
Post Training Quantization of Large Language Models
with Microscaling Formats

Sayeh Sharify
d-Matrix

Santa Clara, CA, USA
sayehs@d-matrix.ai

Utkarsh Saxena∗
Purdue University

West Lafayette, IN, USA
saxenau@purdue.edu

Zifei Xu
d-Matrix

Santa Clara, CA, USA
xuzifei@d-matrix.ai

Wanzin Yazar
d-Matrix

Santa Clara, CA, USA
wyazar@d-matrix.ai

Ilya Soloveychik
d-Matrix

Santa Clara, CA, USA
ilyas@d-matrix.ai

Xin Wang
d-Matrix

Santa Clara, CA, USA
xwang@d-matrix.ai

Abstract

Large Language Models (LLMs) have distinguished themselves with outstanding
performance in complex language modeling tasks, yet they come with signifi-
cant computational and storage challenges. This paper explores the potential of
quantization to mitigate these challenges. We systematically study the combined
application of three well-known post-training techniques, SmoothQuant, AWQ, and
GPTQ, and provide a comprehensive analysis of their interactions and implications
for advancing LLM quantization. We enhance the versatility of these methods by
enabling quantization to microscaling (MX) formats, extending the applicability
of these PTQ algorithms beyond their original fixed-point format targets. We
show that combining different PTQ methods enables us to quantize models to 4-bit
weights and 8-bit activations using the MXINT format with negligible accuracy
loss compared to the uncompressed baseline.

1 Introduction
Large Language Models (LLMs) have emerged as extremely powerful tools to process and gener-
ate natural language. However, their high computational demand and energy consumption make
widespread adoption of these models in everyday tasks challenging. One way to address these
challenges is post-training quantization, a technique that involves reducing the precision of model
parameters and/or activations from the original bit-width to formats with fewer bits. Quantization can
significantly reduce the memory footprint and computational requirements of these models, making
them more accessible and easily deployable on a wider range of hardware, including mobile and
edge devices. However, when applying quantization, outliers with large magnitudes remain an open
challenge because they stretch the quantization range, leaving fewer effective bits available for the
majority of values, which leads to significant quantization errors and accuracy degradation [11]. To
address this issue, Xiao et al. proposed SmoothQuant [47], a quantization technique that smooths
out the activation outliers by migrating the quantization difficulty from activations to weights with
a provably equivalent transformation. Lin et al., proposed AWQ [25], a weight only quantization
algorithm that mitigates the quantization error by channel-wise scaling of the salient weights [25].
Similarly, Frantar et al. proposed GPTQ [16], a scalable one-shot quantization method that utilizes
Frobenius norm layer-wise loss optimization to quantize weights. In this work, we systematically
study the combined application of these three algorithms and provide a comprehensive analysis
of their interactions and implications for advancing LLM quantization to various fixed-point and
microscaling (MX) formats.

∗Work done when the author was an intern at d-Matrix.

4th NeurIPS Efficient Natural Language and Speech Processing Workshop (ENLSP-IV 2024).

Microscaling format. The microscaling (MX) format for neural net computation was proposed by
prior work, first as MSFP [37] and later subsumed by an emerging industry standard microscaling
formats [38]. Specifically, MXINT8 is a microscaling format that enables high-accuracy inference
using approximately half the memory footprint of FP16. It is an emerging industry standard endorsed
by Microsoft, AMD, Arm, Intel, Meta, and NVIDIA [38] and is already seeing adoption in today’s
hardware products, such as the Qualcomm cloud AI100 Accelerator [34] and NVIDIA Blackwell
GPUs [15].

The MX format is a variant of block data representation that uses shared scale factors to represent a
group of values. It is characterized by three key components: 1) the scale factor data type, 2) the data
type and precision of individual elements, and 3) the scaling block size. The scale factor is uniformly
applied across a block of elements. This paper focuses on MX formats that use the INT data type for
individual elements, referred to as MXINT. More details on the microscaling format are provided in
Section A of the appendix.

Notation. Throughout the paper we denote a microscaling (MX) format with scaling block size
of b, 8-bit shared scaling factor, and d bits per element by MXINTd-b. For example, MXINT4-128
represents an MX format with 4 bits per element, 8 bits shared exponent across 128 values within a
block. Similarly, a fixed-point value with i integer bits and no fractional bits is denoted by INTi. For
instance, INT4 specifies a fixed-point value with 4 integer bits and no fractional bits.

Contributions.

• We adopt SmoothQuant, AWQ, and GPTQ to support quantization to microscaling (MX)
data formats, extending their compatibility beyond the originally targeted fixed-point formats
in the proposed methods.

• We study the interaction of SmoothQuant, AWQ, and GPTQ using state-of-the-art models
like Llama2 and Llama3.1, offering a comprehensive analysis of their impact on advancing
LLM quantization. Our findings demonstrate that the pairs SmoothQuant and GPTQ, as
well as AWQ and GPTQ, are synergistic, especially at more restrictive bit-widths.

The remainder of this paper is structured as follows: Section 2 provides a brief overview of three
post-training quantization algorithms examined in this study and details their adaptation to support
quantization to microscaling data formats. Section 4 describes the experimental setup, presents
quantization results from applying these three algorithms both individually and in combination, and
includes a Pareto frontier analysis of the quantized models. Section 5 reviews related work. Section 6
provides a brief discussion on the empirical findings of this work, and Section 7 concludes the paper.
The limitations of this work are explained in Section 8.

2 Quantization algorithms adaptation methodology

Various Post-Training Quantization (PTQ) techniques have emerged to reduce memory bandwidth
requirements during LLM inference by quantizing weights and/or activations to lower precisions
while maintaining accuracy. In this work, we examine the interaction of three well-known PTQ
algorithms for LLMs: GPTQ [16], SmoothQuant [47], and AWQ [25]. GPTQ is a weight-only
quantization technique that reduces quantization error by quantizing the weight matrix column-wise,
across the channels, and sequentially updating the unquantized weights using second-order statistic
of the activations to mitigate the error. SmoothQuant scales both activations and weights to reduce
the activation’s dynamic range, by transferring some of the quantization challenges from activations
to weights. AWQ scales weights according to activation magnitudes for improved quantization. For
further details on these three algorithms, please refer to Section B of the appendix. The remainder of
this section details the generalization of GPTQ, AWQ, and SmoothQuant to support microscaling
(MX) quantization, extending their compatibility beyond the originally targeted fixed-point formats
in the initially proposed methods.

2.1 GPTQ adaptation to MX format

To make GPTQ compatible with the MX format, we modify the algorithm to quantize and update
weight values block-wise instead of the originally proposed column-wise updates. Algorithm 1
illustrates the quantization procedure: The weight matrix is divided into blocks (Line 4: b1), which

2

Algorithm 1 Enhanced GPTQ: Quantize W given inverse Hessian H−1 = (2XXT + λI)−1, GPTQ
block size b1, and micro-block size b2.
1: Input: W, H−1 // Weight and Hessian inverse matrices
2: Input: drow, dcol // Row and Column dimensions of W
3: Input: b1, b2 // GPTQ block size and Micro-block size
4: Variable: E // Quantization error matrix
5: Output: Q // Quantized weight matrix
6: Initialize: Q← 0drow×dcol

7: Initialize: E← 0drow×dcol

8: Initialize: H−1 ← Cholesky(H−1)T

9: for i = 0, b1, 2b1, ... do
10: for j = i, i+ b2, i+ 2b2, ..., i+ b1 − 1 do
11: k ← j + b2 // helper index
12: Q:,j:k ← quant(W:,j:k)

13: E:,j:k ← (W:,j:k −Q:,j:k)([H
−1]j:k,j:k)

−1

14: W:,k: ←W:,k: − E:,j:k[H−1]j:k,k:
15: end for
16: W:,i+b1: ←W:,i+b1: − E:,i:i+b1 [H

−1]i:i+b1,i+b1:

17: end for
18: Return: Q

are further subdivided into micro-blocks (Line 5: b2). Blocks of consecutive micro-blocks are
quantized at each step using inverse Hessian information stored in the Cholesky decomposition (Lines
13-18), and the remaining weights are updated at the end of the step (Line 19). This quantization
process is applied recursively to different consecutive weight blocks until the entire weight matrix is
quantized (Line 12). Note that for quantizing weight matrix to a specific MX format, the micro-block
size in the algorithm, b2, should be a multiple of the block size of the MX format. For more details
on the GPTQ algorithm please refer to Section B.1 of the appendix.

2.2 SmoothQuant and AWQ adaptation to MX format
For quantization to the MX format using SmoothQuant and AWQ, we directly calculate per-channel
scaling factors to mitigate outliers in activations and/or weights, similar to the approaches proposed
in the original paper, and skip the additional calibration phase required for quantization to fixed-point
formats [47, 25]. Sections B.2 and B.3 of the appendix provide more details on the SmoothQuant and
AWQ algorithms, respectively.

3 Challenges in studying PTQ algorithms interactions
This section highlights the challenges encountered when applying the post-training quantization
algorithms studied. We found that some algorithms are incompatible, and for those that are compatible,
the order of application is crucial. For instance, both AWQ and SmoothQuant aim to moderate the
dynamic range of weight values by calculating scaling factors based on activation and weight tensors.
However, despite using different formulas to calculate these scaling factors, we did not observe
any benefit from combining the two algorithms. In contrast, GPTQ paired with either AWQ or
SmoothQuant proved to be synergistic. When combining GPTQ with SmoothQuant or AWQ, it is
essential to first smooth the weight range using SmoothQuant or AWQ, then apply GPTQ to the
smoothed weights. Reversing this order results in a significant performance degradation. Section 4.2
provides more details on the quantization results using different combinations of these post training
quantization algorithms.

4 Experiments

4.1 Setup.

We evaluate the impact of the SmoothQuant, AWQ, and GPTQ techniques on quantization of the
Llama2, Llama3.1, and Qwen2 family. We employ various fixed-point and MXINT formats with
different bit-widths for our assessment and report the perplexity of the quantized models on WikiText-
2 [27] and C4 [35]. We also measure the accuracy of the quantized models on eight zero-shot
commonsense reasoning tasks. (Section 4.1.) Moreover, we study the impact of applying GPTQ,

3

SmoothQuant, and AWQ individually, as well as the joint effects of GPTQ with AWQ and GPTQ
with SmoothQuant. The following sections provide a detailed explanation of the experimental setup.

Models. We evaluated various quantization methods using the Llama2 [44], the Llama3.1 [28],
and Qwen2 [48] families. These LLMs are widely accepted in the machine learning community
for their superior performance compared to other open-source LLMs [11, 16, 47, 25, 23, 1]. Llama
also serves as the foundation for many popular open-source models such as Alpaca [43], Vicuna [6],
and Stable Beluga [42]. For the Llama2 family, unless specified otherwise, we used the default
maximum sequence length of 4,096 that was employed during pre-training. For the Llama3.1 and
Qwen2 families, we used a reduced maximum sequence length of 8,096 instead of the original 128k
used in pre-training, due to limitations in available GPU memory.

Datasets and tasks. Following previous work [11, 47, 16, 25, 13, 49], we measured the perplexity
of quantized language models on WikiText-2 [27], and C4 [35] as perplexity reliably reflects the
performance of LLMs [13, 25]. Unless otherwise stated, the test split of the dataset is used to
evaluate the models. Moreover, to assess the performance of the quantized models on downstream
tasks, we measured their accuracy on eight 0-shot commonsense reasoning tasks, including ARC-
easy, ARC-challenge [9], BoolQ [8], PIQA [5], SIQA [40], HellaSwag [50], OBQA [29], and
WinoGrande [39].

Quantization formats. We evaluated models using different microscaling and fixed-point quan-
tization formats. For the fixed-point quantization, we calibrated the models using 128 random
input sentences from WikiText-2-train to estimate the dynamic range of activations. We utilized
MinMaxObserver to find the range of activations, and calculated the zero-point and the scale parame-
ters for the activations and weights in per-channel granularity levels. For the MXINT format, unless
otherwise specified, the blocking dimension of a given tensor is the last dimension.

Activation smoothing. For SmoothQuant, we calculated the per-channel scaling factor for acti-
vations and weights using the formula stated in Equation 4. As in the previous work [47, 21], we
consistently use a migration strength (α) value of 0.5 across all models throughout the paper. To
calculate the scaling factors, we gathered the statistics of activations using 128 random sentences
from the WikiText-2-train dataset. Once we calculated the scaling factors, we used the same values to
evaluate the models with different quantization formats.

Targeted layers. Similar to the previous work [47], we apply smoothing on the input activation of
the self-attention and the feed-forward layers of LLMs. Unless stated otherwise, we transform all
Linear layers to the specified quantization format while keeping the activation/weight in the original
format for other layers including GELU, Softmax, and LayerNorm.

AWQ setup. For quantization with AWQ, we use 128 examples of sequence length 512 from
WikiText-2-train as the calibration dataset. Following [25], we find optimal scales and clipping values
by performing a grid search. To obtain best scaling values, we define the search space as s = sαx ,
where sx is the average magnitude of activations, and α∗ = argminα L(sαx). We perform a grid
search over the interval [0,1) to find the best α. The optimal clipping value is also determined by
minimizing the mean squared error (MSE) of the quantization.

4.2 Main results

Perplexity. Table 1 illustrates perplexity of the quantized Llama models [44, 28] with three different
sizes on WikiText-2-test using various MX and fixed-point formats. For all three models, aggressive
quantization to small bit-widths penalizes the model performance, while quantizing to higher bit-
widths has negligible effect on perplexity. For example, quantizing Llama3.1-8B to MXINT8 preserves
the baseline perplexity while quantizing to MXINT4 increases perplexity by 25% to 6.99. Moreover,
quantization results using different MXINT format delivers better perplexity compared to the fixed-
point formats with the same bit-width. For instance, quantizing Llama2-7B to INT4 increases
perplexity to 5.91. Enabling AWQ, and GPTQ jointly, reduces it to 5.53, while using MXINT4 and
enabling AWQ and GPTQ we can achieve perplexity of 5.37. Additionally, we found that in all cases
except for the quantization of both activations and weights to INT8, AWQ shows superior results
compared to SmoothQuant. For the studied models and quantization formats, both SmoothQuant
and GPTQ, as well as AWQ and GPTQ, are synergistic, an effect most prominent in more aggressive
quantizations. For example, quantizing Llama2-13B to MXINT3 results in perplexity scores of 8.26

4

Table 1: Perplexity score on WikiText-2-test and averaged accuracy on eight zero-shot common
sense reasoning tasks for the Llama2-7B, Llama2-13B, and Llama3.1-8B models, when quantized
to fixed-point and MXINT formats using different post-training quantization techniques. 0-shot8
includes ARC-challenge, ARC-easy, BoolQ, HellaSwag, OBQA, PIQA, SIQA, and WinoGrande
tasks. A, W, SQ, and RTN denote activation, weight, SmoothQuant, and round to nearest, respectively.
We used per-channel affine quantization for the fixed-point formats. For the MXINT formats, we
used block size of 128. +: GPTQ weight quantization is used, ↑ higher is better, ↓: lower is better.

Bit-width Format Method
Llama2-7B Llama2-13B Llama3.1-8B

0-shot8 Wiki 0-shot8 Wiki 0-shot8 Wiki
(↑) (↓) (↑) (↓) (↑) (↓)

A:16,W:16 A:FP16,W:FP16 N/A 59.89 5.12 62.80 4.57 63.60 5.61
RTN 59.88 5.13 62.52 4.58 63.59 5.62
GPTQ 59.69 5.13 62.62 4.58 63.60 5.62
SQ 59.87 5.12 62.72 4.58 63.57 5.62
AWQ 59.97 5.12 62.80 4.58 63.66 5.62

A: MXINT8,

SQ+ 59.87 5.12 - 4.58 63.57 5.62
W: MXINT8

AWQ+ 59.90 5.12 62.64 4.58 63.56 5.62
RTN 58.54 5.15 61.50 4.60 62.97 5.69
GPTQ 58.52 5.15 61.61 4.60 63.00 5.69
SQ 58.69 5.15 61.56 4.60 63.25 5.69
AWQ 58.23 5.17 61.58 4.62 62.72 5.76

A: INT8,

SQ+ 58.71 5.15 - 4.60 63.14 5.69

A:8, W:8

W: INT8

AWQ+ 58.15 5.17 61.46 4.62 62.52 5.76
RTN 58.99 5.55 61.83 4.82 60.97 6.99
GPTQ 57.66 5.45 61.53 4.76 60.81 6.39
SQ 57.59 5.60 61.06 4.93 59.52 7.01
AWQ 58.43 5.43 62.11 4.77 61.52 6.40

A: MXINT8,

SQ+ 57.88 5.48 - 4.84 60.09 6.50
W: MXINT4

AWQ+ 58.21 5.37 61.71 4.73 61.18 6.21
RTN 56.69 5.91 60.14 4.97 59.73 8.11
GPTQ 56.53 5.67 59.54 4.85 56.46 12.56
SQ 55.27 6.34 57.34 5.56 54.51 8.86
AWQ 57.64 5.61 60.86 4.85 61.89 6.94

A: INT8,

SQ+ 56.48 5.78 - 5.12 56.30 7.27

A:8, W:4

W: INT4

AWQ+ 57.16 5.53 60.12 4.80 60.83 6.56
RTN 51.57 9.89 54.74 6.32 41.52 124.48
GPTQ 49.38 8.49 55.52 5.66 43.56 12.87
SQ 45.91 23.54 50.00 8.26 33.16 2088
AWQ 53.92 7.14 56.92 5.93 50.24 16.22

A: MXINT8,

SQ+ 49.21 7.61 - 6.21 40.94 13.82
W: MXINT3

AWQ+ 51.03 6.87 55.84 5.53 49.13 8.88
RTN 32.56 9752 36.55 147.7 32.70 28925
GPTQ 37.85 73.36 46.10 8.57 32.85 525.71
SQ NaN NaN 32.91 9305 34.20 35424
AWQ 37.15 81.52 50.83 8.08 39.18 152.94

A: INT8,

SQ+ NaN NaN - 53.36 32.64 2861

A:8, W:3

W: INT3

AWQ+ 44.02 10.18 51.78 6.23 41.56 27.19

with SmoothQuant and 5.93 with AWQ. Enabling GPTQ improves these scores to 6.21 and 5.53,
respectively, with the best perplexity achieved by enabling both AWQ and GPTQ together.

Granularity. To evaluate the impact of block size on MXINT quantization, we conducted exper-
iments on the Llama2 and Llama3.1 [44] models, using MXINT formats with a block size of 16
instead of the default 128. In this experiment, we applied several quantization algorithms, including
GPTQ, AWQ, and SmoothQuant, to assess their effects under the smaller block size. Our results
indicate trends similar to those observed in previous sections, with MXINT formats continuing to
demonstrate strong performance across various bit-widths. Detailed results of this experiment are
provided in Table 3 of the appendix.

Generalizability. To evaluate whether our findings generalize to other models and datasets, we
conducted similar experiments on the Qwen2 [48] family, measuring perplexity on the C4 [35]

5

Table 2: Perplexity score on C4 and averaged accuracy on eight zero-shot common sense reasoning
tasks for the Qwen2-1.5B and Qwen2-7B models, when quantized to fixed-point and MXINT formats
using different post-training quantization techniques. For the C4 dataset, validation split of the
realnewslike subset is used. 0-shot8 includes ARC-challenge, ARC-easy, BoolQ, HellaSwag,
OBQA, PIQA, SIQA, and WinoGrande tasks. A, W, and RTN denote activation, weight, and round to
nearest, respectively. We used per-channel affine quantization for the fixed-point formats. +: GPTQ
weight quantization is used. ↑ higher is better, ↓: lower is better.

Bit-width Format Method
Qwen2-1.5B Qwen2-7B

0-shot8 C4 0-shot8 C4
(↑) (↓) (↑) (↓)

A:16, W:16 A: FP16, W: FP16 N/A 54.40 12.08 63.45 9.23
RTN 54.43 12.11 63.28 9.26
GPTQ 54.32 12.11 63.17 9.25
SmoothQuant 54.32 12.11 63.33 9.25
AWQ 54.22 12.10 63.25 9.24

A: MXINT8-128,

SmoothQuant+ 54.18 12.10 63.21 9.25
W: MXINT8-128

AWQ+ 54.30 12.10 63.35 9.24
RTN 54.32 12.22 62.79 9.37
GPTQ 54.37 12.21 62.99 9.37
SmoothQuant 54.11 12.22 63.04 9.38
AWQ 53.69 12.24 62.67 9.39

A: INT8,

SmoothQuant+ 54.46 12.21 63.05 9.37

A:8, W:8

W: INT8

AWQ+ 53.62 12.24 62.88 9.39
RTN 52.35 14.19 59.28 13.87
GPTQ 52.71 13.23 62.24 9.73
SmoothQuant 49.33 14.72 61.42 10.54
AWQ 52.23 13.56 61.60 9.83

A: MXINT8-128,

SmoothQuant+ 50.73 13.59 61.19 9.94
W: MXINT4-128

AWQ+ 52.90 13.15 62.13 9.63
RTN 51.52 14.96 51.70 46.64
GPTQ 51.38 13.51 60.88 10.12
SmoothQuant 48.89 16.83 53.82 24.93
AWQ 52.03 13.78 61.69 10.74

A: INT8,

SmoothQuant+ 50.81 14.47 57.42 11.00

A:8, W:4

W: INT4

AWQ+ 51.52 13.43 61.26 9.99
RTN 40.87 49.70 42.82 302.36
GPTQ 42.60 20.54 53.09 12.21
SmoothQuant 37.11 204.84 45.46 29.39
AWQ 45.82 30.98 56.35 13.54

A: MXINT8-128,

SmoothQuant+ 37.98 29.71 48.17 13.47
W: MXINT3-128

AWQ+ 43.60 18.42 58.46 11.26
RTN 34.53 1655 34.41 42055896
GPTQ 37.16 34.76 39.03 25.42
SmoothQuant 32.94 23048 33.26 2096039
AWQ 43.87 37.99 47.51 40.50

A: INT8,

SmoothQuant+ 33.36 509.23 33.06 591.29

A:8, W:3

W: INT3

AWQ+ 43.70 21.13 49.43 16.78

dataset. Table 2 presents the detailed results for the Qwen2-1.5B and Qwen2-7B models. Our
observations align with earlier results from the Llama2, and Llama3.1 models on the WikiText-2
dataset. Specifically, the MXINT format consistently outperforms the INT format at the same bit-
width. Additionally, except for the INT8 case, the best results are obtained by enabling both AWQ
and GPTQ together, confirming their synergistic effect.

Downstream tasks. Similar to previous work [26], we evaluated the accuracy of the quantized
models on eight zero-shot commonsense reasoning tasks, including ARC-easy, ARC-challenge [9],
BoolQ [8], PIQA [5], SIQA [40], HellaSwag [50], OBQA [29], and WinoGrande [39]. Tables 1,
and 2 show the average accuracy across these tasks for the Llama2, Llama3.1, and Qwen2 model
families. Full results are reported in Tables 4, 5, and 6 of the appendix Section.

Overall, downstream tasks tend to be more tolerant and less error-prone compared to language
modeling tasks such as perplexity. Accordingly, for the downstream tasks the performance gap

6

FP16
MXINT8

MXINT8-SQ

INT8

MXINT4-GPTQ
MXINT4-AWQ-GPTQ

INT4-GPTQ
INT4-AWQ-GPTQ

MXINT8

INT8
MXINT4-GPTQ

MXINT4-AWQ-GPTQ

INT4-GPTQ
INT4-AWQ-GPTQ

MXINT3-GPTQ

MXINT3-AWQ-GPTQ

INT3-AWQ-GPTQ

FP16
MXINT8
INT8-SQ-GPTQ

INT8

MXINT4-AWQ-GPTQ

MXINT4-GPTQ

INT4-AWQ-GPTQ

4.50

5.00

5.50

6.00

6.50

7.00

2500 4500 6500 8500 10500 12500 14500

Pe
rp

le
xit

y

Model Parameter Size (MB)

Llama2-7B

Llama2-13B

Llama3.1-8B

Pareto frontiers

Figure 1: Perplexity for the Llama2 and Llama3.1 families when quantized to 8-bit, 4-bit, and 3-bit
MXINT, and INT formats. The Y-axis represents perplexity. The X-axis represents model parameter
size including the additional scale parameters required by the SmoothQuant and AWQ quantization
methods. Note that the GPTQ algorithm does not introduce any additional model parameters during
the inference. A, W, and SQ denote activation, weight, and SmoothQuant. The points corresponding
to the quantized models on Pareto frontiers are indicated by a gray dashed circle.

between the baseline and quantized models across all studied networks are smaller. (See Tables 1,
and 2). For instance, quantizing the Llama2-7B model to MXINT4 yields approximately 99% of the
baseline accuracy without the need to enable additional quantization techniques such as AWQ or
SmoothQuant (Table 1). This indicates that quantized models can retain high accuracy even at lower
bit-widths in downstream tasks.

Despite downstream tasks being less error-prone, in general, our findings are largely consistent with
those from the perplexity experiments. Notably, 8-bit quantization does not require additional quanti-
zation techniques, with simple rounding to the nearest value closely matching baseline performance.
Furthermore, across all models, MXINT consistently outperforms INT at the same bit-width, with
the best accuracy achieved using MXINT formats surpassing that of INT formats. Additionally,
except in the case of 8-bit quantization, AWQ consistently surpasses SmoothQuant. However, unlike
the observation with the perplexity experiments, when quantizing to 4-bit, AWQ alone is typically
sufficient, and adding GPTQ tends to slightly degrade accuracy (Tables 1, and 2). That said, in
cases of more aggressive quantization to INT3, the best results across all three model families, are
still mostly achieved when both AWQ and GPTQ are enabled, highlighting the synergistic effect of
combining these techniques with more restrictive quantizations.

4.3 Pareto frontier Study

The objective of a quantization method is to reduce the model size while preserving its accuracy.
In the experiments conducted in this study, the concept of the Pareto frontier becomes relevant in
determining the most suitable quantization method for each model under a size constraint. A model
is deemed to be on the Pareto frontier if no other model exists with both a smaller size and lower
perplexity. Figure 1 illustrates perplexity of the Llama2 and Llama3.1 families on WikiText-2-test
as a function of model parameter size. Points corresponding to the quantized models on Pareto
frontiers are marked with a gray dashed circle. We observe that aggressive quantization to 3-bit
significantly penalizes performance, leaving none of the 3-bit points on the Pareto frontier. With more
relaxed 4-bit quantization, models appear on the Pareto frontier when either GPTQ is applied (e.g.,
Llama2-13B, INT4) or when GPTQ is combined with AWQ (e.g., Llama2-7B, MXINT4). Lastly, for
8-bit quantization (e.g., Llama2-13B, MXINT8, INT8), none of GPTQ, AWQ, or SmoothQuant is
required to achieve strong performance, as the 8-bit width alone suffices to preserve baseline accuracy
effectively.

7

5 Related Work

Model quantization methods. Quantization is a technique that lowers the bit precision of deep
learning models, effectively reducing model size and accelerating inference. There are two pri-
mary categories of quantization techniques: Quantization-Aware Training (QAT), which leverages
backpropagation to update quantized weights [4, 7, 32, 17, 41, 26], and Post-Training Quantization
(PTQ), which typically requires no additional training. Quantization-aware training methods cannot
easily scale up to quantize giant LLMs. Consequently, PTQ methods are commonly employed for
quantizing LLMs [19, 31, 30, 45, 18, 24, 10]. In this work, we studied the interaction of three PTQ
methods, SmoothQuant [47], AWQ [25], and GPTQ [16].

Large Language Model quantization. With the recent open-source releases of language models
like Llama [44], researchers are actively working on developing cost-effective methods to compress
these large networks for inference. Various approaches have been suggested to tackle the challenges
of quantizing LLMs. ZeroQuant [49] and nuQmm [33] employ per-token and group-wise quantization
schemes for LLMs, requiring customized CUDA kernels. ZeroQuant further proposes layer-wise
knowledge distillation, similar to AdaQuant [18], but the largest evaluated model by both ZeroQuant
and nuQmm has 20B parameters. LLM.int8() identifies activation outliers in a few feature dimensions
as a hindrance to the quantization of larger models, and proposes to preserve those dimensions
in higher precision using a mixed INT8/FP16 decomposition [11]. However, this implementation
results in significant latency overhead, sometimes even slower than FP16 inference. Similarly,
SpQR [12], QUIK [2], and OWQ [20] propose to retain outlier features that are difficult to quantize
in full-precision, while AWQ [25] mitigates the quantization error for the outliers using grid-searched
channel-wise scaling. Additionally, Outlier Suppression [46] tackles activation outliers by utilizing
non-scaling LayerNorm and token-wise clipping. Despite its success with smaller language models
such as BERT [14] and BART [22], it falls short in maintaining accuracy for larger LLMs while
SmoothQuant and GPTQ both preserve the performance of LLMs up to 175B parameters [47, 16].
Lee et al., explored the combined use of AWQ, SmoothQuant, and GPTQ for quantizing LLMs,
focusing solely on fixed-point data types in their study [21]. QuaRot is a novel quantization scheme
that enables end-to-end 4-bit quantization of LLMs including all weights, activations, and the KV
cache. By utilizing Hadamard matrices, QuaRot effectively rotates LLMs to eliminate outliers in the
activations and KV cache of pre-trained models [3].

6 Discussion

In this section, we discuss the synergistic effects of AWQ/SmoothQuant and GPTQ, as well as the
superiority of AWQ over SmoothQuant in quantization to smaller bit-widths (e.g., 4 bits). These
insights are based on an initial hypothesis, and further investigation is needed to qualitatively analyze
these effects. We defer a more in-depth analysis to future work.

Synergistic effect of PTQ algorithms. GPTQ quantizes the weights of different layers to lower
bit-widths by minimizing the mean squared error associated with the weight values. It achieves
this by finding a compressed version of each weight that minimizes the quantization error, ensuring
efficient compression with minimal impact on accuracy. However, when used alone, GPTQ may not
fully address the interaction between quantized weights and activations, particularly in cases where
activations vary significantly due to outliers, potentially leading to accuracy degradation. AWQ and
SmoothQuant, on the other hand, ensure that weights are quantized in a way that takes into account
how they will impact the activations. By aligning weight quantization with activation behavior, they
minimize errors more efficiently. Based on our empirical results (Sections 4.2, and 4.3), we observed
that both AWQ and GPTQ, as well as SmoothQuant and GPTQ, exhibit synergistic effects. This
synergy enables more aggressive quantization (down to 4-bit or lower) with minimal impact on
accuracy, making it highly effective for deploying large models in resource-constrained environments
such as edge devices or real-time applications.

Superiority of AWQ over SmoothQuant. Both SmoothQuant and AWQ aim to address outlier
features that are challenging to quantize, mitigating quantization errors by introducing additional
operations to the network. SmoothQuant achieves this by smoothing out activation outliers, effectively
transferring the quantization difficulty from activations to weights. In contrast, AWQ reduces
quantization error by applying channel-wise scaling to the most salient weights. However, in more

8

aggressive quantization scenarios, such as 4-bit quantization, the process becomes increasingly
challenging. Transferring the quantization difficulty from activations to weights, as SmoothQuant
does, adds extra complexity to the already demanding task of weight quantization. This additional
burden can make SmoothQuant less effective at such low bit-widths. AWQ, by directly managing the
quantization difficulty through careful scaling of weights, proves more advantageous in these cases.
Therefore, AWQ demonstrates superior performance under extreme quantization conditions.

7 Conclusion

To summarize, we demonstrated that for the studied models, quantizations using different MX
formats deliver better perplexity compared to fixed-point formats with the same bit-width when the
per-channel affine quantization scheme is employed. Particularly, for quantization to MXINT8, none
of GPTQ, AWQ, or SmoothQuant are necessary to preserve the baseline accuracy. Notably, we found
that for Llama2 and Llama3.1, when quantized to MX formats, AWQ is superior to SmoothQuant.
Moreover, AWQ and GPTQ are synergistic, especially, with more aggressive quantization to 3-bit.
Throughout the paper, we have shown that by utilizing AWQ, and GPTQ and applying MX formats
we can quantize the Llama2 and Llama3.1 models to 4-bit weights and 8-bit activations, with minimal
perplexity degradation.

8 Limitations

With quantization of LLMs, we make the models accessible to more people, which generally
comes with security risks, such as potential misuse for generating harmful content. This highlights
the need for further investigation into responsible AI practices. On the technical side, due to
space and computational resource constraints, we have only reported results for text generation and
commonsense reasoning tasks with the Llama2, Llama3.1, Qwen2 models up to 13B parameters.
Further investigation of larger models, and broader datasets/tasks remains for future work.

References
[1] Bo Adler, Niket Agarwal, Ashwath Aithal, Dong H Anh, Pallab Bhattacharya, Annika Brundyn,

Jared Casper, Bryan Catanzaro, Sharon Clay, Jonathan Cohen, et al. Nemotron-4 340b technical
report. arXiv:2406.11704, 2024.

[2] Saleh Ashkboos, Ilia Markov, Elias Frantar, Tingxuan Zhong, Xincheng Wang, Jie Ren, Torsten
Hoefler, and Dan Alistarh. QUIK: towards end-to-end 4-bit inference on generative large
language models. arXiv:2310.09259, 2023.

[3] Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Martin Jaggi, Dan
Alistarh, Torsten Hoefler, and James Hensman. QuaRot: Outlier-free 4-bit inference in rotated
llms. arXiv:2404.00456, 2024.

[4] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv:1308.3432, 2013.

[5] Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about phys-
ical commonsense in natural language. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pages 7432–7439, 2020.

[6] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90% chatgpt quality, 2023.

[7] Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalakshmi
Srinivasan, and Kailash Gopalakrishnan. PACT: Parameterized clipping activation for quantized
neural networks. arXiv:1805.06085, 2018.

[8] Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and
Kristina Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions.
arXiv:1905.10044, 2019.

9

[9] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. arXiv:1803.05457, 2018.

[10] Zihao Deng, Xin Wang, Sayeh Sharify, and Michael Orshansky. Mixed-precision quantization
with cross-layer dependencies. arXiv:2307.05657, 2023.

[11] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 (): 8-bit matrix
multiplication for transformers at scale. arXiv:2208.07339, 2022.

[12] Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh
Ashkboos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. SpQR: A sparse-quantized
representation for near-lossless llm weight compression. arXiv:2306.03078, 2023.

[13] Tim Dettmers and Luke Zettlemoyer. The case for 4-bit precision: k-bit inference scaling laws.
In International Conference on Machine Learning, pages 7750–7774, 2023.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. arXiv:1810.04805, 2018.

[15] Don Moon. Accelerating Trillion-Parameter AI Models with NVIDIA Blackwell GPUs and the
GB200 NVL72 Cluster, 2024.

[16] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: Accurate post-training
quantization for generative pre-trained transformers. arXiv:2210.17323, 2022.

[17] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer.
A survey of quantization methods for efficient neural network inference. In Low-Power Com-
puter Vision, pages 291–326. Chapman and Hall/CRC, 2022.

[18] Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner, and Daniel Soudry. Accurate post
training quantization with small calibration sets. In International Conference on Machine
Learning, pages 4466–4475, 2021.

[19] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2704–2713, 2018.

[20] Changhun Lee, Jungyu Jin, Taesu Kim, Hyungjun Kim, and Eunhyeok Park. OWQ: Outlier-
aware weight quantization for efficient fine-tuning and inference of large language models. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages 13355–13364,
2024.

[21] Janghwan Lee, Minsoo Kim, Seungcheol Baek, Seok Hwang, Wonyong Sung, and Jungwook
Choi. Enhancing computation efficiency in large language models through weight and activation
quantization. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pages 14726–14739, 2023.

[22] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed,
Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. BART: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and comprehension. arXiv:1910.13461,
2019.

[23] Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang,
Yanwei Li, Ziwei Liu, and Chunyuan Li. LLaVA-OneVision: Easy visual task transfer.
arXiv:2408.03326, 2024.

[24] Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang,
and Shi Gu. Brecq: Pushing the limit of post-training quantization by block reconstruction.
arXiv:2102.05426, 2021.

[25] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. AWQ:
Activation-aware weight quantization for llm compression and acceleration. arXiv:2306.00978,
2023.

10

[26] Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman
Krishnamoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. SpinQuant-LLM
quantization with learned rotations. arXiv:2405.16406, 2024.

[27] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv:1609.07843, 2016.

[28] Meta. Introducing Llama 3.1: Our most capable models to date., 2024.

[29] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv:1809.02789, 2018.

[30] Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort.
Up or down? adaptive rounding for post-training quantization. In International Conference on
Machine Learning, pages 7197–7206, 2020.

[31] Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and Max Welling. Data-free quantization
through weight equalization and bias correction. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 1325–1334, 2019.

[32] Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart Van Baalen,
and Tijmen Blankevoort. A white paper on neural network quantization. arXiv:2106.08295,
2021.

[33] Gunho Park, Baeseong Park, Se Jung Kwon, Byeongwook Kim, Youngjoo Lee, and Dongsoo
Lee. nuqmm: Quantized matmul for efficient inference of large-scale generative language
models. arXiv:2206.09557, 2022.

[34] Qualcomm. Qualcomm Cloud AI 100 Accelerates Large Language Model Inference by 2x
Using Microscaling (Mx) Formats., 2024.

[35] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of machine learning research, 21(140):1–67, 2020.

[36] Bita Darvish Rouhani, Nitin Garegrat, Tom Savell, Ankit More, Kyung-Nam Han, Ritchie Zhao,
Mathew Hall, Jasmine Klar, Eric Chung, Yuan Yu, Michael Schulte, Ralph Wittig, Ian Bratt,
Nigel Stephens, Jelena Milanovic, John Brothers, Pradeep Dubey, Marius Cornea, Alexander
Heinecke, Andres Rodriguez, Martin Langhammer, Summer Deng, Maxim Naumov, Paulius
Micikevicius, Michael Siu, and Colin Verrilli. Ocp microscaling formats (mx) specification.
Open Compute Project, 2023.

[37] Bita Darvish Rouhani, Daniel Lo, Ritchie Zhao, Ming Liu, Jeremy Fowers, Kalin Ovtcharov,
Anna Vinogradsky, Sarah Massengill, Lita Yang, Ray Bittner, et al. Pushing the limits of
narrow precision inferencing at cloud scale with microsoft floating point. Advances in neural
information processing systems, 33:10271–10281, 2020.

[38] Bita Darvish Rouhani, Ritchie Zhao, Ankit More, Mathew Hall, Alireza Khodamoradi, Summer
Deng, Dhruv Choudhary, Marius Cornea, Eric Dellinger, Kristof Denolf, et al. Microscaling
data formats for deep learning. arXiv:2310.10537, 2023.

[39] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

[40] Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Com-
monsense reasoning about social interactions. arXiv:1904.09728, 2019.

[41] Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng
Zhang, Peng Gao, Yu Qiao, and Ping Luo. OmniQuant: Omnidirectionally calibrated quantiza-
tion for large language models. arXiv preprint arXiv:2308.13137, 2023.

[42] Stability AI. Stable Beluga, 2023.

11

[43] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Alpaca: A strong, replicable instruction-following model,
2023.

[44] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv:2307.09288, 2023.

[45] Peisong Wang, Qiang Chen, Xiangyu He, and Jian Cheng. Towards accurate post-training
network quantization via bit-split and stitching. In International Conference on Machine
Learning, pages 9847–9856, 2020.

[46] Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao Gong, Shanghang Zhang, Qi Zhang,
Fengwei Yu, and Xianglong Liu. Outlier suppression: Pushing the limit of low-bit transformer
language models. Advances in Neural Information Processing Systems, 35:17402–17414, 2022.

[47] Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han.
SmoothQuant: Accurate and efficient post-training quantization for large language models. In
International Conference on Machine Learning, pages 38087–38099, 2023.

[48] An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv:2407.10671,
2024.

[49] Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong
He. ZeroQuant: Efficient and affordable post-training quantization for large-scale transformers.
Advances in Neural Information Processing Systems, 35:27168–27183, 2022.

[50] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
machine really finish your sentence? arXiv:1905.07830, 2019.

12

A Microscaling data format

The Microscaling (MX) data format, initially introduced in 2020 as Microsoft Floating Point (MSFP,
[37]), has since evolved and gained widespread adoption among leading industry players, including
Microsoft, AMD, Intel, Meta, Nvidia, and Qualcomm [38].

The core concept of the MX format is centered around the MX block, where a vector of k numbers
share a single scale (X) while retaining individual elements {Pi}ki=1, as shown in Figure 2. The
actual value for each of the k numbers in the block can be represented as vi = XPi [38]. The data
format for the single scale and the data format for individual elements can be independent of each
other, while the data format for individual elements needs to be consistent across the k elements in
the block [36]. An MX block can be represented in (w + kd) bits, where w is the number of bits for
shared scale X and d is the number of bits for each individual element. Consequently, the MX format
is characterized by three main components:

1. Data type of scale X

2. Data type of elements Pi

3. Scaling block size k

Figure 2: Illustration of an MX block.

The MX format has proven to be highly effective in addressing the challenges of balancing hardware
efficiency, model accuracy, and user experience in machine learning applications. According to
empirical results, 8-bit MX formats can perform inference directly on FP32 pretrained models with
minimal accuracy loss, eliminating the need for additional calibration or finetuning [38]. Furthermore,
when using 6-bit MX formats, the inference accuracy remains close to that of FP32 models, especially
after applying quantization-aware fine-tuning or post-training quantization methods [38]. Remarkably,
the MX format also enables the training of large transformer models using sub-8-bit precision for
weights, activations, and gradients, achieving accuracy comparable to FP32 without requiring changes
to the training process [38].

B Post training quantization algorithms

B.1 GPTQ

GPTQ is a post-training quantization (PTQ) method that uses second-order Hessian information
for weight quantization in LLMs [16]. It employs layer-wise quantization for each layer l in the
network, seeking quantized weights Ŵl that make the outputs (ŴlXl) closely approximate those of
the original weights (WlXl). In other words, GPTQ aims to find [16]:

argminŴl
||WlXl − ŴlXl||22 (1)

13

To solve equation 1, GPTQ quantizes each row of the weight matrix, W, independently, focusing on
a single weight per row at a time. It consistently updates all not-yet-quantized weights to offset the
error introduced by quantizing a single weight. Since the objective function in equation 1 is quadratic,
its Hessian H can be calculated using the following formula, where F denotes the set of remaining
full-precision weights:

HF = 2XF XT
F (2)

Given H, the next to be quantized weight, wq , and the corresponding update of all remaining weights
in F , δF , are given by the following formulas, where quant(w) rounds w to the nearest quantized
value [16]:

wq = argminwq

(wq − quant(wq))
2

[H−1
F]qq

δq = −wq − quant(wq)

[H−1
F]qq

.(H−1
F):,q

(3)

For all rows of W, GPTQ quantizes weights in the same order. This accelerates the process, as
certain computations need to be performed only once for each column rather than once for each
weight. Additionally, the vectorized implementation of GPTQ enables processing multiple rows of
W simultaneously. For more details on the GPTQ algorithm refer to Frantar et al.’s work [16].

B.2 SmoothQuant

SmoothQuant (SQ) is a quantization method that targets both activations and weights of a model [47].
In this approach, the activation of a linear layer is scaled by a per-channel smoothing factor s ∈ RCi

to minimize quantization errors. Simultaneously, the weight of the layer is adjusted in the opposite
direction to maintain the mathematical equivalence of the linear layer:

Y = (Xdiag(s)−1) · (diag(s)W) = X̂Ŵ (4)

In Equation 4, X is the original input activation with outliers, and X̂ = Xdiag(s)−1 is the smoothed
activation. To minimize the quantization error of the input activation, the smoothing factor is
selected such that all channels of the smoothed input activation have the same maximum magnitude.
Accordingly, s is set to:

sj = max(|Xj |), j = 1, 2, ..., Ci (5)

Where Ci is the number of input channels in the input activation and j corresponds to jth input
channel. Note that since the range of activations varies for different input samples, the maximum
value of each channel is estimated using 128 calibration samples from the calibration dataset (see
Section 4 for more details). By dividing the input activation by the the scaling factor of Equation 5,
all channels of the scaled input activation would have the same range, making quantization of the
scaled tensor to be very easy. However, this will migrate the difficulty of the quantization completely
to the weight side of a linear layer. To address this issue, Xiao et al. proposed a scaling formula that
balances the quantization difficulty of activations and weights:

sj = max(|Xj |)α/max(|Wj |)1−α, j = 1, 2, ..., Ci (6)

Where α is a hyper-parameter that controls how much quantization difficulty we want to migrate
from activations to weights. For more details on the SmoothQuant algorithm refer to Xiao et al.’s
work [47].

14

Table 3: Perplexity score on WikiText-2-test for the Llama models, when quantized to MXINT
formats with the block size of 16 using different post-training quantization techniques. A, W, SQ, and
RTN denote activation, weight, SmoothQuant, and round to nearest, respectively. +: GPTQ weight
quantization is used.

Bit-width Format Method Llama2-7B Llama2-13B Llama3.1-8B
A:16, W:16 A:FP16, W:FP16 N/A 5.12 4.57 5.61

RTN 5.12 4.58 5.61
GPTQ 5.12 4.58 5.61
SQ 5.12 4.57 5.61
AWQ 5.12 4.58 5.61

A:MXINT8-16

SQ+ 5.12 4.57 5.61
A:8, W:8 W:MXINT8-16

AWQ+ 5.12 4.57 5.61
RTN 5.40 4.72 6.22
GPTQ 5.41 4.68 5.97
SQ 5.33 4.74 6.19
AWQ 5.30 4.70 6.08

A:MXINT8-16

SQ+ 5.28 4.69 5.99
A:8, W:4 W:MXINT4-16

AWQ+ 5.27 4.68 5.95
RTN 6.58 5.52 10.16
GPTQ 6.84 5.09 7.29
SQ 6.56 5.49 10.54
AWQ 6.28 5.30 8.37

A:MXINT8-16

SQ+ 5.90 5.14 7.35
A:8, W:3 W:MXINT3-16

AWQ+ 5.84 5.09 7.14

B.3 AWQ

Activation-aware Weight Quantization (AWQ), is a weight-only quantization method for LLMs [25].
In this algorithm, a small fraction (i.e., 0.1%-1%) of salient weight channels are scaled up to reduce
their relative quantization error:

Y = XW ≈ XŴ ≈ (X/s)(ˆsW) (7)

In Equation 7, s is a per-channel scaling factor for the salient weights. To determine the salient
weights, AWQ refers to the activation distribution instead of the weight distribution, as weight
channels corresponding to the outlier activations are more salient than other weights. The per-channel
scaling factor is calculated using the following formula:

s = sαX, α ∈ [0, 1] (8)

Where sX is the average magnitude of activation (per-channel), and α is a hyper-parameter which
balances the protection of salient and non-salient channels. For more details on AWQ refer to Lin’s
et al. work [25]

B.4 Complete results of main result tables

In Tables 4, 5 and 6, we present the complete set of downstream accuracy results for the two main
Tables: 1 and 2. We evaluate the accuracy of the Llama2, Llama3.1, and Qwen2 model families on
eight zero-shot commonsense reasoning tasks, including ARC-easy, ARC-challenge [9], BoolQ [8],
PIQA [5], SIQA [40], HellaSwag [50], OBQA [29], and WinoGrande [39]. These experiments
investigate the effects of various quantization techniques—SmoothQuant, GPTQ, and AWQ—across
different MXINT and fixed-point formats, providing a comprehensive view of how these techniques
interact with each other and influence model performance under different quantization settings.

15

Table 4: Accuracy on eight zero-shot common sense reasoning tasks, ARC-challenge, ARC-easy,
BoolQ, HellaSwag, OBQA, PIQA, SIQA, and WinoGrande tasks, for Llama2-7B, and Llama2-13B.
A, W, SQ, and RTN denote activation, weight, SmoothQuant, and round to nearest, respectively. We
used per-channel affine quantization for the fixed-point formats. For the MXINT formats, we used
block size of 128. +: GPTQ weight quantization is used. ↑: higher is better.

Bit-width Format Method
Llama2-7B

ARC-c ARC-e BoolQ HellaS OBQA PIQA SIQA WinoG Avg.
(↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)

A:16,W:16 A:FP16, W:FP16 N/A 43.43 76.30 77.74 57.13 31.40 78.07 46.06 68.98 59.89
RTN 43.69 76.22 77.52 57.07 31.20 78.07 46.42 68.82 59.88
GPTQ 42.92 76.30 77.31 57.07 31.20 77.91 46.06 68.75 59.69
SQ 43.34 76.26 77.46 57.07 31.40 78.02 46.32 69.06 59.87
AWQ 44.03 76.26 77.71 57.17 31.80 77.80 45.91 69.06 59.97

A:MXINT8,

SQ+ 43.34 76.47 77.52 57.24 31.60 77.97 46.01 68.82 59.87
W:MXINT8

AWQ+ 43.52 76.52 77.46 57.13 31.60 78.02 45.85 69.14 59.90
RTN 43.69 76.52 67.98 56.74 31.80 77.69 46.06 67.88 58.54
GPTQ 42.58 76.47 68.47 56.78 31.40 77.26 45.91 69.30 58.52
SQ 42.92 76.77 68.35 56.65 32.60 77.48 46.21 68.51 58.69
AWQ 42.49 76.43 67.37 56.32 31.80 76.71 45.70 68.98 58.23

A:8,

A:INT8,

SQ+ 43.17 76.52 68.41 56.68 32.00 77.53 46.42 68.98 58.71

W:8

W:INT8

AWQ+ 42.24 75.88 67.13 56.41 31.80 77.04 46.01 68.67 58.15
RTN 42.66 74.87 75.47 56.08 32.40 76.93 44.52 68.98 58.99
GPTQ 40.27 72.56 74.71 54.86 31.00 76.33 44.22 67.32 57.66
SQ 40.70 74.03 71.93 54.63 30.20 77.15 44.17 67.88 57.59
AWQ 41.55 73.95 75.11 55.90 31.60 76.99 44.63 67.72 58.43

A:MXINT8,

SQ+ 41.72 73.61 73.12 54.55 30.40 77.58 44.22 67.80 57.88
W:MXINT4

AWQ+ 40.70 73.57 74.31 55.89 30.80 77.48 44.68 68.27 58.21
RTN 41.38 73.15 66.45 55.29 29.80 76.88 43.71 66.85 56.69
GPTQ 40.96 73.19 66.27 54.33 28.80 76.61 44.27 67.80 56.53
SQ 39.16 73.06 68.65 52.09 26.80 74.43 42.53 65.43 55.27
AWQ 41.72 74.83 68.26 54.98 31.20 77.20 44.06 68.82 57.64

A:8,

A:INT8,

SQ+ 39.51 71.63 71.96 53.33 29.60 75.63 43.71 66.46 56.48

W:4

W:INT4

AWQ+ 40.36 74.87 68.29 54.21 30.20 76.77 44.11 68.43 57.16
RTN 33.53 65.07 60.76 48.92 27.80 73.18 40.79 62.51 51.57
GPTQ 30.29 63.47 66.06 44.02 21.00 70.57 40.17 59.51 49.38
SQ 28.50 55.60 56.30 41.30 21.20 67.68 39.00 57.70 45.91
AWQ 34.81 68.06 66.39 50.68 28.20 75.73 42.89 64.64 53.92

A:MXINT8,

SQ+ 31.06 59.76 65.05 44.62 23.00 69.26 39.56 61.40 49.21
W:MXINT3

AWQ+ 31.40 64.94 65.66 46.33 24.40 72.31 41.20 62.04 51.03
RTN 21.25 25.93 38.32 25.78 15.40 51.63 34.24 47.91 32.56
GPTQ 18.86 34.85 57.52 29.94 14.60 58.92 35.06 53.04 37.85
SQ - - - - - - - - -
AWQ 20.73 31.99 57.92 29.07 15.60 55.60 34.80 51.46 37.15

A:8,

A:INT8,

SQ+ - - - - - - - - -

W:3

W:INT3

AWQ+ 23.46 52.78 62.42 36.72 16.20 65.02 38.59 56.99 44.02

Bit-width Format Method
Llama2-13B

ARC-c ARC-e BoolQ HellaS OBQA PIQA SIQA WinoG Avg.
(↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)

A:16,W:16 A:FP16, W:FP16 N/A 48.46 79.42 80.58 60.04 35.20 79.11 47.29 72.30 62.80
RTN 47.87 79.34 80.55 60.08 34.40 79.00 47.08 71.82 62.52
GPTQ 48.12 79.50 80.37 60.03 34.40 79.38 47.08 72.06 62.62
SQ 47.95 79.55 80.67 60.01 35.20 79.16 47.34 71.90 62.72
AWQ 47.95 79.55 80.70 60.18 35.00 79.22 47.49 72.30 62.80

A:MXINT8,

SQ+ - - - - - - - - -
W:MXINT8

AWQ+ 47.61 79.46 80.64 60.13 34.60 79.33 47.44 71.90 62.64
RTN 48.29 78.79 73.06 59.69 34.40 78.29 46.83 72.69 61.50
GPTQ 48.89 79.25 73.06 59.75 34.40 78.29 46.52 72.69 61.61
SQ 48.46 78.91 72.97 59.72 34.60 78.51 46.98 72.30 61.56
AWQ 47.87 79.80 73.30 59.68 34.80 78.51 46.16 72.53 61.58

A:8,

A:INT8,

SQ+ - - - - - - - - -

W:8

W:INT8

AWQ+ 47.70 79.21 73.27 59.61 34.60 78.45 46.57 72.30 61.46
RTN 46.50 78.58 80.76 58.78 34.00 78.24 46.26 71.51 61.83
GPTQ 46.33 78.70 77.09 58.59 35.20 77.91 46.62 71.82 61.53
SQ 44.54 77.10 78.47 58.16 34.60 77.86 45.50 72.22 61.06
AWQ 47.61 78.24 80.34 58.99 34.00 78.84 46.42 72.45 62.11

A:MXINT8,

SQ+ - - - - - - - - -
W:MXINT4

AWQ+ 46.67 78.37 79.88 59.01 33.00 78.56 47.19 71.03 61.71
RTN 45.31 79.12 71.01 58.05 33.20 78.02 45.45 70.96 60.14
GPTQ 43.52 77.61 70.18 57.98 33.80 77.75 45.09 70.40 59.54
SQ 41.30 75.08 73.12 54.52 28.20 75.46 42.73 68.27 57.34
AWQ 46.93 79.04 73.61 58.15 34.40 77.97 45.80 70.96 60.86

A:8,

A:INT8,

SQ+ - - - - - - - - -

W:4

W:INT4

AWQ+ 46.42 78.37 69.66 58.43 33.80 77.58 45.34 71.35 60.12
RTN 38.82 70.58 63.06 52.76 28.60 74.43 41.61 68.03 54.74
GPTQ 38.14 71.51 64.07 52.43 30.20 75.35 43.40 69.06 55.52
SQ 31.83 64.06 66.97 45.32 21.20 70.62 38.64 61.40 50.00
AWQ 40.78 72.81 72.17 54.40 28.40 75.57 41.81 69.38 56.92

A:MXINT8,

SQ+ - - - - - - - - -
W:MXINT3

AWQ+ 37.29 71.68 72.87 52.67 28.20 76.33 41.20 66.46 55.84
RTN 19.45 33.38 56.18 29.15 13.20 55.11 35.11 50.83 36.55
GPTQ 26.45 59.01 63.64 38.94 20.40 64.80 38.33 57.22 46.10
SQ 23.12 25.51 39.45 25.65 13.40 52.45 35.11 48.62 32.91
AWQ 33.70 66.79 63.06 44.65 25.20 70.13 41.10 62.04 50.83

A:8,

A:INT8,

SQ+ - - - - - - - - -

W:3

W:INT3

AWQ+ 33.11 67.55 64.16 46.88 25.60 71.00 41.61 64.33 51.78

16

Table 5: Accuracy on eight zero-shot common sense reasoning tasks, ARC-challenge, ARC-easy,
BoolQ, HellaSwag, OBQA, PIQA, SIQA, and WinoGrande tasks, for Llama3.1-8B. A, W, SQ,
and RTN denote activation, weight, SmoothQuant, and round to nearest, respectively. We used
per-channel affine quantization for the fixed-point formats. For the MXINT formats, we used block
size of 128. +: GPTQ weight quantization is used. ↑: higher is better.

Bit Format Method ARC-c ARC-e BoolQ HellaS OBQA PIQA SIQA WinoG Avg.
Width (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)

A:16, A:FP16, N/A 51.19 81.44 82.05 60.01 33.40 80.03 47.13 73.56 63.60W:16 W:FP16
RTN 50.94 81.78 82.48 60.03 33.40 79.82 46.78 73.48 63.59
GPTQ 50.94 81.73 82.29 60.02 33.00 79.82 47.08 73.95 63.60
SQ 51.11 81.36 82.14 60.09 33.60 80.14 46.83 73.32 63.57
AWQ 51.11 81.44 82.45 60.02 33.40 80.09 47.29 73.48 63.66

A:MXINT8,

SQ+ 50.94 81.36 82.11 60.05 33.80 79.71 46.72 73.88 63.57
W:MXINT8

AWQ+ 51.37 81.23 82.45 60.01 33.20 79.98 47.08 73.16 63.56
RTN 50.26 81.94 79.08 59.43 34.20 79.54 47.03 72.30 62.97
GPTQ 50.17 81.52 79.30 59.54 34.40 79.54 46.88 72.61 63.00
SQ 50.51 81.99 79.17 59.49 33.80 79.43 47.49 74.11 63.25
AWQ 50.09 81.52 75.35 59.44 34.40 80.09 46.52 74.35 62.72

A:8,

A:INT8,

SQ+ 50.43 81.40 78.93 59.45 35.00 79.76 47.13 73.01 63.14

W:8

W:INT8

AWQ+ 49.15 81.90 74.83 59.37 34.20 80.41 46.93 73.40 62.52
RTN 44.80 76.52 80.61 57.63 32.20 77.91 45.85 72.22 60.97
GPTQ 45.82 77.53 78.50 57.28 31.60 78.40 46.26 71.11 60.81
SQ 46.42 77.74 74.25 55.55 28.80 77.69 45.60 70.09 59.52
AWQ 47.27 79.55 78.69 58.22 31.60 79.05 46.78 71.03 61.52

A:MXINT8,

SQ+ 45.48 77.31 75.75 56.56 31.80 77.97 46.52 69.30 60.09
W:MXINT4

AWQ+ 46.93 77.90 78.53 57.95 30.80 78.67 46.88 71.74 61.18
RTN 45.22 75.67 76.97 54.89 31.40 77.86 45.34 70.48 59.73
GPTQ 42.49 74.41 73.21 52.29 29.40 71.65 41.10 67.17 56.46
SQ 38.31 70.58 66.21 50.80 26.00 73.72 43.50 66.93 54.51
AWQ 47.87 79.34 77.98 57.70 34.60 78.89 47.39 71.35 61.89

A:8,

A:INT8,

SQ+ 40.87 72.10 68.53 51.52 29.00 75.46 44.11 68.82 56.30

W:4

W:INT4

AWQ+ 45.56 79.04 76.67 57.66 31.80 78.35 46.32 71.27 60.83
RTN 24.23 45.12 54.92 35.12 18.20 62.51 37.92 54.14 41.52
GPTQ 25.09 48.36 57.19 39.67 18.40 64.58 38.13 57.06 43.56
SQ 19.20 27.95 39.30 26.86 13.40 54.79 33.67 50.12 33.16
AWQ 34.22 64.10 58.72 45.95 23.80 71.71 42.17 61.25 50.24

A:MXINT8,

SQ+ 20.48 41.50 60.09 36.91 16.20 60.72 37.92 53.67 40.94
W:MXINT3

AWQ+ 31.48 61.36 57.77 47.17 22.60 69.37 40.84 62.43 49.13
RTN 19.62 27.02 38.72 26.09 12.00 54.95 34.49 48.70 32.70
GPTQ 18.60 26.94 38.90 26.75 13.40 53.92 33.06 51.22 32.85
SQ 22.27 25.34 46.18 25.58 13.20 53.10 35.36 52.57 34.20
AWQ 20.39 40.15 60.98 28.93 16.20 60.01 35.93 50.83 39.18

A:8,

A:INT8,

SQ+ 19.97 26.60 38.93 26.28 15.20 52.12 33.52 48.54 32.64

W:3

W:INT3

AWQ+ 21.67 47.18 60.80 32.18 16.20 61.75 37.51 55.17 41.56

17

Table 6: Accuracy on eight zero-shot common sense reasoning tasks, ARC-challenge, ARC-easy,
BoolQ, HellaSwag, OBQA, PIQA, SIQA, and WinoGrande tasks, for Qwen2-1.5B, and Qwen2-7B.
A, W, SQ, and RTN denote activation, weight, SmoothQuant, and round to nearest, respectively. We
used per-channel affine quantization for the fixed-point formats. For the MXINT formats, we used
block size of 128. +: GPTQ weight quantization is used. ↑: higher is better.

Bit-width Format Method
Qwen2-1.5B

ARC-c ARC-e BoolQ HellaS OBQA PIQA SIQA WinoG Avg.
(↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)

A:16,W:16 A:FP16, W:FP16 N/A 33.62 66.12 72.78 48.64 27.00 75.30 45.80 65.90 54.40
RTN 33.53 66.33 72.39 48.51 27.00 75.68 45.96 66.06 54.43
GPTQ 33.62 66.20 72.29 48.51 26.20 75.63 46.16 65.98 54.32
SQ 33.19 66.29 72.29 48.63 26.00 75.68 45.75 66.69 54.32
AWQ 33.45 66.79 72.02 48.64 26.20 75.57 45.85 65.27 54.22

A:MXINT8,

SQ+ 33.36 66.04 71.74 48.71 26.60 75.73 45.55 65.75 54.18
W:MXINT8

AWQ+ 32.94 66.25 72.29 48.55 27.20 75.14 46.11 65.90 54.30
RTN 33.79 67.72 72.29 48.02 27.00 74.54 46.83 64.40 54.32
GPTQ 33.53 66.88 71.90 48.19 27.40 75.24 46.21 65.59 54.37
SQ 33.36 66.41 72.23 48.02 26.00 74.97 46.37 65.51 54.11
AWQ 33.70 67.38 67.00 47.75 27.40 74.76 46.67 64.88 53.69

A:8,

A:INT8,

SQ+ 33.87 66.96 72.05 48.05 26.60 74.37 46.93 66.85 54.46

W:8

W:INT8

AWQ+ 33.11 67.34 66.97 47.85 27.60 74.86 46.72 64.48 53.62
RTN 32.00 65.07 69.17 46.29 26.20 73.01 46.01 61.09 52.35
GPTQ 33.96 67.68 65.84 46.71 24.80 73.99 45.24 63.46 52.71
SQ 30.03 59.13 53.24 45.52 26.80 73.61 44.42 61.88 49.33
AWQ 31.66 62.25 70.80 46.88 25.60 73.67 44.93 62.04 52.23

A:MXINT8,

SQ+ 30.29 60.48 67.92 45.38 24.00 72.91 42.73 62.12 50.73
W:MXINT4

AWQ+ 31.66 65.57 72.14 46.90 24.80 74.05 45.34 62.75 52.90
RTN 30.89 65.19 67.92 45.27 25.00 72.47 42.73 62.67 51.52
GPTQ 32.68 63.51 67.80 45.74 24.20 71.82 43.81 61.48 51.38
SQ 28.07 59.97 66.79 43.22 21.80 70.46 41.04 59.75 48.89
AWQ 33.02 64.27 65.20 45.71 26.00 73.83 45.75 62.43 52.03

A:8,

A:INT8,

SQ+ 30.89 63.26 67.58 43.77 24.80 71.55 43.35 61.33 50.81

W:4

W:INT4

AWQ+ 31.40 59.18 69.30 45.93 24.60 72.69 43.14 65.90 51.52
RTN 24.66 40.78 46.64 36.63 20.20 64.58 38.79 54.70 40.87
GPTQ 25.43 47.22 50.64 37.95 20.20 64.91 37.92 56.51 42.60
SQ 21.08 36.70 54.40 30.08 15.20 55.88 34.14 49.41 37.11
AWQ 27.22 55.30 63.30 40.42 17.80 67.95 38.33 56.20 45.82

A:MXINT8,

SQ+ 20.65 35.77 51.53 33.36 14.60 58.87 36.44 52.64 37.98
W:MXINT3

AWQ+ 25.94 45.50 55.66 40.25 20.40 67.95 37.00 56.12 43.60
RTN 20.14 27.65 49.14 26.50 16.00 51.31 34.03 51.46 34.53
GPTQ 21.84 35.23 44.92 32.16 15.80 60.12 35.77 51.46 37.16
SQ 21.59 26.26 43.27 26.12 13.20 52.56 33.42 47.12 32.94
AWQ 25.60 49.49 62.69 37.69 18.40 63.76 38.59 54.70 43.87

A:8,

A:INT8,

SQ+ 21.08 25.55 44.62 26.26 13.00 52.29 33.93 50.20 33.36

W:3

W:INT3

AWQ+ 23.46 46.04 59.17 38.90 17.20 66.10 40.02 58.72 43.70

Bit-width Format Method
Qwen2-7B

ARC-c ARC-e BoolQ HellaS OBQA PIQA SIQA WinoG Avg.
(↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)

A:16,W:16 A:FP16, W:FP16 N/A 48.81 79.21 84.83 59.32 34.80 79.82 48.52 72.30 63.45
RTN 48.38 79.12 84.65 59.18 34.60 79.60 48.62 72.06 63.28
GPTQ 48.21 79.63 85.05 59.12 34.00 79.60 48.36 71.43 63.17
SQ 49.15 79.25 84.83 59.07 34.20 79.65 48.67 71.82 63.33
AWQ 48.38 79.34 84.68 59.32 34.20 79.92 48.62 71.51 63.25

A:MXINT8,

SQ+ 48.12 79.21 84.92 59.12 34.00 79.71 48.46 72.14 63.21
W:MXINT8

AWQ+ 48.38 79.63 84.77 59.25 34.20 79.92 48.67 71.98 63.35
RTN 48.04 79.67 85.08 58.00 33.20 78.89 47.39 72.06 62.79
GPTQ 48.89 79.34 84.50 57.90 34.00 79.00 48.06 72.22 62.99
SQ 48.63 80.22 85.08 57.91 33.60 79.33 49.03 70.56 63.04
AWQ 48.55 79.55 83.88 57.42 33.40 78.78 48.36 71.43 62.67

A:8,

A:INT8,

SQ+ 48.55 79.21 84.65 57.86 34.20 79.00 48.16 72.77 63.05

W:8

W:INT8

AWQ+ 48.89 79.38 83.91 57.75 33.20 78.73 48.72 72.45 62.88
RTN 43.86 74.20 82.20 51.83 31.60 75.63 48.93 65.98 59.28
GPTQ 48.72 80.26 82.60 57.27 30.40 78.56 48.36 71.74 62.24
SQ 47.61 77.86 82.05 56.23 32.00 78.67 47.85 69.06 61.42
AWQ 46.50 76.01 82.97 58.00 32.00 78.78 48.62 69.93 61.60

A:MXINT8,

SQ+ 44.54 77.82 82.66 56.45 31.60 77.75 48.31 70.40 61.19
W:MXINT4

AWQ+ 47.01 78.11 83.52 58.00 30.80 78.84 48.98 71.82 62.13
RTN 37.80 65.45 72.60 36.48 30.80 69.04 45.04 56.43 51.70
GPTQ 44.20 76.43 82.35 55.44 31.60 77.48 48.21 71.35 60.88
SQ 39.68 66.75 73.33 44.00 27.60 72.25 43.14 63.77 53.82
AWQ 47.87 78.16 78.53 55.58 34.00 78.35 49.64 71.43 61.69

A:8,

A:INT8,

SQ+ 39.51 70.50 79.33 51.85 29.60 74.92 47.08 66.61 57.42

W:4

W:INT4

AWQ+ 46.76 78.16 81.13 56.11 30.80 77.97 47.59 71.59 61.26
RTN 27.39 51.35 61.50 28.44 24.40 56.47 40.58 52.41 42.82
GPTQ 35.24 63.09 64.31 51.07 28.40 74.32 44.17 64.17 53.09
SQ 26.88 52.06 62.17 38.88 23.20 65.61 38.38 56.51 45.46
AWQ 43.34 72.81 69.51 52.82 29.00 75.63 45.39 62.27 56.35

A:MXINT8,

SQ+ 29.44 55.18 63.33 45.79 23.40 67.95 37.92 62.35 48.17
W:MXINT3

AWQ+ 42.49 75.13 77.55 53.28 29.00 76.50 46.06 67.64 58.46
RTN 21.76 25.51 53.30 25.20 15.20 51.36 32.86 50.12 34.41
GPTQ 22.70 39.69 56.21 34.68 15.40 57.56 35.47 50.51 39.03
SQ 21.76 25.38 41.65 25.83 15.40 52.56 32.65 50.83 33.26
AWQ 32.59 55.51 63.12 39.66 24.00 66.70 39.56 58.96 47.51

A:8,

A:INT8,

SQ+ 21.93 25.63 40.46 26.13 14.80 51.36 34.49 49.64 33.06

W:3

W:INT3

AWQ+ 31.14 57.66 65.32 42.65 23.80 68.28 43.81 62.75 49.43

18

	Introduction
	Quantization algorithms adaptation methodology
	GPTQ adaptation to MX format
	SmoothQuant and AWQ adaptation to MX format

	Challenges in studying PTQ algorithms interactions
	Experiments
	Setup.
	Main results
	Pareto frontier Study

	Related Work
	Discussion
	Conclusion
	Limitations
	Microscaling data format
	Post training quantization algorithms
	GPTQ
	SmoothQuant
	AWQ
	Complete results of main result tables

