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Abstract

QLoRA reduces the memory-cost of fine-tuning a large language model (LLM)
with LoRA by quantizing the base LLM. However, quantization introduces quan-
tization errors that negatively impact model performance after fine-tuning. In
this paper we introduce QuAILoRA, a quantization-aware initialization for LoRA
that mitigates this negative impact by decreasing quantization errors at initial-
ization. Our method spends a small amount of computational overhead to com-
pute this quantization-aware initialization, without increasing the memory-cost
of fine-tuning. We evaluate our method on several causal language modeling and
downstream evaluation tasks using several different model sizes and families. We
observe that almost all LLMs fined-tuned with QuAILoRA achieve better valida-
tion perplexity. When evaluated on downstream tasks, we find that QuAILoRA
yields improvements proportional to the negative effect of quantization error. On
average, applying QuAILoRA to 4-bit QLoRA models yields 75% of the validation
perplexity decrease and 86% of the downstream task accuracy increase as doubling
the quantization precision to 8-bit, without increasing GPU memory utilization
during fine-tuning.

1 Introduction

Fine-tuning state-of-the-art large language models (LLMs) requires a large amount of computational
resources due to their increasingly large size. QLoRA [Dettmers et al., 2023], a quantized version
of LoRA [Hu et al., 2021], reduces the memory-cost of fine-tuning sufficiently to fine-tune LLMs
on the order of 70B parameters on a single GPU, making fine-tuning much more convenient and
accessible. Although quantization greatly reduces memory costs, it also introduces quantization
errors that negatively impact the task performance of the model after fine-tuning. In this paper we
propose Quantization-Aware Initialization for LoRA (QuAILoRA), a method for initializing the
LoRA matrices of a QLoRA model to reduce quantization errors. When fine-tuning a model with
QLoRA, each parameter matrix of the fine-tuned model takes the form Q+AB⊤, where Q is the
quantization of the base parameter matrix W and AB⊤ is the low-rank LoRA update. Typically the
matrix A is initialized random normal and the matrix B is initialized zero so that the input-output
mapping of the QLoRA model is the same as the quantized base model at initialization. Instead, we
propose spending a small amount of computational overhead to find an initialization for the LoRA
matrices so that the input-output mapping of the QLoRA model is more similar to the full-precision
base model at initialization.
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We conduct an extensive set of experiments and establish that QuAILoRA (1) is robust to the choice
of calibration set; (2) yields better validation perplexity than the baseline initialization across many
model families and sizes on several causal LM tasks; (3) yields consistently positive results on
downstream task evaluations for smaller, lower-precision quantized LLaMA models. Additionally,
we establish that our method is increasingly effective with larger LoRA ranks and does not appear
to affect the rate of convergence of fine-tuning compared to the baseline initialization. QuAILoRA
provides the largest benefit when the negative effect of quantization error is significant.

2 Related Work

Our method improves the performance of QLoRA, a parameter-efficient fine-tuning (PEFT) technique,
but many other PEFT methods exist in the literature, including adapter-based strategies [Houlsby
et al., 2019], BitFit [Zaken et al., 2021], diff-pruning [Guo et al., 2020], NAS for PEFT [Lawton
et al., 2023], and AdaLoRA [Zhang et al., 2023]. These methods and others can be combined to form
PEFT design spaces [He et al., 2021].

We propose a method for computing a quantization-aware initialization of the trainable parameters of
a QLoRA model [Hu et al., 2021, Dettmers et al., 2023]. Our method exploits the special low-rank
structure of the updates to efficiently compute such an initialization. However, it is possible our
method could be extended to other reparamterization-based PEFT strategies that exist in the literature,
such as Kroncker-product fine-tuning updates [He et al., 2022].

We seek a quantization-aware initialization of the trainable LoRA parameters of a QLoRA model that
reduces quantization errors between the QLoRA model and the full-precision model. In order to do
so, we build off techniques from the literature on post-training quantization, such as GPT-Q [Frantar
et al., 2022], OPS [Frantar and Alistarh, 2022], Bit-stitching [Wang et al., 2020], and QuIP [Chee
et al., 2023]. Like GPT-Q, we optimize a calibrated quantization objective to decrease quantization
errors on a target calibration dataset. Our method is similar in strategy to other recent methods in the
literature such as LQ-LoRA [Guo et al., 2023], LoftQ [Li et al., 2023], and ApiQ [Liao and Monz,
2024].

3 Method

3.1 Background and notation

LoRA [Hu et al., 2021] is a parameter-efficient fine-tuning method that fine-tunes a model by learning
a low-rank update AB⊤ for each parameter matrix W , where W is an m× n matrix, A is an m× r
matrix, and B is an n × r matrix, where r is the user-specified LoRA rank. After fine-tuning, the
parameter matrix in the fine-tuned LoRA model is W +AB⊤. In contrast, QLoRA [Dettmers et al.,
2023] fine-tunes a quantized version of the model with LoRA so that the parameter matrix in the
fine-tuned QLoRA model is Q+AB⊤, where Q is the quantization of W .

Typically, A is initialized random normal and B is initialized zero. We refer to this as the "baseline
initialization".

3.2 Calibrated quantization

To find a quantization-aware initialization for the LoRA matrices A and B, we minimize a calibrated
quantization objective that aims to keep the activations of the QLoRA model close to those of the
full-precision base model on a given calibration dataset at initialization. For each parameter matrix
W , we propose initializing the LoRA matrices A and B by minimizing a calibrated quantization
objective, defined

min
A,B

1

2
∥(W − (Q+AB⊤))X∥2F , (1)

where Q is the quantization of W , A and B are the real (stored in high-precision) LoRA matrices,
∥ · ∥F is the Frobenius norm, and X is an n× s real (stored in high-precision) matrix consisting of
the input activations of the full-precision base model to the parameter matrix W on a calibration

2



dataset of s examples. We minimize this objective with respect to A and B independently for each
parameter matrix W in the model before proceeding to fine-tune as usual with QLoRA.

The samples used for the calibration dataset may come from the training data of the task that we plan
to fine-tune on or from another source.

3.3 Uncalibrated quantization

A related objective that we will make repeated reference to is the uncalibrated quantization objective,
which does not use a calibration dataset or matrix of input activations X and which instead aims to
keep the weights, rather than the activations, of the QLoRA model close to those of the full-precision
base model at initialization. The uncalibrated quantization objective is defined

min
A,B

1

2
∥(W − (Q+AB⊤))∥2F . (2)

Note that if the input activations for the parameter matrix W are uncorrelated, so that XX⊤ = c · I for
some scalar c, then optimizing the calibrated and uncalibrated quantization objectives are equivalent.
However, we find that initializing A and B to minimize this uncalibrated quantization objective is
ineffective for improving the performance of QLoRA over the baseline initialization.

3.4 Optimization

To minimize the calibrated quantization objective with respect to A and B, we propose a simple
alternating optimization algorithm. To begin the optimization, we initialize A and B by minimizing
the uncalibrated quantization objective. This optimization problem is solved by computing the SVD
of the parameter quantization error W −Q:

W −Q = UΣV ⊤. (3)

Let Σr be the diagonal matrix consisting of the r largest singular values of W −Q, and let Ur and
Vr be matrices consisting of the corresponding top left and right singular vectors, respectively. Then
we initialize

A = Ur

√
Σr B = Vr

√
Σr. (4)

After initializing A and B, our algorithm proceeds to optimize the calibrated quantization objective
alternately over A and B. Define the activation correlation matrix H := XX⊤. Then the updates for
A and B each involve solving an r × r linear system:

A := (W −Q)HB⊤(BHB⊤)−1 (5)

B := (A⊤A)−1A⊤(W −Q) (6)

Since r is small, typically on the order of 64, these linear systems are computationally inexpensive to
solve. Note that to compute these updates, we only need to compute and store the n× n activation
correlation matrix H rather than the n× s matrix of input activations X , which is typically much
larger.

In all our experiments with our method we use s = 2000 calibration samples (similar to Frantar et al.
[2022]) and execute 20 steps of alternating optimization, so that A and B are each updated 20 times.

4 Experiments

We compare our method against a QLoRA baseline, quantized to either 4-bit or 8-bit precision, that
uses the baseline initialization: A random normal and B zero. Whenever we fine-tune a QLoRA
model, we use learning rate 2 × 10−4 and fine-tune for one epoch using total batch size of 16.
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Fine-tuned →
Calibrated ↓ alpaca chip2 s-i rlhf

alpaca 6.94 6.04 3.58 8.36
chip2 6.95 6.04 3.56 8.35

s-i 6.94 6.04 3.58 8.36
rlhf 6.95 6.05 3.58 8.35

QLoRA 4-bit 7.02 6.13 3.65 8.43
QLoRA 8-bit 6.87 6.01 3.57 8.35

Table 1: Affect of calibration dataset choice on validation perplexity after fine-tuning for 4-bit models,
averaged across six LLMs. We observe that the choice of calibration dataset does not significantly
affect validation perplexity after fine-tuning.

We perform quantization using the BitsAndBytes library [Dettmers et al., 2022a,b], using double
quantization (quantization of the affine quantization scaling constants) and the NormalFloat4 (NF4)
data type for 4-bit quantization. This quantization configuration makes quantization errors small,
even before applying our method. In all experiments, we use LoRA α = 16, gradient accumulation,
warm-up ratio 0.03, and optimize using the AdamW optimizer during fine-tuning.

We evaluate our method on publicly available LLMs across four different LLM families: LLaMA
[Touvron et al., 2023], OPT [Zhang et al., 2022], BLOOM [Scao et al., 2022], and Pythia [Biderman
et al., 2023]. We use publicly available causal language modeling datasets for calibration, training,
and evaluation: Alpaca [Taori et al., 2023], Unified-Chip2 [LAION, 2023], Self-Instruct [Wang
et al., 2022], HH-RLHF [Bai et al., 2022], and SlimOrca [Lian et al., 2023]. Unless stated explicitly
otherwise, we use LoRA rank r = 64 and fine-tune for 1000 steps, except for Pythia-70m, which we
fine-tune for 10k steps.

4.1 Choice of calibration set

First we evaluate the effect of the choice of the calibration dataset on performance after fine-tuning. In
each experiment, we calibrate and/or fine-tune on Alpaca, Unified-Chip2, Self-Instruct, or HH-RLHF.
For each choice of calibration dataset and fine-tuning dataset, we report the validation perplexity
after fine-tuning, averaged over six LLMs: Pythia-12b, Pythia-410m, Pythia-70m, BLOOM-3b,
BLOOM-560m, and LLaMa-13b.

The results are in Table 1. For comparison, for each fine-tuning dataset we include the average
validation perplexity after fine-tuning for the 4-bit and 8-bit baseline QLoRA models. We observe
that the choice of calibration dataset does not significantly affect task performance after fine-tuning:
the difference in performance between our method and the 4-bit and 8-bit QLoRA baselines for any
calibration dataset choice is much larger than the difference between the performance of our method
with different calibration dataset choices. We conclude that our method is robust to the choice of
calibration dataset.

4.2 Perplexity after fine-tuning

Here we compare the validation perplexity of 4-bit and 8-bit QLoRA models initialized with our
method versus the baseline initialization after fine-tuning. Each QuAILoRA model in this section is
calibrated on Alpaca.

The average validation perplexity after fine-tuning on Alpaca, Unified-Chip2, Self-Instruct, or HH-
RLHF is in Table 2a, and a breakdown of this average by task is in Appendix Table 4. Results for the
8-bit OPT models are omitted due to errors encountered while fine-tuning these models using the
BitsAndBytes and peft libraries. We observe that in the vast majority of cases, fine-tuning a 4-bit or
8-bit QLoRA model from our initialization achieves lower validation perplexity than fine-tuning from
the baseline initialization. In a small number of cases, the model initialized with our method achieves
worse validation perplexity compared to the baseline initialization, which we present as failure cases.

In most cases, the 4-bit QuAILoRA model outperforms the 4-bit QLoRA baseline and underperforms
the 8-bit QLoRA baseline. We can use the results in Table 2a to compare the decrease in validation
perplexity yielded by applying our method to a 4-bit QLoRA model versus doubling the quantization
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Table 2: Validation perplexity results

Model Bits Method Avg.
LLaMA-7b 4 QLoRA 3.51
LLaMA-7b 4 Ours 3.49
LLaMA-7b 8 QLoRA 3.49
LLaMA-7b 8 Ours 3.48

LLaMA-13b 4 QLoRA 3.33
LLaMA-13b 4 Ours 3.32
LLaMA-13b 8 QLoRA 3.32
LLaMA-13b 8 Ours 3.31
LLaMA-30b 4 QLoRA 3.30
LLaMA-30b 4 Ours 3.30
LLaMA-30b 8 QLoRA 3.31
LLaMA-30b 8 Ours 2.29

OPT-13b 4 QLoRA 3.77
OPT-13b 4 Ours 3.71
OPT-30b 4 QLoRA 3.66
OPT-30b 4 Ours 3.60

BLOOM-560m 4 QLoRA 6.84
BLOOM-560m 4 Ours 6.73
BLOOM-560m 8 QLoRA 6.73
BLOOM-560m 8 Ours 6.76

BLOOM-3b 4 QLoRA 4.82
BLOOM-3b 4 Ours 4.75
BLOOM-3b 8 QLoRA 4.78
BLOOM-3b 8 Ours 4.76
Pythia-70m 4 QLoRA 10.98
Pythia-70m 4 Ours 10.80
Pythia-70m 8 QLoRA 10.72
Pythia-70m 8 Ours 10.69

Pythia-410m 4 QLoRA 6.73
Pythia-410m 4 Ours 6.67
Pythia-410m 8 QLoRA 6.57
Pythia-410m 8 Ours 6.54
Pythia-12b 4 QLoRA 5.14
Pythia-12b 4 Ours 5.11
Pythia-12b 8 QLoRA 5.09
Pythia-12b 8 Ours 5.08

(a) Validation perplexity after fine-tuning various LLMs on four
causal language modeling tasks, with and without QuAILoRA. Our
method provides a moderate improvement over the baseline in the
vast majority of cases.

Model Gap Closed
LLaMA-7b 100%

LLaMA-13b 61%
LLaMA-30b N/A

OPT-13b N/A
OPT-30b N/A

BLOOM-560m 96%
BLOOM-3b 100%
Pythia-70m 69%

Pythia-410m 37%
Pythia-12b 64%

Avg. 75%
(b) The gap closed in validation perplexity
after fine-tuning between QLoRA 4-bit and
QLoRA 8-bit quantization by QuAILoRA.
The result for LLaMA 30b is omitted be-
cause the 8-bit model underperforms the 4-bit
model. The results for OPT 13b and 30b are
omitted because we were not able to generate
results for 8-bit quantization.

precision of the 4-bit QLoRA model to 8-bit. For each model, we can compute the gap in average
validation perplexity closed by our method as the difference in average validation perplexity between
the 4-bit QLoRA and QuAILoRA models, divided by the difference in average validation perplexity
between the 4-bit and 8-bit QLoRA models, capping the computed ratio at 1. The results of this
analysis are in Table 2b. We exclude LLaMA-30b from this analysis, since we observed the 8-bit
baseline model underperform the 4-bit baseline on average for this model. We also exclude the
OPT-13b and OPT-30b LLMs since we could not generate results for the 8-bit versions of these
models. Averaging across the other models, the average gap in perplexity between 4-bit and 8-bit
quantization closed by applying our method to the 4-bit QLoRA models is 75%. We conclude that
applying our method to 4-bit quantized QLoRA models yields approximately 75% of the decrease
in validation perplexity achieved by doubling the quantization precision, without increasing GPU
memory utilization during fine-tuning.
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Table 3: Downstream Task Results

Model Bits Method Avg.
LLaMA-7b 4 QLoRA 62.1
LLaMA-7b 4 Ours 62.8
LLaMA-7b 8 QLoRA 63.0
LLaMA-7b 8 Ours 63.1

LLaMA-13b 4 QLoRA 65.4
LLaMA-13b 4 Ours 65.8
LLaMA-13b 8 QLoRA 65.8
LLaMA-13b 8 Ours 65.7

(a) Downstream task accuracy averaged across 7
downstream tasks for LLaMA models fine-tuned
on Alpaca.

Model Gap Closed
LLaMA-7b 74%

LLaMA-13b 100%
(b) The gap in average accuracy between 4-bit and
8-bit QLoRA models closed by QuAILoRA for
models fine-tuned on Alpaca.

Model Bits Method Avg.
LLaMA-7b 4 QLoRA 63.2
LLaMA-7b 4 Ours 63.9
LLaMA-7b 8 QLoRA 63.8
LLaMA-7b 8 Ours 63.9

LLaMA-13b 4 QLoRA 66.7
LLaMA-13b 4 Ours 67.0
LLaMA-13b 8 QLoRA 67.2
LLaMA-13b 8 Ours 67.1

(c) Downstream task accuracy averaged across 7
downstream tasks for LLaMA models fine-tuned
on SlimOrca.

Model Gap Closed
LLaMA-7b 89%

LLaMA-13b 84%
(d) The gap in average accuracy between 4-bit and
8-bit QLoRA models closed by QuAILoRA for
models fine-tuned on SlimOrca.

We observe that in the LLaMA family of models, quantization error does not appear to significantly
negatively affect validation perplexity after fine-tuning: the difference in validation perplexity after
fine-tuning between the 4-bit and 8-bit baseline QLoRA models is small. Since our method improves
performance by reducing quantization error, we observe that the gain in performance provided by our
method over the baselines for the LLaMA models is proportionately small. For the other families, the
difference in performance between the 4-bit and 8-bit baselines is significant enough for our method
to provide a larger advantage over the baselines.

From these results, we conclude that QuAILoRA reduces validation perplexity after fine-tuning on
average, proportional to the negative affect of quantization error.

4.3 Performance on downstream tasks

Here we compare how LLaMA models fine-tuned with QuAILoRA versus QLoRA on Alpaca or
SlimOrca perform on seven downstream tasks: Arc-Challenge (Arc-C) [Clark et al., 2018], Arc-
Easy (Arc-E), BoolQ [Clark et al., 2019], HellaSwag (HS) [Zellers et al., 2019], OpenBookQA
(OBQA) [Mihaylov et al., 2018], PIQA [Bisk et al., 2020], and WinoGrande (WinoG) [Keisuke et al.,
2019]. We use the EleutherAI LM Evaluation Harness [Gao et al., 2021] for evaluation. For Alpaca
experiments, we calibrate on Alpaca and fine-tune for one epoch. For SlimOrca experiments, we
calibrate on SlimOrca and fine-tune on a random size-10000 subset of SlimOrca.

The average accuracy achieved across the evaluation tasks is in Tables 3a and 3c, and a breakdown of
this average by task is in Appendix Table 5. The gap in accuracy between 4-bit and 8-bit quantization
closed by applying our method to each 4-bit model is computed in Tables 3b and 3d. We compute the
gap closed for the downstream task experiments in the same way as for the perplexity experiments in
the previous subsection. Averaged over all the downstream task experiments, the average gap closed
by our method is approximately 86%. We conclude that our method improves the downstream task
performance of QLoRA on average, and that applying our method to 4-bit quantized QLoRA models
yields approximately 86% of the increase in downstream task performance achieved by doubling the
quantization precision, without increasing GPU memory utilization during fine-tuning.
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Figure 1: Effect of LoRA rank on validation perplexity after fine-tuning 4-bit models, averaged
across six 4-bit LLMs and 4 causal language modeling tasks. Increasing the LoRA rank results in a
continual decrease in average validation perplexity when initializing with our method, albeit with
diminishing returns. In contrast, increasing the LoRA rank does not significantly affect performance
when using the baseline initialization. We plot results for Pythia-70m separately (not included in the
six-model average) as this was the only baseline to show a strong decrease in validation perplexity
with increasing LoRA rank.

4.4 Effect of LoRA rank

Here we examine the effect of the choice of the LoRA rank hyperparameter r on performance after
fine-tuning. We expect that using larger r will allow our initialization of A and B to reduce a greater
part of the quantization error and result in better performance after fine-tuning. A plot illustrating
the effect of changing the LoRA rank when using our initialization versus the baseline initialization,
averaged across six 4-bit LLMs (excluding Pythia-70m, LLaMa-30b and OPT-30b) and 4 causal
language modeling tasks, is in Figure 1. We observe that the performance of QLoRA generally
increases as we increase the LoRA rank r, albeit with diminishing returns. In contrast, the choice
of r does not appear to significantly affect the performance of QLoRA when using the baseline
initialization.

4.5 Convergence of fine-tuning

Here we examine how our method affects the speed of convergence of fine-tuning. In Figure 2, we
plot the convergence curve for each of the fine-tuning experiments used to generate the validation
perplexity results in Table 2a. We plot fine-tuning steps on the horizontal axis and the average
validation perplexity across the four causal language modeling tasks, measured every 100 fine-tuning
steps, on the vertical axis. We observe that the 4-bit QLoRA models, when initialized with our
method, achieve lower average validation perplexity at all stages of fine-tuning compared to the 4-bit
QLoRA baselines. The difference in performance between the 8-bit QLoRA models fine-tuned with
and without our method is on average much smaller compared to the 4-bit models, likely because
the quantization error is already quite small for the 8-bit models and there are diminishing returns
for reducing quantization error. From these plots, it appears that fine-tuning does not converge more
quickly or slowly when initialized with our method compared to the baseline initialization. Rather,
the benefit of decreased validation perplexity after fine-tuning observed for our method is due to
decreased validation perplexity at initialization from decreased quantization error.

5 Conclusion

In this paper we introduced QuAILoRA, a method for increasing the performance of QLoRA without
additional memory cost during fine-tuning by initializing the LoRA matrices to decrease quantization
error. To find such an initialization, we optimized a calibrated quantization objective using alternating
optimization, solving a small rank-r linear system in each step. In our experiments, we demonstrated
that our LoRA initialization can moderately improve the performance of QLoRA when the impact of
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Figure 2: Fine-tuning convergence for each of our 9 base models. We also include a six-model
average convergence curve that excludes OPT-13b and OPT-30b (due to the perplexity spikes in the
middle of fine-tuning) as well as Pythia-70m (which we fine-tune for 10 times as many steps as the
other models).

quantization errors is significant. Furthermore, we found that our results are robust to the choice of
the calibration dataset.

6 Limitations

In our experiments, we showed that our method provides a small positive advantage over the baseline
QLoRA when quantization error significantly impacts performance. However, quantization error
appears to have less of a negative impact for the larger models, including the 13b parameter models we
experimented with, and our method may provide only a small or no statistically significant advantage
in such cases. We also only present experiments on models up to size 13b on downstream tasks,
whereas experiments with models of size 30b and 70b are also common in the literature.

We only explore the affects of our method when quantizing to 4-bit or 8-bit. However, more recent
work has also explored quantizing to 3, 2, or 1 bits. It is possible that our method provides a more
significant positive advantage in these scenarios where the quantization error is expected to be larger,
but we do not present experimental results for these scenarios.
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A Appendix

Table 4: Validation perplexity of QLoRA and QuAILoRA models.
Model Bits Method Alpaca Chip2 Self-Instruct HH-RLHF Avg.

LLaMA-7b 4 QLoRA 3.69 3.44 2.08 4.84 3.51
LLaMA-7b 4 Ours 3.65 3.44 2.09 4.79 3.49
LLaMA-7b 8 QLoRA 3.65 3.43 2.08 4.82 3.49
LLaMA-7b 8 Ours 3.65 3.41 2.06 4.81 3.48

LLaMA-13b 4 QLoRA 3.45 3.24 2.11 4.52 3.33
LLaMA-13b 4 Ours 3.44 3.24 2.11 4.50 3.32
LLaMA-13b 8 QLoRA 3.44 3.23 2.09 4.52 3.32
LLaMA-13b 8 Ours 3.43 3.23 2.09 4.51 3.31
LLaMA-30b 4 QLoRA 3.42 3.22 2.10 4.48 3.30
LLaMA-30b 4 Ours 3.42 3.22 2.10 4.46 3.30
LLaMA-30b 8 QLoRA 3.44 3.21 2.10 4.48 3.31
LLaMA-30b 8 Ours 3.42 3.20 2.08 4.47 2.29

OPT-13b 4 QLoRA 3.89 3.68 2.25 5.27 3.77
OPT-13b 4 Ours 3.82 3.59 2.21 5.24 3.71
OPT-30b 4 QLoRA 3.78 3.57 2.14 5.15 3.66
OPT-30b 4 Ours 3.68 3.48 2.13 5.11 3.60

BLOOM-560m 4 QLoRA 6.85 6.40 3.67 10.46 6.84
BLOOM-560m 4 Ours 6.73 6.27 3.60 10.34 6.73
BLOOM-560m 8 QLoRA 6.70 6.31 3.60 10.31 6.73
BLOOM-560m 8 Ours 6.71 6.36 3.63 10.33 6.76

BLOOM-3b 4 QLoRA 4.71 4.44 2.63 7.51 4.82
BLOOM-3b 4 Ours 4.64 4.35 2.59 7.45 4.75
BLOOM-3b 8 QLoRA 4.66 4.39 2.60 7.45 4.78
BLOOM-3b 8 Ours 4.63 4.36 2.59 7.44 4.76
Pythia-70m 4 QLoRA 13.55 11.08 6.26 13.03 10.98
Pythia-70m 4 Ours 13.39 10.86 6.08 12.87 10.80
Pythia-70m 8 QLoRA 13.18 10.73 5.97 13.00 10.72
Pythia-70m 8 Ours 13.13 10.74 6.00 12.90 10.69

Pythia-410m 4 QLoRA 7.61 6.57 4.18 8.55 6.73
Pythia-410m 4 Ours 7.57 6.52 4.09 8.50 6.67
Pythia-410m 8 QLoRA 7.42 6.40 4.12 8.36 6.57
Pythia-410m 8 Ours 7.35 6.38 4.06 8.36 6.54
Pythia-12b 4 QLoRA 5.93 5.06 3.08 6.50 5.14
Pythia-12b 4 Ours 5.90 5.00 3.03 6.50 5.11
Pythia-12b 8 QLoRA 5.83 5.00 3.04 6.48 5.09
Pythia-12b 8 Ours 5.81 4.99 3.03 6.47 5.08
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Method Model Arc-C Arc-E BoolQ HS OBQA PIQA WinoG avg.
QLoRA 7b 4-bit 41.8±1.5 71.3±1.0 73.9±0.5 55.7±0.2 31.5±0.7 77.6±0.3 82.8±0.2 62.1

Ours 7b 4-bit 42.2±1.5 73.1±0.9 75.7±0.4 55.8±0.2 31.9±0.7 77.9±0.3 82.9±0.2 62.8
QLoRA 7b 8-bit 43.3±1.5 72.3±0.9 76.8±0.4 55.9±0.2 32.1±0.7 77.8±0.3 83.0±0.2 63.0

Ours 7b 8-bit 42.8±1.5 73.3±0.9 76.2±0.4 56.4±0.2 32.5±0.7 77.8±0.3 83.0±0.2 63.1
QLoRA 13b 4-bit 44.6±1.5 74.3±0.9 82.6±0.4 59.2±0.2 33.0±0.7 79.4±0.3 84.9±0.2 65.4

Ours 13b 4-bit 46.6±1.5 74.5±0.9 83.0±0.4 58.5±0.2 33.2±0.7 79.5±0.3 85.2±0.2 65.8
QLoRA 13b 8-bit 45.8±1.5 74.7±0.9 82.6±0.4 58.9±0.2 33.5±0.7 79.5±0.3 85.4±0.2 65.8

Ours 13b 8-bit 45.6±1.5 74.5±0.9 82.8±0.4 58.8±0.2 33.3±0.7 79.5±0.3 85.6±0.2 65.7

(a) Downstream task performance for LLaMA models fine-tuned on Alpaca.

Method Model Arc-C Arc-E BoolQ HS OBQA PIQA WinoG avg.
QLoRA 7b 4-bit 41.6±1.5 71.8±0.9 80.2±0.4 57.2±0.2 31.5±0.7 77.1±0.3 83.2±0.2 63.2

Ours 7b 4-bit 42.4±1.5 73.3±0.9 80.9±0.4 57.6±0.2 31.9±0.7 77.4±0.3 83.7±0.2 63.9
QLoRA 7b 8-bit 41.8±1.5 72.8±0.9 81.2±0.4 57.9±0.2 32.0±0.7 77.6±0.3 83.5±0.2 63.8

Ours 7b 8-bit 41.6±1.5 73.0±0.9 81.5±0.4 58.1±0.2 31.9±0.7 77.5±0.3 83.7±0.2 63.9
QLoRA 13b 4-bit 48.0±1.5 77.3±0.9 84.1±0.4 59.8±0.2 33.4±0.7 79.4±0.3 85.2±0.2 66.7

Ours 13b 4-bit 48.3±1.5 77.8±0.9 83.9±0.4 59.9±0.2 34.0±0.7 79.6±0.3 85.6±0.2 67.0
QLoRA 13b 8-bit 48.8±1.5 78.1±0.9 84.6±0.4 60.1±0.2 34.0±0.7 79.5±0.3 85.5±0.2 67.2

Ours 13b 8-bit 48.8±1.5 78.3±0.9 83.5±0.4 60.2±0.2 34.0±0.7 79.5±0.3 85.5±0.2 67.1

(b) Downstream task performance for LLaMA models fine-tuned on SlimOrca.

Table 5: Downstream task accuracy of QLoRA and QuAILoRA models. Error bars reported are one
standard error.

12


	Introduction
	Related Work
	Method
	Background and notation
	Calibrated quantization
	Uncalibrated quantization
	Optimization

	Experiments
	Choice of calibration set
	Perplexity after fine-tuning
	Performance on downstream tasks
	Effect of LoRA rank
	Convergence of fine-tuning

	Conclusion
	Limitations
	Appendix

