mehta, Carlo C. del Mundo, Oncel
Tuzel, Golnoosh Samei, Mohammad Rastegari, and Mehrdad Farajtabar. ReLU Strikes Back:
Exploiting Activation Sparsity in Large Language Models. October 2023.

[18] Arindam Mitra, Hamed Khanpour, Corby Rosset, and Ahmed Awadallah. Orca-math: Unlocking
the potential of slms in grade school math, 2024.

[19] Keiran Paster, Marco Dos Santos, Zhangir Azerbayev, and Jimmy Ba. Openwebmath: An open
dataset of high-quality mathematical web text, 2023.

[20] Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Jonathan
Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently Scaling Transformer Inference.
Proceedings of Machine Learning and Systems, 5:606–624, March 2023.

[21] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. arXiv e-prints, 2019.

[22] Mosaic AI Research. Introducing MPT-7B: A New Standard for Open-Source, Commercially
Usable LLMs | Databricks Blog, May 2023.

[23] Noam Shazeer. GLU Variants Improve Transformer, February 2020. arXiv:2002.05202 [cs,
stat].

[24] Chenyang Song, Xu Han, Zhengyan Zhang, Shengding Hu, Xiyu Shi, Kuai Li, Chen Chen,
Zhiyuan Liu, Guangli Li, Tao Yang, and Maosong Sun. ProSparse: Introducing and Enhancing
Intrinsic Activation Sparsity within Large Language Models, July 2024. arXiv:2402.13516 [cs].

10

[25] Yixin Song, Zeyu Mi, Haotong Xie, and Haibo Chen. PowerInfer: Fast Large Language Model
Serving with a Consumer-grade GPU, December 2023. arXiv:2312.12456 [cs].

[26] Yixin Song, Haotong Xie, Zhengyan Zhang, Bo Wen, Li Ma, Zeyu Mi, and Haibo Chen. Turbo
Sparse: Achieving LLM SOTA Performance with Minimal Activated Parameters, June 2024.
arXiv:2406.05955 [cs].

[27] Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A Simple and Effective Pruning
Approach for Large Language Models, May 2024. arXiv:2306.11695 [cs].

[28] Hugo Touvron, Matthieu Cord, and Hervé Jégou. Deit iii: Revenge of the vit. In Computer
Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part XXIV, page 516–533, Berlin, Heidelberg, 2022. Springer-Verlag.

[29] Ben Wang and Aran Komatsuzaki. Gpt-j-6b: A 6 billion parameter autoregressive language
model, 2021.

[30] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-
the-art natural language processing. In Conference on Empirical Methods in Natural Language
Processing, 2019.

[31] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun.
Orca: A distributed serving system for Transformer-Based generative models. In 16th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 22), pages 521–538,
Carlsbad, CA, July 2022. USENIX Association.

[32] Zhengyan Zhang, Yixin Song, Guanghui Yu, Xu Han, Yankai Lin, Chaojun Xiao, Chenyang
Song, Zhiyuan Liu, Zeyu Mi, and Maosong Sun. ReLU2 Wins: Discovering Efficient Activation
Functions for Sparse LLMs, February 2024. arXiv:2402.03804 [cs].

11

A Target vs Actual Activation Sparsity

0.3 0.4 0.5 0.6 0.7 0.8

0.3

0.4

0.5

0.6

0.7

0.8
A

ct
ua

l S
pa

rs
ity

Layer 0

0.3 0.4 0.5 0.6 0.7 0.8

0.3

0.4

0.5

0.6

0.7

0.8

Layer 6

0.3 0.4 0.5 0.6 0.7 0.8

0.3

0.4

0.5

0.6

0.7

0.8

Layer 12

0.3 0.4 0.5 0.6 0.7 0.8
Target Sparsity

0.3

0.4

0.5

0.6

0.7

0.8

A
ct

ua
l S

pa
rs

ity

Layer 18

0.3 0.4 0.5 0.6 0.7 0.8
Target Sparsity

0.3

0.4

0.5

0.6

0.7

0.8

Layer 24

0.3 0.4 0.5 0.6 0.7 0.8
Target Sparsity

0.3

0.4

0.5

0.6

0.7

0.8

Layer 30

arc_challenge
arc_easy
boolq
hellaswag
lambada_openai
piqa
sciq
triviaqa
wikitext
winogrande

Figure 8: Target vs. Actual input Sparsity of FCdown across various Transformer Layers in Llama.
Each point represents for a different task, with its empirical sparsity closely aligning with diagonal
line, indicating a strong correlation with the target. This illustrates the effectiveness of the L1

thresholding based pruning mechanism in maintaining consistent dynamic sparsity across layers for
the majority of input prompts.

B Kernel Implementations

Algorithm 1 CATS’ SwiGLU

1: Input: τsilu, x, Wgate, Wdown, Wup

2: v ← silu(xWgate)

3: Mask← 1 if |v| ≥ τsilu else 0

4: x1 ← (xWup[Mask] ∗ v[Mask])
5: y ← x1Wdown[Mask]
6: output y

Algorithm 2 SCAP’s SwiGLU (Ours)

1: procedure SCAP_FC(τ, x,W)
2: Mask← 1 if |x| ≥ τ else 0

3: y ← xηW

4: return y

5: end procedure

6: Input: τx, τgated, x, Wgate, Wup, Wdown

7: zgated ←
SCAP_FC(τx, x,Wup) ∗ silu(SCAP_FC(τx, x,Wgate))

8: y ← SCAP_FC(τgated, x,Wdown)

9: output y

SCAP proposes a generic sparse-by-
input activation across targeted FC
layers, entailing a single kernel im-
plementation. This implementation,
referred to as SCAP_FC in Alg. 2,
provides a bias-free version of Eq.
2 and 3. If mode-centering is ap-
plied, the corresponding mode shift-
ing and realization of Eq. 6 is de-
tailed in Alg. 3. These procedures
are separated for brevity but can be
merged.

Alg. 1 and 2 compare the SwiGLU
kernel between CATS and SCAP.
CATS requires a rigid computation
order of gate projection path first
and a sparse mask coupled for the
Up and Down weights. In contrast,
SCAP demonstrates the reusability
of SCAP_FC, which can also be ap-
plicable to FCs in attention block if
their inputs are sparsified.

We implemented SCAP kernels by
adapting the official CATS codes
and performed latency benchmarks
with a sweep of FFN sparsity on a

12

single NVIDIA L40S GPU (consistent with CATS’ experiments). Since the FFN is composed of
three equal-sized layers, FFN sparsity = 2/3× ssilu = 2/3× sx + 1/3× sgated. Fig. 9 shows that
SCAP’s SwiGLU performs similarly to, or marginally faster than, CATS’s, which is expected given
that the memory and compute savings are proportionate in both cases. The plot is clipped at about
55% of FFN sparsity due to CATS reaching over 80% sparsity in the Up and Down projectors. We
anticipate proportional improvements if SCAP prunes to a lower level of FFN sparsity.

The main advantage of SCAP is its flexibility in decoupling the sparsity between the Gate, Up,
and Down inputs, resulting in a favorable Pareto trade-off in task performance, as experimented in
Section 4.1. This means achieving higher sparsity at a given task tolerance, leading to overall higher
acceleration, as confirmed in Table 2.

Algorithm 3 SCAP FC with Mode Centering

1: procedure SCAP_FC_DEMODE
(τ, η, x,W, bfused)

2: xη ← x− η

3: Mask← 1 if |xη| ≥ τ else 0

4: y ← xηW + bfused
5: return y

6: end procedure
0.0 0.1 0.2 0.3 0.4 0.5

FFN Sparsity (%)

0.6

0.7

0.8

0.9

1.0

1.1

La
te

nc
y

(m
s)

Latency of Mistral-7B's FFN (SwiGLU)

Dense
CATS
SCAP

Figure 9: SwiGLU Latency Scaling w.r.t FFN
Sparsity across implementations

C Acceleration Challenges of Batched Sparse Activation

Inference acceleration through activation sparsity has primarily focused on the token-to-token decod-
ing phase of language models, operating under the assumption that a single dynamic sparse activation
vector can trigger a structured sparse weight pattern, alleviating memory bottlenecks. While many
studies demonstrate significant acceleration using this approach, it is mainly effective for a single
vector (i.e., batch size of 1 in FC layers). However, in practice, generation such as beam search or
batched sampling (common in code generation[4]) which give higher quality outputs require handling
multiple activation vectors simultaneously. This requires overlapping sparse locations across vectors
to maintain structured weight sparsity.

In our analysis of TurboSparse Mistral 7B, one of the sparsest models achieved through training-
based sparsification, sweeping the beam width clearly revealed a decline in overlapping sparsity (see
Fig. 10). This issue is further exacerbated in high-throughput serving systems, such as vLLM[11],
which employs iteration-level batching[31]. High numbers of parallel batch requests can significantly
limit the overall decoding speedup.

On the other hand, the prefill stage of language models and transformer encoders faces similar
challenges, if not more pronounced, as their activations consist of multiple vectors. For example,
ViT/DeiT3-large [28] with 384x384 image tokenized by a patch size of 16 entails 576 activation
vectors at the FC layers. Table 4 shows that this model can attain up to 59% of model-wise activation
sparsity. While not displayed, we observed that prefill activations exhibit sparsity level similar to
those in the decoding phase. Therefore, relying on overlapping sparsity across vectors is leaving a
significant amount of sparsity untapped for acceleration. We emphasize the need to address these
inference setups to broaden the applicability of acceleration with sparse activation.

13

0 20 40 60 80 100
Token Index

0

20

40

60

80

100

O
ve

rla
pp

in
g

S
pa

rs
ity

 (
%

)

Input Sparsity of one FCDown over generated tokens
Beam Width

1
4
8
16
32
64
128

(a) Given a single prompt

1 2 4 8 16 32 64 128
Beam Width

0

20

40

60

80

100

O
ve

rla
pp

in
g

S
pa

rs
ity

 (
%

)

FCDown of Layer 16

(b) Averaged over decoding tokens in a
dataset

Figure 10: Structured Sparsity declines with beam width size (a proxy for high batch input)

D Supplementary Experiment Details

The generic implementation of SCAP is outlined at the beginning of Section 4. Our implementation
is available at here. Essentially, our implementation is primarily based within the Hugging Face
ecosystem [30]. All pretrained or instruction-tuned models used by SCAP are directly sourced from
the model hub. For task evaluations, we leverage the Language Model Evaluation Harness[9] for
zero-shot tasks2. When evaluating for the Open LLM leaderboard, we utilize LightEval[7].

In terms of compute resources, calibration and sparsification are performed mostly on a single
A100-80GB GPU for smaller models and up to 4xA100 GPUs for larger models. For zero-shot task
evaluations, we parallelize across more GPUs as needed. Further specific details are provided below.

D.1 For Section 4.1

mistralai/Mistral-7B-v0.1 and meta-llama/Llama-2-7b-hf were the input models used for
this study, aligning to CATS. We directly referenced the results reported in [12]. Pareto fronts of
SCAP were constructed based on grid search explained in Section 4, with particular task performance,
group sparsities presented in Table 5 & 6. Each evaluation was conducted using an identical set of
zero-shot tasks2.

D.2 For Section 4.2, Table 2

Our kernel implementation is detailed in Appendix B. This section provides additional implementation
details for Table 2, which benchmarked the actual acceleration of the decoding stage achieved through
activation sparsity. We profiled the greedy decoding of dense, CATS and SCAP-pruned Mistral-7B in
FP32 precision on a single Nvidia L40S GPU with a batch size of 1. This setup was consistent with
the original CATS implementation.

We reproduced the CATS models through our own implementation, ensuring tasks were comparable
and observed sparsity was at least equivalent to the target. We then extracted the CATS and SCAP
pruning thresholds and proceeded with the benchmarks. Each benchmark consisted of a story segment
truncated to the target number of input tokens, requiring the generation of 128 tokens. The reported
decoding latency was an average over the generation of the last 127 tokens. For further details, please
refer to our codes.

D.3 For Section 4.3

We used tiiuae/falcon-7b and mosaicml/mpt-7b, whose FFNs are not GLU-based, with inputs
to Down projections originating from GELU that exhibited mode away from zero. For this ablation

2Zero-shot tasks refer to the average accuracy across the set of tasks consistent with the evaluation in the
CATS paper [12], which include WinoGrande, PIQA, SciQ, Hellaswag, BoolQ, Arc-E, and Arc-C.

14

https://github.com/IntelLabs/SCAP
https://huggingface.co/models
https://huggingface.co/mistralai/Mistral-7B-v0.1
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://github.com/IntelLabs/SCAP
https://huggingface.co/tiiuae/falcon-7b
https://huggingface.co/mosaicml/mpt-7b

study, we focused solely on sweeping target sparsity on the inputs of the Down projection, using a
grid of 10%. Evaluations2 were conducted accordingly.

D.4 For Section 4.4

TurboSparse [26], a SOTA Relufication method, retrofits two ReLUs into pretrained LLMs, as
illustrated in Fig. 2b. For our evaluation, we utilized the official TurboSparse-Mistral-Instruct,
a Relufied version of Mistral-7B that had been uptrained on hundreds of billions of tokens from
curated datasets and further fine-tuned for instruction following.

While it was not possible to align pretraining and instruction datasets perfectly, the closest com-
parable model was a SCAP on Mistral-7B-Instruct-v0.2, an instruct fine-tuned version of
Mistral-7B-v0.2 by MistralAI. We performed a grid search to identify the SCAP-pruned model
that maintained overall task performance within a 1% margin of the baseline average. Both methods
were evaluated on the same set of tasks governed by the Open LLM leaderboard using LightEval,
with the results and sparsity breakdown provided in Table 3. We observed slight variations in
TurboSparse scores compared to those originally reported in the paper.

D.5 For Table 4

Table 4 lists the models pruned by SCAP to maintain within a -1% tolerance of their baseline
performance, using the grid search outlined in Section 4. All input models, except one, were sourced
from the Hugging Face model hub, with hyperlinks provided in the table. The Llama3.1 8B model
was locally quantized to 8-bit using data-free symmetrical weight quantization via Optimum-Intel.
For task evaluation, language models were assessed on zero-shot tasks2, while Vision Transformers
were evaluated using Top-1 accuracy on ImageNet-1k[6].

The Sparsity column records the actual activation sparsity observed during task evaluation, denomi-
nated by all targeted FC layers. The last column details the specific FC layers targeted, along with
their input sparsity for SCAP calibration. For example, the last row represents a better-trained Vision
Transformer[28] with pruning applied to the shared input of QKV, input to Output, Up, and Down
projection layers, using SCAP with Mode-Centering. This configuration achieved 59% activation
sparsity during ImageNet-1k evaluation.

15

https://huggingface.co/PowerInfer/TurboSparse-Mistral-Instruct
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/models
https://github.com/huggingface/optimum-intel

Table 5: Activation Sparsity, Zero-Shot Tasks of Mistral-7B pruned by CATS and SCAP

Model \ Method Input Sparsity of FC Layer Zero-Shot Accuracy (%)

Up Gate Down FFN Avg Relative WG PIQA SciQ HS BoolQ Arc-E Arc-C

Mistral-7B-v0.1 0.0 75.3 Baseline 74.2 80.7 95.9 61.3 83.7 80.9 50.3

CATS 50% 50 0 50 33.3 74.2 -1.5% 72.5 80.1 94.8 61.0 81.9 78.5 50.4
CATS 70% 70 0 70 46.7 72.5 -3.8% 71.9 80.0 92.9 60.6 80.3 74.9 46.9
CATS 90% 90 0 90 60.0 46.9 -60.6% 56.3 60.0 42.2 33.6 70.9 37.5 27.7

SCAP (sup/gate: 10%, sdown: 50%) 13.2 13.2 52.7 26.4 75.3 0.0% 74.5 80.4 96.0 61.6 83.4 80.6 50.6
SCAP (sup/gate: 10%, sdown: 60%) 13.2 13.2 62.2 29.6 75.2 -0.1% 74.3 80.5 95.7 61.9 82.8 80.1 51.0
SCAP (sup/gate: 20%, sdown: 50%) 22.9 22.9 52.1 32.6 75.2 -0.1% 74.0 80.5 95.7 61.5 83.9 80.5 50.3
SCAP (sup/gate: 20%, sdown: 60%) 22.9 22.9 61.7 35.8 75.0 -0.3% 74.6 80.5 95.9 61.9 82.6 80.0 49.8
SCAP (sup/gate: 35%, sdown: 45%) 37.0 37.0 47.1 40.4 74.9 -0.6% 74.0 80.4 95.7 60.9 83.8 80.2 49.1
SCAP (sup/gate: 30%, sdown: 70%) 32.7 32.7 71.3 45.6 74.5 -1.0% 72.7 80.3 95.8 62.0 82.4 79.5 49.2
SCAP (sup/gate: 40%, sdown: 60%) 42.0 42.0 61.7 48.5 74.2 -1.5% 71.9 80.0 95.1 60.8 82.9 79.8 48.7
SCAP (sup/gate: 40%, sdown: 70%) 42.7 42.7 71.9 52.5 72.8 -3.3% 69.1 79.8 91.8 60.1 81.7 79.2 47.7
SCAP (sup/gate: 40%, sdown: 80%) 42.8 42.8 81.4 55.7 71.6 -4.8% 67.6 79.4 86.5 60.6 79.8 79.1 48.5
SCAP (sup/gate: 50%, sdown: 70%) 52.4 52.4 72.1 59.0 69.4 -7.9% 70.4 79.4 75.5 56.5 77.5 78.5 47.8
SCAP (sup/gate: 50%, sdown: 80%) 52.5 52.5 81.4 62.2 67.8 -9.9% 69.3 79.4 71.5 55.3 75.4 77.7 46.5
SCAP (sup/gate: 60%, sdown: 70%) 61.9 61.9 72.0 65.3 66.7 -11.5% 68.3 78.2 70.8 52.7 75.1 77.1 44.3

Table 6: Activation Sparsity, Zero-Shot Tasks of Llama-2-7B pruned by CATS and SCAP

Model \ Method Input Sparsity of FC Layer Zero-Shot Accuracy (%)

Up Gate Down FFN Avg Relative WG PIQA SciQ HS BoolQ Arc-E Arc-C

Llama-2-7B 0 0 0 0.0 70.8 Baseline 69.1 78.1 94.0 57.2 77.7 76.3 43.4

CATS 50% 50 0 50 33.3 68.9 -2.8% 67.5 76.9 92.7 57.1 72.6 74.4 41.2
CATS 70% 70 0 70 46.7 66.0 -7.3% 66.9 75.8 90.2 55.0 65.9 70.1 38.1
CATS 90% 90 0 90 60.0 51.4 -37.7% 57.4 66.3 61.1 38.5 62.8 45.7 28.1

SCAP (sup/gate: 30%, sdown: 40%) 32.2 32.2 42.5 35.7 70.7 -0.1% 69.7 77.6 94.0 57.0 77.5 76.2 43.1
SCAP (sup/gate: 20%, sdown: 40%) 22.6 22.6 42.5 29.2 70.7 -0.1% 68.7 77.9 93.5 57.4 77.6 76.3 43.6
SCAP (sup/gate: 10%, sdown: 50%) 12.9 12.9 52.3 26.1 70.7 -0.1% 69.6 78.1 93.4 57.3 77.6 76.2 42.8
SCAP (sup/gate: 20%, sdown: 50%) 22.6 22.6 52.3 32.5 70.7 -0.2% 69.2 78.1 93.7 57.3 77.3 76.5 42.6
SCAP (sup/gate: 30%, sdown: 50%) 31.7 31.7 51.5 38.3 70.6 -0.3% 70.6 77.7 93.4 57.0 77.3 75.7 42.6
SCAP (sup/gate: 35%, sdown: 50%) 36.5 36.5 51.5 41.5 70.3 -0.7% 69.0 77.6 93.3 56.8 77.1 76.1 42.4
SCAP (sup/gate: 35%, sdown: 60%) 36.5 36.5 61.2 44.7 70.0 -1.1% 68.4 77.3 93.5 57.0 76.4 75.1 42.5
SCAP (sup/gate: 40%, sdown: 60%) 41.4 41.4 61.2 48.0 70.0 -1.1% 68.6 77.6 93.8 56.4 76.6 74.6 42.6
SCAP (sup/gate: 40%, sdown: 70%) 41.9 41.9 71.5 51.8 69.6 -1.7% 68.7 77.9 93.0 56.5 75.8 73.9 41.4
SCAP (sup/gate: 50%, sdown: 60%) 51.5 51.5 61.9 55.0 68.8 -2.8% 67.0 76.6 93.3 55.4 75.9 73.3 40.4
SCAP (sup/gate: 50%, sdown: 70%) 51.5 51.5 71.5 58.2 68.7 -3.0% 67.3 77.0 93.6 55.1 74.8 73.3 39.8
SCAP (sup/gate: 50%, sdown: 80%) 51.6 51.6 81.0 61.4 67.7 -4.6% 64.7 75.8 92.7 55.1 73.6 71.2 40.8
SCAP (sup/gate: 60%, sdown: 70%) 61.2 61.2 71.4 64.6 67.2 -5.4% 65.5 75.2 93.5 53.0 74.4 71.0 37.8

16

	Introduction
	Generalized Post-Training Activation Pruning
	Activation Mode Centering
	Results and Discussions
	Pareto Efficiency in Tasks vs. Activation Sparsity
	Decoding Speedup
	Ablations of Activation Mode Centering
	Comparison to SOTA Relufication

	Conclusions
	Target vs Actual Activation Sparsity
	Kernel Implementations
	Acceleration Challenges of Batched Sparse Activation
	Supplementary Experiment Details
	For Section 4.1
	For Section 4.2, Table 2
	For Section 4.3
	For Section 4.4
	For Table 4

