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Abstract

In this paper we address the challenge of improving Automatic Speech Recognition
(ASR) for a low-resource language, Hawaiian, by incorporating large amounts
of independent text data into an ASR foundation model, Whisper. To do this,
we train an external language model (LM) on ⇠1.5M words of Hawaiian text.
We then use the LM to rescore Whisper and compute word error rates (WERs)
on a manually curated test set of labeled Hawaiian data. As a baseline, we use
Whisper without an external LM. Experimental results reveal a small but significant
improvement in WER when ASR outputs are rescored with a Hawaiian LM. The
results support leveraging all available data in the development of ASR systems for
underrepresented languages.

1 Introduction

Advances in Automatic Speech Recognition (ASR) have predominantly benefited a few global lan-
guages. To date, this has left speakers of low-resource languages, such as Hawaiian, at a disadvantage.
High-quality Hawaiian ASR would support language preservation and revitalization efforts. In Hawai-
ian there is a traditional saying – Mai ho‘omāuna i ka ‘ai – which translates literally as ‘Don’t waste
food’ (1). It can also be applied in the context of ASR to mean ‘Leave nothing to waste’ or even ‘Use
all the data you have’. In this paper, we explore the use of text corpora as a potentially underutilized
form of data to improve low-resource ASR systems. We do this by comparing a foundation model,
Whisper (2), both with and without the use of a relatively large amount of independent Hawaiian text.
To leverage these data, we use an external language model (LM).

Unlike other early ASR foundation models (e.g. wav2vec 2.0 (3) and XLS-R (4)), Whisper is
explicitly intended for zero-shot transfer (2). This means that the model is trained on a large and
diverse set of data to generalize well on new ASR tasks without fine-tuning. The first contribution of
this paper is to quantify Whisper’s ability to perform zero-shot transfer in Hawaiian. We quantify
performance using word error rates (WERs) calculated on a manually curated test set of labeled data
(i.e. Hawaiian audio–text pairs).

Prior work has explored how to improve foundation models like Whisper by incorporating independent
large language models (LLMs) for English (5). To the best of our knowledge, no similar work has
been reported for low-resources languages like Hawaiian. Therefore, the second contribution of this
paper is to evaluate the utility of incorporating independent Hawaiian text data into Whisper. We do
this by replicating a state-of-the-art Hawaiian LM (6; 7) which we train on a relatively large corpus
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of modern Hawaiian text (⇠1.5M words). We then compare a baseline zero-shot Whisper model
against a zero-shot Whisper model that has been rescored (8) using the Hawaiian LM.

Figure 1: Large ASR models produce the lowest word error rates (WERs) for Hawaiian test
data. Left panel: We compared six Whisper models on Hawaiian using zero-shot transfer without
a Hawaiian language model (LM), as a baseline for comparing ASR models with LMs. Asterisks
indicate the best models, large and large-v2. Right panel: No statistical difference in WER was
observed between large and large-v2 (t3.309 = 0.002, p = 0.999, Welch’s t-test). Error bars show
standard error of the mean.

2 Methods

2.1 Hawaiian LMs

Here we replicate the model architecture and training parameters from prior work on Hawaiian LMs
(6; 7), using the same dataset and data splits. Concretely, the training set, which we used for training
LMs, alternately consists of 45,769 lines, 1,547,831 words, or 7,573,569 characters. The validation
set, which we used for evaluating the validation loss and perplexity, consists of 888 lines, 26,607
words, or 129,487 characters. We did not use the test set (888 lines, 30,181 words, 146,124 characters)
for this project. All modern Hawaiian texts (e.g. (9)) were used with permission.

For the model architecture we followed prior work (6; 7) in implementing a character-level RNN
(10; 11) which consisted of three layers of LSTMs (12) each with 200 features in their hidden states.
The output of the final LSTM layer was passed to a linear layer that mapped to the set of output
characters. We applied Dropout (13) with a probability of 0.2 after the input and after each hidden
layer. For the loss, we used cross entropy. LMs were trained using Adam (14) for 10,000 epochs with
an initial learning rate of 0.001, a batch size of 256, a clip value of 1, and a maximum sequence length
of 100 characters. During training, we checkpointed the LM that produced the lowest perplexity
on the validation set. In the final LM which we used for rescoring, the validation perplexity was
2.024. This is, incidentally, better than the reported state-of-the-art validation perplexity of 2.65 (7),
a difference that we attribute to our checkpointing strategy.

For rescoring, the LM was used to compute the log probability of strings. This computation involved
prepending a start-of-sequence (SOS) token to the string. The LM needs this to transition into the
first character in the string. Since the LM character set did not include an explicit SOS token, we
opted to use a whitespace character instead. This decision was based on the rationale that, within
the context of the LM, the probability distribution following a whitespace character should closely
approximate the distribution of initial characters in words.

Formally, the log probability of observing a character yi, given the LM and preceding sequence of
characters, is denoted as logPLM(yi|y1:i�1), where y1:i�1 represents the sequence of characters from
the start of the string up to, but not including, yi. Consequently, the log probability of an entire string
Y = y1, y2, . . . , yn is computed as the sum of its individual characters, given by their respective
preceding character sequences: logPLM(Y ) =

Pn
i=1 logPLM(yi|y1:i�1).
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Figure 2: Rescoring with a Hawaiian LM provides a small but significant improvement on the
zero-shot Whisper baseline. Rescoring results for large-v2. The ↵ values weight the contribution
of the LM. ↵ = 0 means no contribution of the LM (baseline model). Other values add increasing
weight to the LM. The best WER was found at ↵ = 0.25 where we observe a small but significant
improvement on the baseline model (t2 = 19.498, p = 0.003, one-sample t-test).

2.2 Rescoring Whisper

Encoder–decoder models, such as Whisper (2), are essentially conditional language models that
learn an implicit language model over the domain of output tokens in their training data. Critically,
Whisper’s implicit language model is not tuned to Hawaiian, as no Hawaiian text was included during
training. We note that some Hawaiian audio was paired with English text in Whisper’s X!en task
(2). But Whisper was not trained on any Hawaiian audio–text pairs, or indeed any Hawaiian text. We
therefore propose to incorporate an explicit Hawaiian LM into Whisper via rescoring. In rescoring
(8), beam search utilises a weighted sum of the ASR model’s log probability of a given hypothesis
and the external LM’s log probability of the same hypothesis.

To see this, let the ASR model’s log probability be logPASR(Y |X), where Y is the output text and
X is the input audio. We combine this with the log probability of the external LM, logPLM(Y ), as
follows:

score = ↵ logPLM(Y ) + (1� ↵) logPASR(Y |X) (1)
Here ↵ is a hyperparameter that balances the influence of the log probabilities of the LM and
ASR models. As expressed, ↵ = 0 means no contribution from the LM. We explore values of
↵ 2 {0, 0.25, 0.5, 0.75}. We exclude ↵ = 1 as this would mean no influence from the ASR.

In the Hugging Face implementation that we used,1 Whisper employs a multi-stage decoding process.
It begins with beam search, utilizing a default beam size of 5. However, if the output does not meet
predefined compression ratio and log-probability thresholds, the implementation iteratively resorts
to greedy search with temperatures varying between 0.2 to 1.0. These heuristics aim to ensure that
the final hypothesis avoids common error modes for encoder–decoder models, such as repeating
substrings in the output or failing to generate an end-of-text token. We highlight these heuristics as
they affect whether model outputs are deterministic or stochastic. This in turn affected our choice
of statistical test when comparing different Whisper models (one sample vs independent samples
t-tests).

2.3 ASR Test Set

The evaluation of WERs required a labeled ASR test set for Hawaiian. To this end, we utilized a subset
of the publicly available Ka Leo Hawai‘i (KLH) dataset, being careful to account for transcription and

1https://huggingface.co/docs/transformers/en/model_doc/whisper
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segmentation errors within the data. First, we randomly selected 100 audio–text pairs from the dataset.
We then filtered the pairs manually, discarding any that, after text normalization, resulted in empty
strings (e.g. from audio segments annotating only laughter). We also discarded pairs that showed
discrepancies between audio and text (e.g. truncated recordings). Such exclusions were crucial
to avoid artificially inflating the WER through misalignments. After filtering 57 pairs remained,
comprising 1,120 words and a total audio duration of 7 minutes and 35.336 seconds. This constituted
our final test set. As Whisper does not process audio files longer than 30 seconds, it is important to
note that the longest audio file in the ASR test set was only 26.593 seconds in duration.

Figure 3: Posthoc exploration on the amount of training text, LM validation perplexity, and
Whisper WER. Hawaiian LMs were trained on decreasing fractions of data: 1/2 (purple), 1/4
(orange), 1/8 (green), and 1/16 (red). See text for details.

3 Experiment Results

3.1 Which Whisper model transfers best to Hawaiian?

Whisper comes in different sizes: tiny, base, small, medium, and large. Multiple large models
were also available when we ran the experiments: large and large-v2. We compared all of these
using zero-shot transfer on the ASR test for Hawaiian, repeating the evaluation three times for
each model to estimate the variability in WER results. The best results (Figure 1, left panel) were
obtained for the large and large-v2 models. Focusing on the best two models (Figure 1, right
panel), we find no significant difference between large and large-v2 in terms of zero-shot WER
(t3.309 = 0.002, p = 0.999, Welch’s t-test). As either model could be used, we focus below on
rescoring large-v2.

3.2 Does rescoring improve the best Whisper model?

Figure 2 shows that rescoring the large-v2 model with the Hawaiian LM produces a small absolute
improvement (⇠1–2%) in WER when compared to the zero-shot baseline at ↵ = 0.25. This
improvement is, however, significant (t2 = 19.498, p = 0.003, one-sample t-test). At the time of
writing, it also represents the state-of-the-art in Hawaiian ASR. To get a sense of what predictions
from the model look like, we can sample a few examples at random. Predicted transcripts from the
best rescored zero-shot model are compared against ground truth transcripts in Table 1.

3.3 Does it matter how much text the LM is trained on?

In a final set of posthoc experiments, we re-trained a series of Hawaiian language models on fractions
of the full dataset used in the main results. Starting with the full training set (45,769 lines), we
randomly sampled subsets of training text with varying fractions of lines: 1/2, 1/4, 1/8, and 1/16. For
each fraction of lines, we created five randomly sub-sampled training sets. These were then used to
train 20 new LMs (4 fractions ⇥ 5 repeats) using the same training parameters as in the main analysis.
These 20 LMs were then used to rescore the large-v2 Whisper model.

In Figure 3, we show scatter plots that compare the number of words in the sub-sampled training set,
the trained LM’s validation perplexity, and the large-v2 Whisper model’s rescored WER.

We observe a negative correlation between the number of words in the training set and the LM’s
validation perplexity (r = �0.98, p = 8.67 ⇥ 10�13, Pearson’s correlation, Bonferroni corrected,
3 comparisons). More text for training corresponds to smaller validation perplexity (Figure 3, left
panel).
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Correlations involving WER did not reach significance, apparently because of large variance in
the WER results. However, linear regression models suggest trends. For example, although not
statistically significant (r = �0.308, p = 0.14 uncorrected), the trend is for WER to decrease as
training data increases (Figure 3, middle panel). Similarly, although not statistically significant
(r = 0.352, p = 0.14 uncorrected), WER appears to increase as validation perplexity increases
(Figure 3, right panel). Or, equivalently, in this last case, WER appears to decrease as validation
perplexity decreases. Again, we note that correlations involving WERs did not reach statistical
significance. With a larger compute budget, it might be possible to resolve the variance in WERs. In
the present work, we used about 1,000 GPU hours (279 training LMs and 730 evaluating Whisper
models).

4 Limitations

The present work is limited in its choice of language model (LM) and foundation model, and in its
ability to make strong claims about other low-resource languages. We chose to use an LSTM-based
LM to replicate prior work (6; 7), which allowed us to avoid optimizing the model architecture.
However, as Transformers dominate the current LM landscape, we believe future work will benefit by
exploring alternative LM architectures (15). Second, using Whisper as our foundation model limits
the granularity with which we can interpret results. For example, we do not know what Hawaiian
(or Māori) data OpenAI used to train Whisper, and therefore can only hypothesize broadly about
how this data affected the model performance. A significant concern is the potential overlap between
Whisper’s training data and our ASR Test Set. However, we believe this overlap is unlikely. Hawaiian
was used in Whisper’s translation task (2), mapping Hawaiian audio to English transcripts, and
to our knowledge there are no English transcripts of the audio recordings we used. However, we
strongly encourage OpenAI to release more information about their training data, for the benefit of
humanity. Finally, while our post-hoc analyses were aimed at providing insights for speakers of other
low-resource languages, it remains an empirical question how effective our approach of rescoring a
foundation model like Whisper with a custom LM will be for other langauges. We look forward to
seeing this approach applied to other languages in future research.

5 Discussion

Table 1: Example ASR predictions and ground truth sentences suggest directions for future
work. Here we show three predictions from the best Whisper model (large-v2) rescored with the
best LM (1/1 training data). To facilitate the discussion in the text, character-level edits are colored
for deletion, substitution, and insertion. Differences in capitalization and punctuation are ignored,
as the text was normalized before evaluation. Elsewhere in the paper, WERs were computed at the
word-level. See text for discussion.

ID ASR Prediction Ground Truth
1 O Lahaina ke kapikala hiko o Hawai‘i. ‘O Lāhaina ke kapikala kahiko o Hawai‘i.
2 Makemake wau e ike i nā wai e hā. Makemake wau e ‘ike i Nā Wai ‘Ehā.
3 Ai, e hele māka i ka ino kaua. ‘Ae. E hele māka‘ika‘i nō kāua.

There are dozens of hours of labeled Hawaiian audio but millions of pages of Hawaiian newspaper
text available right now. We therefore investigated, in this paper, how the use of text data might
improve Hawaiian ASR. We also evaluated the capacity for a foundation model, Whisper (2), to
accurately transcribe Hawaiian audio without having seen any labeled Hawaiian data. Out of the box,
we found the largest Whisper models (large and large-v2) could transcribe Hawaiian audio with
WERs of about 22% (Figure 1). By incorporating a Hawaiian LM, the large-v2 model achieves
a WER of about 20% (Figure 2). Ultimately, the difference in WER is only about 1–2% but the
improvement is consistent across repeated evaluations (p < 0.01). For low-resource languages like
Hawaiian, which could use better ASR to accelerate language preservation and revitalization efforts,
any statistically significant improvement in performance is welcome. But there is more work to do.

To suggest ways of improving on these results, let us consider where they fail. In Table 1, we see
three ASR predictions from the Whisper large-v2 model together with corresponding ground truth
transcriptions. Character-level errors have been highlighted to indicate deletions, substitutions, and
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insertions when mapping from the prediction to the ground truth transcript. A number of intriguing
patterns emerge. For example, we see that the model frequently fails to capture phonemic glottal stops
/P/ (written in Hawaiian with the h‘i symbol, which in Hawaiian is called an ‘okina /Pokina/). The
phoneme /P/ can be realized in Hawaiian speech with full closure, modal voice, or creak (16; 17; 18).
Acoustically, these are relatively quiet sounds. In a few cases (the glottal stops in māka‘ika‘i), we see
that the model tries to capture these with spaces. This may relate to a bias for English phonology
to insert a glottal stop before a word-initial vowel. This would also account for the missing glottal
stop on ‘Ae. That said, not all of the extra spaces added by the model (e.g. e hā, i ka) correspond to
missing glottal stops and perhaps show that the model has not properly learned to segment Hawaiian
words. Or, since e, hā, i, and ka, are all attested Hawaiian words (19), it may be more accurate to say
the model has not learned to predict the correct word given the context.

Another interesting failure mode is the treatment of vowels. In many cases, the model fails to
distinguish phonemically short and long vowels (e.g. Lāhaina /la:.hai.na/, nō /no:/, kāua /ka:u.a/).2
Noticeably, the model also gets the vowel wrong on the diphthong ‘Ae. We note that the quality
of a vowel in Hawaiian can differ whether in a monophthong or diphthong (16; 20). All of these
errors suggest that the model does poorly on sounds that diverge from English, which makes sense
given that Whisper is optimized for English. We hypothesize that these errors may be corrected by
fine-tuning Whisper on sufficient amounts of labeled Hawaiian data. Serious efforts are currently
underway within the Hawaiian community to gather and organize a much larger collection of labeled
Hawaiian data and we are actively working to leverage all of it to improve Hawaiian ASR.

Following the principle of using all the data at hand, the Hawaiian community has access to a lot
more unlabeled text, and unlabeled audio. On the text side, one might train a better LM, or even
LLM, for Hawaiian (e.g. using Transformers (15)) while scaling up the size of the training set. One
might also advance text normalization methods (6; 7). These could then be used to modernize a
larger amount of the 19th century texts that were written in an older missionary orthography which
excludes letters for Hawaiian sounds that do not occur in English (21). Finally, two obvious ways to
incorporate unlabeled audio would be to use self-supervised learning (22; 23; 24; 25; 3; 26; 27; 28)
and pseudo-labeling (29; 30; 31; 32; 33; 34).

What can other low-resource language communities learn from this study? We conjecture that many
languages are like Hawaiian in having much less labeled data than unlabeled data (e.g. text corpora).
Part of our motivation for including the posthoc experiments, which varied the amount of text data
used to train an LM, was to provide a guide for languages with less text data. Nonetheless, when it
comes to leveraging models like Whisper, Hawaiian may not be representative. For example, other
languages may not be included in Whisper’s training data. After all, Whisper was trained on 338
hours of unlabeled audio from Hawaiian as well as 1381 hours of unlabeled audio from Māori, a
closely related Polynesian language(2). The Hawaiian alphabet is also very similar to English, with
only a few modifications for glottal stops and long vowels. Ultimately, how well our approach works
for other low-resource languages is an empirical question. But that may be enough. For languages
that have few options, we offer hope: it is worth trying, as Hawaiian tradition teaches, to use all the
data you have.
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