
Inducing Elasticity in Foundation Models:
Post-Training Techniques for Adaptable Inference

Aashiq Muhamed, Jiarui Liu, Mona T. Diab, Virginia Smith
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
{amuhamed,jiaruil5,mdiab,smithv}@andrew.cmu.edu

Abstract

Large foundation models (LFMs) power a diverse range of applications, but
their deployment often requires adapting model size and performance to specific
hardware constraints and latency requirements. Existing approaches rely on
training independent models of various sizes, leading to storage redundancy,
inconsistent behavior across sizes, and limited scalability. This work investigates
post-training techniques for inducing elasticity into pre-trained LFMs, enabling
dynamic adaptation of model size during inference based on specific needs. We
frame this as decomposing LFM weight matrices into sparsely activating factors.
While naive decompositions like weight SVD struggle to maintain performance
across complex tasks while inducing the desired nested sub-structures, we propose
two novel methods: SparseDecomp, which exploits sparse neuron activations in
feed-forward networks to conditionally select decoder rows; and RankDecomp,
which leverages the basis-agnostic nature of Transformers for low-rank weight
decomposition. Integrating SparseDecomp and RankDecomp with GritLM-7B,
a state-of-the-art LFM excelling in both generative and embedding tasks, we
conduct a comparative analysis. Our results demonstrate that these approaches
offer complementary benefits. SparseDecomp maintains robust performance across
a wider range of sparsity levels, achieving average speedups of up to 4.6% with
25% sparsity. RankDecomp, conversely, yields more significant latency reduction,
reaching a speedup of 22.2% at 25% sparsity, but exhibits greater sensitivity
to increasing sparsity. This study provides valuable insights into leveraging
post-training weight decomposition for developing efficient and adaptable LFMs,
paving the way for future research on creating elastic and resource-aware models.

1 Introduction

Large foundation models (LFMs) [2] have demonstrated remarkable capabilities across a wide
range of applications. However, their deployment presents a fundamental challenge: the need for
flexible model scaling strategies to adapt to varying hardware and latency constraints. Existing
approaches, such as the Llama family of models [37], address this by offering independently trained
models at various scales. This, however, leads to increased storage requirements during inference
and potential behavioral inconsistencies between models, hindering optimization techniques like
speculative decoding [21] and model cascades [40]. Furthermore, the discrete set of model sizes may
not cater to the full spectrum of downstream tasks and hardware constraints, forcing compromises on
either model accuracy or efficiency.

While model compression techniques like pruning [20, 26, 39], distillation [31, 36, 15], and quantiza-
tion [6, 42] can reduce model size and improve efficiency, they often require access to the training

4th NeurIPS Efficient Natural Language and Speech Processing Workshop (ENLSP-IV 2024).

data, additional computational resources, and may not facilitate dynamic adaptation of model size
based on specific inputs or tasks. Recent work like MatFormer [17] tackles this challenge by training
a natively elastic Transformer architecture, enabling a single universal model to generate numerous
sub-models.

As pretraining a Transformer to induce elasticity is expensive and often infeasible, this work investi-
gates whether post-training techniques can induce elasticity into existing pretrained LFMs, without
requiring retraining or access to the original training data. We focus on integrating these techniques
with GritLM [28], a state-of-the-art LFM trained using Generative Representational Instruction
Tuning (GRIT) that excels in both generative and embedding tasks. Our investigation reveals that
finetuning-based approaches (applying MatFormer loss to GritLM) and naive post-training baselines
like weight singular value decomposition (SVD), gaussian weight sketching, leverage score sampling,
and Discrete Empirical Interpolation Method (DEIM) fail to maintain GritLM’s performance (see
Appendix C). To address these challenges, we reframe the problem as identifying sparsely activating
weight decomposition factors and introduce two post-training methods for adaptable inference:

1. SparseDecomp: Leverages sparsity in pretrained FFN activations to decompose weight matrices
into sparse factors, enabling nested substructures through dynamic selection of decoder rows.

2. RankDecomp: Performs low-rank decomposition of weight matrices by leveraging the basis-
agnostic nature of the residual stream in Transformers. This allows us to project weights onto a
lower-dimensional subspace spanned by dominant activation modes, precomputed offline.

Our comparative analysis on GritLM-7B shows that SparseDecomp and RankDecomp offer com-
plementary strengths in achieving latency-performance trade-offs across generative and retrieval
augmented generation (RAG) benchmarks. SparseDecomp maintaind performance across a wide
range of sparsity levels achieving an average speed-up of 4.6% with 25% sparsity. RankDecomp,
on the other hand, achieves greater latency reductions with an average speed-up of 22.2% at 25%
sparsity but shows more sensitivity to sparsity. Our contributions include:

• We propose and study two approaches to enhance model elasticity: SparseDecomp, which
exploits sparse neuron activations in FFNs to conditionally select decoder rows, and RankDecomp,
which utilizes the basis-agnostic nature of Transformers for weight dimension reduction. These
methods successfully induce nested substructures within LFMs while preserving performance
across complex tasks. Our experiments also show that traditional training-based and post-training
baselines, including weight SVD, leverage score sampling, and DEIM, fail to achieve this dual
objective.

• Our comparative analysis on GritLM-7B evaluates SparseDecomp and RankDecomp, demon-
strating their complementary nature and detailing their respective strengths and weaknesses with
respect to latency and performance on generative and embedding benchmarks.

2 Methodology

2.1 Weight Decomposition for Adaptable Inference

Neural networks are overparameterized, suggesting that their functionality can be captured by fewer
effective parameters [22]. We hypothesize that decomposing weights into sparsely activating factors
can identify these parameters. For a network output yL(x, θ) with weights θ ∈ RN , we seek weight
factors P = P1, . . . , PF , Pi ∈ RN , F ≪ N , such that yL(x, θ) ≈ yL(x, θ̃), where θ̃ =

∑F
i=1 Pi.

We focus on nested decompositions, ranking Pi by performance contribution. This enables dynamic
scaling based on task requirements or computational resources. The factor selection process is a
submodular optimization:

max
S⊆1,...,F

P(S)− λC(S) (1)

where P(S) is submodel performance using factors indexed by S, C(S) is computational cost, and
λ controls the performance-efficiency trade-off. This work explores post-training techniques for
inducing elasticity in pretrained LFMs by decomposing layer weights into sparsely activating factors.
By selecting a subset of these factors, we can control efficiency-performance trade-offs across diverse
applications.

2

2.2 MatFormer: A Training-Based Nested Decomposition

MatFormer [18] introduces a training-based approach for nested Transformer structures, embedding
hierarchy within FFN layers. It creates k nested Transformer blocks Tj , where T1 ⊂ T2 ⊂ · · · ⊂ Tk,
enabling submodels with varying computational demands. An FFN block T FFN

j operates as:

T FFN
j (x) = σ(x ·Wup[:, : mj]) ·Wdown[: mj , :] (2)

where Wup ∈ Rdh×di , Wdown ∈ Rdi×dh , x ∈ Rdh , and mj determines columns/rows used based on
a pre-defined form factor.

Each column (or row) can be viewed as a weight factor. For Wup, each factor is defined as:

Pj = [0dh×(j−1),Wup[:, j],0dh×(di−j)] (3)

where j ∈ {1, ..., di} (similarly for Wdown). By training with randomly sampled form factors,
MatFormer implicitly ranks these factors, creating the nested structure. The same decomposition is
applied to all inputs x.

While sparsity is effective at trading off latency with performance, MatFormer’s reliance on training
from scratch limits its applicability to existing pretrained models. We examine two post-training
methods inspired by existing work, SparseDecomp and RankDecomp, which induce nested structures
without predefined rankings or retraining.

𝑥୧୬ 𝑥୭୳୲

𝑊ୢ୭୵୬
 ∈ ℝௗ∗ௗ

Activation

𝑊୳୮
 ∈ ℝௗ∗ௗ

5 -7 2

-15 -10 -11
1.27

Select top-k columns

Se
q

le
ng

th

𝑑

Column norm

1.26 0.74

(a) SparseDecomp applied to an FFN layer. We take
L2 norms along the sequence dimension, and select
the top-k columns with the largest values. The unse-
lected columns are shown in gray.

(b) RankDecomp applied to a single Transformer
layer. The V matrices are obtained from right singu-
lar vectors of the activation matrix, and D and D′ are
scaling factors from the conversion of LayerNorm
into RMSNorm.

2.3 SparseDecomp: Sparse Decomposition of FFN Weights

SparseDecomp (Fig 1(a)) leverages the inherent sparsity in pretrained FFN activations to decompose
weight matrices into sparse factors, enabling efficient nested substructures. This approach is analogous
to treating FFNs as sparse autoencoders, where weakly activated features can be removed to compress
the representation.

Studies show that only a small subset of neurons within FFN blocks are active for a given input
[23, 7]. For inputs X ∈ RB×S×dh , the FFN computation is:

Z = FF1(X) = σ(XWup + bup) (4)
FF2(Z) = ZWdown + bdown (5)

where Z ∈ RB×S×di is the activation matrix and Wdown ∈ Rdi×dh .

Decoder rows are selected by averaging feature activations across the batch and taking the L2 norm
across the sequence dimension denoted ∥ · ∥r : a =

∥∥∥ 1
B

∑B
b=1 Zb

∥∥∥
r
∈ Rdi . Let π be the permutation

3

that sorts elements of a in descending order. We select the top-k decoder rows corresponding to the k
largest values in a. Sparse factors Pj ∈ Rdi×dh for Wdown are defined as:

Pj = eπ(j)Wdown[π(j), :]
⊤ · 1[j ≤ k] (6)

where j ∈ {1, ..., di}, eπ(j) ∈ Rdi×1 is the π(j)-th standard basis vector, and 1[·] is the indicator
function. The decomposed matrix is constructed as Ŵdown =

∑di

j=1 Pj . This construction yields a
nested structure, where increasing k incorporates more factors, leading to larger and potentially more
accurate submodels but also increasing latency. By dynamically adjusting threshold k for each input
batch, SparseDecomp allows for adaptable inference. However, there is an overhead to performing
this subset selection at inference time.

2.4 RankDecomp: Basis-Agnostic Low-Rank Decomposition

RankDecomp (Fig 1(b)) leverages the property that the residual stream in Transformers lacks a
privileged basis [8], to decompose weight matrices into low-rank factors. This property implies
that any invertible linear transformation applied to the residual stream can be compensated by
corresponding inverse transformations on weight matrices, yielding an equivalent model with a
different coordinate system but identical functionality. This stems from attention and FFN layers
interacting with the residual stream through arbitrary full-rank linear transformations. RankDecomp
exploits this by introducing orthogonal transformations that are aligned with the dominant modes of
variation in the activations, to project weights onto a lower-dimensional subspace.

For a weight matrix W ∈ Rdin×dout in a Transformer block that acts on the residual stream, RankDe-
comp performs low-rank decomposition using SVD on flattened input activations X ∈ RB×din , where
B is the total number of samples in a tiny calibration dataset. The SVD yields X = UΣV⊤, with
V = [v1, ...,vdin] containing right singular vectors sorted by decreasing singular values. RankDe-
comp approximates W by projecting onto the subspace spanned by the top k right singular vec-
tors: Ŵ = VkV

⊤
k W =

∑k
j=1 Pj , where Vk ∈ Rdin×k contains the first k columns of V, and

Pj = vjv
⊤
j W are rank-one decomposition factors. This creates nested substructures where adjusting

k controls the approximation rank and submodel dimension, enabling adaptive inference by balancing
accuracy and efficiency. The basis V and k are determined based on activations from a calibration
dataset offline, incurring no additional runtime overhead. The calibration set is typically orders of
magnitude smaller than the pretraining dataset.

We apply RankDecomp to the weights in the FFN, Embedding, and Attention layers inspired by
several ideas in existing work [1, 11] to ensure we realize efficiency gains from this decomposition.

Basis Invariance: The LayerNorm operation after the attention layer introduces a weak privileged
basis by normalizing activations based on their specific coordinate values. To apply RankDecomp to
the activations between attention and FFN layers, we convert all LayerNorm operations to RMSNorm,
which makes the basis unprivileged. This conversion involves absorbing the scaling and shifting
components of LayerNorm into adjacent weight matrices [1].

RankDecomp Transformations: To realize efficiency gains from the weight decomposition, we
apply Vℓ ∈ Rdh×k (right singular vectors) by splitting the computation VkV

⊤
k Wℓ into V⊤

k Wℓ

at current layer ℓ and Wℓ−1Vk at the previous layer. These matrices project the activations onto
lower-dimensional subspaces spanned by the top k singular vectors which effectively reduces model
dimension. Similarly, we apply these transformations to the embedding and FFN weights as follows:
W̃embd = WembdV1,W̃

ℓ
up = V⊤

ℓ−1W
ℓ
up,W̃

ℓ
down = Wℓ

downVℓ,. This effectively reduces the model
dimension in all residual streams to realize efficiency gains.

Residual Connection Correction: As we use different orthogonal transformations at each layer, we
introduce correction terms V⊤

ℓ−1Vℓ in the residual connections. These terms account for the change
of basis between consecutive layers and incur a small latency overhead.

4

3 Experiments And Results

3.1 Experimental Setup

To compare the two weight decomposition approaches SparseDecomp and RankDecomp, we use
GritLM-7B [28] as our base model. GritLM integrates embedding and generative tasks through
instruction tuning, allowing it to perform effectively across both tasks without the need for separate
models. It is initialized with Mistral 7B [16] and incorporates Query-Doc Caching, to reduce the
number of forward passes, making it more efficient than traditional RAG. SparseDecomp is applied
to the FFN decoder in each layer, while RankDecomp is applied to the embedding, attention, and
FFN encoder and decoder weights in every layer. We explore varying levels of sparsity, ranging from
5% to 50%. For SparseDecomp, 25% sparsity means selecting the top 75% of decoder rows from the
intermediate dimension di. For RankDecomp, it corresponds to using the top 75% of singular vectors
that span the model dimension.

Following the GritLM evaluation setup in [28], we evaluate our approaches on generative, embedding,
and latency benchmarks to comprehensively assess the performance-latency trade-offs. Generative
performance is evaluated on MMLU, GSM8K, BBH, and HumanEval [13, 5, 33, 34, 27], using
Pass@1 as the metric for HumanEval and exact match for the other tasks. To ensure a realistic
scenario where pretraining datasets of GritLM are unavailable during calibration, the RankDecomp
experiments employ two calibration datasets: the Alpaca training dataset [35] and the WikiText-2
training dataset [25], each comprising 1024 samples. For embedding performance, we use the Seman-
tic Text Similarity (STS) subset of the MTEB benchmark [29], with Spearman correlation against
ground truth as the evaluation metric. All generative and embedding benchmarks are conducted on a
single A6000 GPU.

Latency is measured on the Natural Questions dataset [19], consisting of 2,681,468 documents
derived from the BEIR NQ corpus [28], under three modes: No RAG, RAG only, and Query Caching.
In RAG mode, retrieved context is added to the input, while Query Caching reuses key-value states
from the embedding pass to minimize forward passes and storage costs. GPU latency is measured on
an NVIDIA L40 46GB GDDR6. Additional details on the benchmarks are provided in Appendix B.

3.2 Results

Dataset Reference SparseDecomp RankDecomp Alpaca RankDecomp WT
GritLM 7B 5% 10% 25% 50% 25% Sampling 25% Abs 5% 10% 25% 50% 25% FT 25%

MMLU 0.575 0.575 0.576 0.575 0.574 0.574 0.549 0.567 0.548 0.463 0.307 0.493 0.365
GSM8K 0.575 0.565 0.540 0.530 0.410 0.435 0.000 0.505 0.460 0.225 0.005 0.120 0.055
BBH 0.547 0.562 0.540 0.533 0.514 0.529 0.000 0.543 0.515 0.425 0.149 0.423 0.100
HumanEval 0.305 0.274 0.268 0.256 0.220 0.262 0.000 0.287 0.268 0.110 0.000 0.207 0.000

Average 0.500 0.494 0.481 0.474 0.430 0.450 0.137 0.476 0.448 0.306 0.115 0.311 0.130

Table 1: Generative benchmark: Performance of GritLM-7B, SparseDecomp, and RankDecomp
calibrated on Alpaca or WikiText-2 (WT). FT refers to recovery finetuning.

Generative Performance The results in Table 1 show a consistent decline in performance for
both RankDecomp and SparseDecomp as sparsity levels increase. SparseDecomp is more robust to
performance degradation with sparsity, with an average performance drop of only 10% even at 50%
sparsity. This suggests that SparseDecomp can effectively identify and select activated rows in the
FFN decoder. With RankDecomp, using the Alpaca training dataset, the performance decline is more
pronounced. At 5% sparsity, the performance drops modestly by 5%, but as sparsity increases to
25%, the decline becomes severe, with a 40% reduction in performance. This trend is particularly
noticeable in complex reasoning tasks, where excluding GSM8K, performance drops by 23% at 25%
sparsity. At 50% sparsity, the performance drop is even more dramatic, plummeting by approximately
80%.

Embedding Performance As shown in Table 2, the embedding performance of SparseDecomp
is also robust to sparsity, exhibiting only minimal average performance degradation, and it remains
highly effective for retrieval tasks. Embedding tasks only involve a single forward pass, and are in
general more robust to sparsity than generative tasks where errors accumulate. We also observed that
the mean pooling is applied over the final hidden state for embedding generation is less sensitive to

5

Dataset Reference SparseDecomp RankDecomp Alpaca RankDecomp WT
GritLM 7B 5% 10% 25% 50% 25% Sampling 25% Abs 5% 10% 25% 50% 25% FT 25%

BIOSSES 86.31 86.38 86.37 86.31 86.49 86.38 86.29 86.68 86.26 85.51 78.39 82.93 86.98
SICK-R 83.13 83.11 83.09 83.01 82.50 82.96 73.09 82.97 82.95 82.28 75.38 81.55 81.55
STS12 77.34 77.32 77.31 77.31 77.07 77.33 74.24 76.14 75.81 74.58 67.28 74.52 74.75
STS13 85.05 85.04 85.03 85.02 84.84 85.03 82.26 84.49 84.66 85.10 79.95 82.98 84.34
STS14 82.91 82.85 82.83 82.70 82.42 82,76 78.64 82.38 81.87 81.11 73.42 77.86 81.10
STS15 88.13 88.12 88.12 88.11 87.84 88.02 88.02 87.16 86.82 86.36 80.81 85.15 86.24
STS16 86.24 86.24 86.26 86.25 86.24 86.27 85.59 85.42 85.14 84.91 80.68 83.53 85.18
STS17 90.15 90.12 90.12 90.08 89.92 90.10 88.53 90.21 90.33 89.63 82.89 89.27 88.83
STS22 68.61 68.61 68.62 68.59 68.61 68.62 68.63 67.85 66.82 64.87 61.02 64.22 65.25
STSBenchmark 85.64 85.62 85.62 85.64 85.68 85.67 84.97 84.61 84.13 82.56 75.17 80.32 83.30

Average 83.35 83.34 83.34 83.30 83.16 83.31 81.03 82.79 82.48 81.69 75.50 80.23 81.75

Table 2: Embedding Benchmark: Performance of GritLM-7B, SparseDecomp, and RankDecomp
calibrated on Alpaca or WikiText-2 (WT), on the STS subset of MTEB. We evaluate the cosine
similarity between two embeddings against a ground truth continuous score, scored using Spearman
correlation.

sparsity than the language modeling head is used for text generation. While RankDecomp shows a
more noticeable decline in performance as sparsity increases, the drop is around 2% at 25% sparsity,
which is acceptable for most applications.

Latency Performance Figure 1 and Appendix Figures 10 to 13 reveal that increasing sparsity in
either SparseDecomp or RankDecomp reduces latency across various RAG configurations, including
No RAG, RAG, and Query Caching. The latency reduction observed with SparseDecomp stems
from accelerated matrix multiplications involving the activation matrix and Wdown. Compared to
SparseDecomp, RankDecomp achieves a more pronounced reduction in latency due to the reduced
model dimension and associated computational cost of matrix multiplication in both the attention and
FFN layers. RankDecomp therefore exhibits higher sensitivity to sparsity than SparseDecomp.

0.25 0.50 0.75 1.00 1.25 1.50
Latency ratio

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Av
er

ag
e

pe
rfo

rm
an

ce
 ra

tio

5%
10%

25%
50%

75%

90%

5%10%

25%

50%

Generative vs. No RAG Sample A Latency

SparseDecomp
RankDecomp

0.25 0.50 0.75 1.00 1.25 1.50
Latency ratio

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Av
er

ag
e

pe
rfo

rm
an

ce
 ra

tio

5%10%25%
50%

75%

90%

5%10%

25%

50%

Generative vs. No RAG Sample B Latency

SparseDecomp
RankDecomp

Figure 1: Trade-off between average generative performance and latency ratio under the No RAG
mode, evaluated on Sample A (left) and Sample B (right). Sample A has a query of 1 token and a
document of 4000 tokens, and sample B is the inverse. For each approach, we generate 16 tokens.
The latency ratio is measured by dividing the latency of the model with introduced sparsity by the
latency of running GritLM-7B without any sparsity applied. Similarly, the average performance ratio
is reported relative to GritLM-7B without any sparsity applied.

3.3 Ablation Studies

SparseDecomp: Sampling-Based Selection As an ablation study, we implemented a sampling-
based selection method instead of directly selecting the top-k decoder rows to construct the decom-
posed matrix. Rows were randomly sampled according to the multinomial distribution of the weights
of the activation matrix Z. The results for 25% sparsity are shown in Table 1 and Table 2, denoted as
“25% Sampling”. We observed a moderate drop in generative performance compared to the top-k

6

selection method at the same sparsity level, while the embedding performance showed minimal
degradation under this change.

SparseDecomp: Absolute Magnitude Selection We explored an alternative method for calculating
a without incorporating inputs X by using weight matrix Wup ∈ Rdh×di . We use the L2 norm
along dimension dh and define a = ∥Wup∥r ∈ Rdi . We then select the top-k rows based on
absolute magnitude of a that remain consistent across sequences. However, as shown in Table 1,
we find that this significantly reduces generative performance to zero on the GSM8K, BBH, and
HumanEval datasets, emphasizing the need to tailor magnitude selection to each input sequence
based on feature activations for preserving reasoning performance. In contrast, the MMLU evaluation
shows only a 2.6% performance decrease. Here MMLU is treated as a classification task by extracting
output logits for each answer choice. For embedding benchmarks, the average performance decline
is relatively modest at 2.27%, indicating that the selected embedding activation rows are more
universally applicable across different sequences in embedding tasks compared to generative tasks.

RankDecomp: Effect of Calibration Dataset For the generative benchmark, we observed that
performance is highly sensitive to the choice of calibration data. Calibration using a dataset designed
for instruction tuning, such as Alpaca, led to better outcomes, reducing performance degradation by
40% compared to using a general dataset like WikiText-2, which resulted in a 75% reduction. This
improvement is likely because GritLM was tailored for instruction tuning, and complex reasoning
tasks require preserving this specialized knowledge within the activations. In contrast, the embedding
benchmark exhibited less sensitivity to calibration data, with both Alpaca and WikiText-2 yielding
roughly equivalent performance.

RankDecomp: Effect of Post-Calibration Recovery finetuning In the recovery finetuning ex-
periment (denoted FT), we finetuned the model post-sparsification with a GritLM generative loss
(autoregressive perplexity) on the Alpaca dataset using 4096 samples at a batch size of 8. All models
were finetuned on a single A6000 GPU within 1 to 3 hours. As shown in Table 1, recovery finetuning
provided some improvement, recovering about 2% of generative performance. We hypothesize that
the effectiveness of this approach could be further enhanced with additional calibration data that more
closely aligns with the evaluation data distribution. However, as seen in Table 2, recovery finetuning
slightly negatively impacted embedding benchmark performance, reducing it by an additional 1.5%
compared to not applying finetuning.

3.4 Discussion

The results demonstrate the distinct yet complementary strengths of SparseDecomp and RankDe-
comp across generative, embedding, and latency benchmarks. SparseDecomp shows robustness in
generative and embedding tasks, maintaining performance even under increased sparsity levels due
to its ability to dynamically select activated columns tailored to each input sequence. However, the
lateny reduction achieved by SparseDecomp even as sparsity levels increase, is less pronounced. On
the other hand, RankDecomp offers significant latency reductions and maintains competitive perfor-
mance even at lower sparsity levels by reducing computational cost through dimensionality reduction
in both attention and FFN layers. RankDecomp however shows performance degradation at high
sparsity levels and is highly sensitive to the choice of calibration dataset, which directly influences its
generative performance. Together, these approaches provide a balanced trade-off: SparseDecomp
excels in dynamic adaptability, is robust to a wide range of sparsity levels, and requires no calibration,
while RankDecomp improves computational efficiency and remains effective with carefully chosen
calibration data. Their complementary nature suggests that integrating these methods could optimize
performance across various tasks and sparsity conditions, leveraging the dynamic selection strengths
of SparseDecomp with the efficiency and tuning sensitivity of RankDecomp.

4 Related Work

Large foundation models must cater to a variety of users with different performance needs and budgets,
leading to the costly practice of training, storing, and maintaining numerous user and task-specific
models. This challenge has spurred research into developing multiple models with various inference
latencies from a single training process, thereby reducing the overhead associated with creating and

7

managing multiple distinct models. Prior work has investigated training methods that enable subnet
extraction methods, such as in CNNs [41, 30, 3] and encoder-only transformers [14, 9, 12]. Among
decoder-based models, SortedNet [38] trains multiple sub-models simultaneously through a nested
architecture. Alternatively, MatFormer [17] introduces an efficient approach by embedding a nested
structure within FFN layers, enabling a single model to generate diverse sub-models without multiple
training runs. Although effective at weight decomposition, MatFormer requires training a model from
scratch, limiting its application to induce elasticity in existing open-source LLMs. For additional
related work see Appendix A.

Unlike existing work, in this paper we explore post-training methods aimed at inducing elasticity
without additional training or minimal training (using a calibration set). We first show that full
and partial training with MatFormer-like losses are inefficient, while naive projection approaches
such as Gaussian projection, leverage score sampling, and weight SVD perform poorly. We then
introduce the idea of weight decomposition to unify existing approaches, and introduce SparseDecomp
and RankDecomp. These novel methods are inspired by existing work in the inference efficiency
literature [7, 1], which we extend for inducing elasticity in pretrained models. Our approach allows
for the creation of multiple models with varying inference latencies from a single pretrained model,
addressing the need for diverse performance options without the overhead of training and maintaining
separate models.

5 Conclusion And Future Work

This work explored two novel post-training methods for inducing elasticity in pretrained LFMs:
SparseDecomp, which focuses on exploiting sparse activations in FFNs, and RankDecomp, which
leverages the basis-agnostic property of Transformer residual streams for dimension reduction. Our
experiments on GritLM-7B demonstrate that both methods can effectively create nested sub-models
with varying sparsity levels, enabling adaptable inference without retraining. While SparseDecomp
exhibits robustness across generative and embedding tasks, RankDecomp achieves larger latency
reductions but shows sensitivity to the calibration dataset. Future work will investigate combining
these methods to optimize for specific tasks and desired performance-latency trade-offs. Additionally,
exploring per-layer reduction strategies and adaptive routing mechanisms for sub-model selection
could further enhance the efficiency and flexibility of elastic LFMs. This research paves the way
towards adaptable and resource-aware deployment of powerful foundation models across a wider
range of applications.

References
[1] Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and

James Hensman. Slicegpt: Compress large language models by deleting rows and columns.
arXiv preprint arXiv:2401.15024, 2024.

[2] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson,
Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen, Kathleen Creel,
Jared Quincy Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano
Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren
Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto,
Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas
Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling,
Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark Krass, Ranjay Krishna, Rohith Kuditipudi,
Ananya Kumar, Faisal Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa
Li, Xuechen Li, Tengyu Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric
Mitchell, Zanele Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman,
Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan, Julian Nyarko, Giray Ogut, Laurel Orr,
Isabel Papadimitriou, Joon Sung Park, Chris Piech, Eva Portelance, Christopher Potts, Aditi
Raghunathan, Rob Reich, Hongyu Ren, Frieda Rong, Yusuf Roohani, Camilo Ruiz, Jack
Ryan, Christopher Ré, Dorsa Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishnan
Srinivasan, Alex Tamkin, Rohan Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang,
William Wang, Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga,

8

Jiaxuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia
Zheng, Kaitlyn Zhou, and Percy Liang. On the opportunities and risks of foundation models.
arXiv preprint arXiv: 2108.07258, 2021.

[3] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one
network and specialize it for efficient deployment. arXiv preprint arXiv:1908.09791, 2019.

[4] Saifon Chaturantabut and Danny C Sorensen. Nonlinear model reduction via discrete empirical
interpolation. SIAM Journal on Scientific Computing, 32(5):2737–2764, 2010.

[5] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

[6] Tim Dettmers and Luke Zettlemoyer. The case for 4-bit precision: k-bit inference scaling laws.
In International Conference on Machine Learning, pages 7750–7774. PMLR, 2023.

[7] Harry Dong, Beidi Chen, and Yuejie Chi. Prompt-prompted mixture of experts for efficient llm
generation. arXiv preprint arXiv:2404.01365, 2024.

[8] Nelson Elhage, Robert Lasenby, and Christopher Olah. Privileged bases in the transformer
residual stream, 2023. URL https://transformer-circuits. pub/2023/privilegedbasis/index. html.
Accessed, pages 08–07, 2023.

[9] Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand with
structured dropout. arXiv preprint arXiv:1909.11556, 2019.

[10] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. Journal of Machine Learning Research,
23(120):1–39, 2022.

[11] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv: 2210.17323, 2022.

[12] Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang. Dynamic
neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence,
44(11):7436–7456, 2021.

[13] Dan Hendrycks, Nicholas Carlini, John Schulman, and Jacob Steinhardt. Unsolved problems in
ml safety. arXiv preprint arXiv:2109.13916, 2021.

[14] Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. Dynabert: Dynamic
bert with adaptive width and depth. Advances in Neural Information Processing Systems,
33:9782–9793, 2020.

[15] Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alexander
Ratner, Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. Distilling step-by-step! outperform-
ing larger language models with less training data and smaller model sizes. arXiv preprint
arXiv:2305.02301, 2023.

[16] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, et al. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

[17] Sneha Kudugunta, Aditya Kusupati, Tim Dettmers, Kaifeng Chen, Inderjit Dhillon, Yulia
Tsvetkov, Hannaneh Hajishirzi, Sham Kakade, Ali Farhadi, Prateek Jain, et al. Matformer:
Nested transformer for elastic inference. arXiv preprint arXiv:2310.07707, 2023.

[18] Aditya Kusupati, Gantavya Bhatt, Aniket Rege, Matthew Wallingford, Aditya Sinha, Vivek Ra-
manujan, William Howard-Snyder, Kaifeng Chen, Sham Kakade, Prateek Jain, et al. Matryoshka
representation learning. Advances in Neural Information Processing Systems, 35:30233–30249,
2022.

9

[19] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, 2019.

[20] François Lagunas, Ella Charlaix, Victor Sanh, and Alexander M Rush. Block pruning for faster
transformers. arXiv preprint arXiv:2109.04838, 2021.

[21] Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via
speculative decoding. International Conference on Machine Learning, 2022.

[22] Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic
dimension of objective landscapes. arXiv preprint arXiv:1804.08838, 2018.

[23] Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivas-
tava, Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja vu: Contextual sparsity for efficient
llms at inference time. In International Conference on Machine Learning, pages 22137–22176.
PMLR, 2023.

[24] Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023.

[25] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

[26] Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one?
Advances in neural information processing systems, 32, 2019.

[27] Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo,
Swayam Singh, Xiangru Tang, Leandro Von Werra, and Shayne Longpre. Octopack: Instruction
tuning code large language models. arXiv preprint arXiv:2308.07124, 2023.

[28] Niklas Muennighoff, Hongjin Su, Liang Wang, Nan Yang, Furu Wei, Tao Yu, Amanpreet
Singh, and Douwe Kiela. Generative representational instruction tuning. arXiv preprint
arXiv:2402.09906, 2024.

[29] Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and Nils Reimers. Mteb: Massive text
embedding benchmark. arXiv preprint arXiv:2210.07316, 2022.

[30] Elvis Nunez, Maxwell Horton, Anish Prabhu, Anurag Ranjan, Ali Farhadi, and Mohammad
Rastegari. Lcs: Learning compressible subspaces for adaptive network compression at inference
time. arXiv preprint arXiv:2110.04252, 2021.

[31] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

[32] Sharath Nittur Sridhar and Anthony Sarah. Undivided attention: Are intermediate layers
necessary for bert? arXiv preprint arXiv:2012.11881, 2020.

[33] Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid,
Adam Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al.
Beyond the imitation game: Quantifying and extrapolating the capabilities of language models.
arXiv preprint arXiv:2206.04615, 2022.

[34] Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won
Chung, Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-
bench tasks and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261,
2022.

[35] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

[36] Yijun Tian, Yikun Han, Xiusi Chen, Wei Wang, and Nitesh V Chawla. Tinyllm: Learning a
small student from multiple large language models. arXiv preprint arXiv:2402.04616, 2024.

10

https://github.com/tatsu-lab/stanford_alpaca

[37] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez,
Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. ARXIV, 2023.

[38] Mojtaba Valipour, Mehdi Rezagholizadeh, Hossein Rajabzadeh, Marzieh Tahaei, Boxing Chen,
and Ali Ghodsi. Sortednet, a place for every network and every network in its place: Towards a
generalized solution for training many-in-one neural networks. arXiv preprint arXiv:2309.00255,
2023.

[39] Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. arXiv preprint
arXiv:1905.09418, 2019.

[40] Lidan Wang, Jimmy Lin, and Donald Metzler. A cascade ranking model for efficient ranked
retrieval. In Proceedings of the 34th International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’11, page 105–114, New York, NY, USA, 2011.
Association for Computing Machinery.

[41] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable neural
networks. arXiv preprint arXiv:1812.08928, 2018.

[42] Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. Q8bert: Quantized 8bit bert. In
2019 Fifth Workshop on Energy Efficient Machine Learning and Cognitive Computing-NeurIPS
Edition (EMC2-NIPS), pages 36–39. IEEE, 2019.

11

A Additional Related Works

While model families like Llama offer independently trained models at different scales, this approach
suffers from collocation overhead, behavioral inconsistencies, and a limited selection of sizes. To
address these limitations, researchers have explored various strategies, including:
Pruning: Techniques like Block Pruning [20] remove unnecessary weights or attention heads
[26, 39, 32, 24] to reduce model size. However, these methods often require additional training and
may be architecture-specific.
Distillation: Knowledge distillation methods [31, 36, 15] transfer knowledge from a larger model
to a smaller one, achieving size reduction while preserving performance. However, they still require
training a separate smaller model.
Quantization: Quantization techniques [6, 42] represent model weights with lower precision
formats, reducing memory footprint and improving efficiency. However, quantization can lead to
accuracy degradation.
Mixture of Experts (MoE): MoE models [10] employ a sparsely activated set of experts, allowing
for efficient scaling and adaptation to different inputs. However, training and managing MoE models
can be complex.

B Experiment Benchmark Details

B.1 Generative Performance Benchmark

Generative performance is evaluated on MMLU [13], GSM8K [5], BBH [33, 34], and HumanEval
[27] using exact match for MMLU, GSM8K, and BBH, and Pass@1 for HumanEval [28].

B.2 Embedding Performance Benchmark

Embedding performance is assessed using the Massive Text Embedding Benchmark (MTEB) [29],
specifically focusing on the Semantic Text Similarity (STS) task subset. Performance is measured by
comparing the cosine similarity of embeddings against ground truth similarity scores, with results
reported as Spearman correlation coefficients.

B.3 Latency Benchmark

We benchmark the GritLM model for Retrieval-Augmented Generation (RAG) in three modes: No
RAG, RAG only, and Query Caching. In RAG only mode, the retrieved context is placed directly into
the language model’s input. Although GritLM supports both Query Caching and Query-Doc Caching
modes, this study focuses on Query Caching due to the significant storage demands of caching entire
documents. Query Caching minimizes the number of forward passes by storing the key-value states
from the embedding forward pass in bfloat16 format and reusing them during generation, reducing
storage requirements compared to document caching.

Latency measurements use the Natural Questions dataset [19] with an index of 2,681,468 documents
derived from the BEIR NQ corpus [28]. Latency is assessed on an "AMD EPYC 7763 64-Core
Processor with 128 threads across 2 sockets" and an "NVIDIA L40 46GB GDDR6" GPU. For each
approach, two sample configurations are tested: Sample A (1 token query, 4000 tokens document)
and Sample B (4000 tokens query, 1 token document), with 16 tokens generated per test. The index
is stored in float32 format, and overall storage consists of the index and the passages. Variations in
I/O latency across benchmarking nodes necessitate re-evaluation of the reference model (GritLM-7B)
latency for each mode.

C Other Baselines

This section explores initial attempts at inducing elasticity in GritLM 7B by training-based and
weight sketching approaches which unfortunately resulted in significant performance drops. These
methods serve as a foundation for understanding the challenges and motivating the need for alternative
approaches.

12

C.1 Training-based Approaches

Full and Partial Training with Matformer Loss: We explored replacing GritLM’s FFN layers
with a nested Matformer structure and finetuning the entire model or just the FFN layers using
Matformer’s joint loss. However, even after training for 2 days, these approaches failed to preserve
GritLM’s performance, indicating that simply integrating Matformer’s structure and loss is both
expensive and insufficient.
Initialization Strategies: We experimented with various initialization strategies for the FFN layers,
including zero initialization, selective random initialization (where smaller submodels received
random weights), and other methods like He and Xavier initialization. None of these strategies
led to significant improvements, suggesting that initialization alone cannot effectively address the
challenges of inducing elasticity with training based approaches.

C.2 Post-training Approaches

Singular Value Decomposition (SVD): SVD decomposes weight matrices W into W = UΣV⊤
and creates lower-rank approximations Wk = UkΣkVk⊤ by selecting the top k singular values. While
this reduces parameters and computations, applying SVD to GritLM led to significant performance
drops, demonstrating the limitations of linear approximations.
Leverage Score Sampling: This data-driven approach selects important rows of a matrix based
on leverage scores li = ∥Ui∥2, where Ui is the i-th row of U from the SVD. Despite its theoretical
appeal, leverage score sampling also failed to maintain performance, suggesting that row importance
might not directly correlate with contributions to downstream tasks.
Gaussian Random Projection: This method projects weight matrices onto a lower-dimensional
subspace using random Gaussian matrices R: Wk = WR. While efficient, this approach also resulted
in performance degradation.
Discrete Empirical Interpolation Method (DEIM): DEIM attempts to address nonlinearities by
selecting a subset of informative entries within the activation states using Proper Orthogonal Decom-
position (POD) and DEIM indices (see Alg 1). However, in our experiments, DEIM accumulated
residual errors and underperformed weight SVD on the embedding benchmark.

Overall, these baseline methods, demonstrate the difficulties of inducing elasticity while maintaining
performance emphasizing the need for alternative approaches.

C.3 Discrete Empirical Interpolation Method

The performance degradation of these post-training approaches can be attributed to the significant
nonlinearity present in GritLM, primarily due to the activation functions within the FFN layers. These
functions introduce non-linear transformations that are crucial for the model’s expressive power and
performance. The linear reduction techniques we explored fail to account for these nonlinearities,
leading to discrepancies between the reduced models and the original GritLM. To effectively induce
elasticity while preserving performance, we need to consider alternative approaches that focus on the
activation states within the FFN layers and their modes of variation. By selectively removing less
important modes, we can reduce the dimensionality of the activation states without sacrificing the
model’s ability to capture essential information. We explore this strategy next.

To address the computational challenges posed by the nonlinearities within GritLM’s activation
states, we draw inspiration from Reduced-Order Modeling (ROM) and specifically implement the
Discrete Empirical Interpolation Method (DEIM) [4]. This approach reduces the dimensionality of
the activation states, leading to faster and more adaptable model variants while maintaining accuracy.

DEIM mitigates the computational complexity associated with nonlinearities by strategically selecting
a subset of the most informative entries within these high-dimensional activation states. The method
uses Proper Orthogonal Decomposition (POD), which identifies the dominant modes of variation
within the data. Mathematically, let Y ∈ Rb×s×dh represent a batch of input activation states to
the FFN, where b is the batch size, s is the sequence length, and dh is the hidden dimension. As
depicted in Algorithm 1, during offline calibration over a calibration dataset, we construct a covariance
matrix Z by accumulating the outer product of the activations over multiple calibration steps. Here
Y

(n)
act represents the activation state at the n-th calibration step, obtained after the first MLP and

nonlinearity in the FFN. f denotes the activation function, Wgate and Wup are projection matrices,

13

and ⊙ represents element-wise multiplication. Subsequently, we perform eigendecomposition on
Z: where Λ is a diagonal matrix containing the eigenvalues and V is a matrix whose columns are
the corresponding eigenvectors. We select the top k eigenmodes based on the magnitude of the
eigenvalues.

The crucial step in DEIM is the determination of DEIM indices, which pinpoint the most representative
entries within the selected eigenmodes. This can be accomplished using either a greedy selection
algorithm or leverage score selection. These indices guide the selection of a subset of entries
from the activation states during online inference, effectively reducing the dimensionality and
computational cost. We opted for the leverage score selection in the current experiments, as solving
the least squares problem for every FFN was prohibitively expensive. By incorporating DEIM, we
transform the original operation: Yfinal = Wdown(f(WgateY)⊙WupY) into a more efficient form:
Yfinal = WdownWpre(f(Wgate[P, :]Y) ⊙ Wup[P, :]Y) where P represents the DEIM selection
matrix.

The motivation behind using DEIM stems from the need to address the computational bottleneck
presented by the nonlinearities in GritLM that prevent naive slicing. In our experiments however
we found that DEIM accumulates residual errors and underperforms weight SVD on the embedding
benchmark. We highlight a few directions to investigate this in future work.

D Experiments and Results

D.1 Experimental Details

GritLM-7B GritLM [28], effectively combines embedding and generative tasks through instruction
tuning. Unlike traditional Retrieval Augmented Generation (RAG) systems that rely on separate
models for these tasks, GritLM leverages a single model initialized with Mistral 7B [16]. Despite
its unified nature, GritLM achieves performance comparable to models specifically designed for
either embedding or generation tasks. The key to GritLM’s efficiency lies in its ability to reduce the
computational cost associated with processing user queries and context. By employing “Query-Doc
Caching," GritLM stores and reuses relevant computations, effectively halving the number of forward
passes required compared to RAG systems. Furthermore, depending on the task, GritLM utilizes
different attention mechanisms: bidirectional attention for embedding tasks to capture comprehensive
context, and causal attention for generation tasks to produce coherent and contextually relevant text.

Training based approaches Based on the open-sourced pretrained GritLM model,1 we reimple-
ment its FFN layers by introducing the nested structure, and assign equal weights of partial losses for
all submodels. Following the MatFormer implementation, we set form factors for four submodels as
1, 2, 4, 8, and train these submodels simultaneously. We train the model on the embedding dataset
Medi2 2 and the generation dataset Tulu2 3 [28].

Post training approaches Gaussian Random Projection, Leverage Score Sampling, and Weight
SVD do not involve any training. DEIM uses a subsampled (25%) calibration set from the evaluation
set without labels in all experiments.

D.2 Latency Benchmark

We report the latency benchmark for baselines in Table 3.

D.3 Embedding Benchmark

The performance of the baselines on the embedding benchmark is listed in Table 4.

1https://huggingface.co/GritLM/GritLM-7B
2https://huggingface.co/datasets/GritLM/MEDI2
3https://huggingface.co/datasets/GritLM/tulu2

14

https://huggingface.co/GritLM/GritLM-7B
https://huggingface.co/datasets/GritLM/MEDI2
https://huggingface.co/datasets/GritLM/tulu2

Algorithm 1 Discrete Empirical Interpolation Method For Inducing Elasticity
1: Input: Batch size b, sequence length s, hidden dimension dh, intermediate dimension di, activation function

f , number of calibration steps Nc, truncation number k, FFN input Y ∈ Rb×s×dh .
2: Output: Model optimized with DEIM for efficient inference.
3: procedure OFFLINECALIBRATION(Y) ▷ Repeat for every layer
4: for n = 1 to Nc do ▷ Iterate over calibration steps
5: Yproj = Wgate · Y (n) ▷ Project using gate weights
6: Yup = Wup · Y (n) ▷ Project using up weights
7: Yact = f(Yproj)⊙ Yup ▷ Apply activation and element-wise multiplication
8: Update covariance matrix: Z += YactY

⊤
act ▷ Batch matrix multiply and accumulate over batch

dimension
9: end for

10: Λ, V = eig(Z) ▷ Eigendecomposition of Z
11: Identify top k eigenmodes:
12: idx = argsort(−Λ)[: k]
13: Vf = V [:, idx]
14: Determine DEIM indices: P = GreedySelection(Vf , k) or P = LeverageScoreSelection(Vf , k)
15: Compute transformation matrix: Wpre = Vf (P

⊤Vf)
−1

16: Combine transformations: Wcombined = Wdown ·Wpre ▷ Precomputed down projection matrix
17: end procedure

18: function GREEDYSELECTION(Vf , k)
19: n = number of rows in Vf

20: Initialize P as an empty matrix
21: idx_max = argmaxj |Vf (:, j)| ▷ Column with the largest magnitude
22: P = [P, eidx_max] ▷ Append unit vector for idx_max
23: for i = 2 to k do
24: Solve for c: c = (P⊤Vf)

−1P⊤Vf (:, i)
25: Compute residual: r = Vf (:, i)− Vfc
26: idx_max = argmaxj |r(j)| ▷ Index with the largest residual
27: P = [P, eidx_max] ▷ Expand P with unit vector for idx_max
28: end for
29: return P
30: end function

31: function LEVERAGESCORESELECTION(Vf , k)
32: Compute leverage scores: li =

∑
j Vf (i, j)

2 for each row i

33: Select top k indices: indices = argsort(−l)[: k]
34: Construct P from indices: P = I(:, indices) ▷ I is the identity matrix
35: return P
36: end function

37: procedure ONLINEINFERENCE(Y , Wcombined, P)
38: Adjust weights: W adj

gate = Wgate[P, :],W
adj
up = Wup[P, :]

39: Adjusted projections: Y adj
proj = W adj

gate · Y , Y adj
up = W adj

up · Y
40: Activated output: Y adj

act = f(Y adj
proj)⊙ Y adj

up

41: Final transformation: Yfinal = Wcombined · Y adj
act

42: return Yfinal

43: end procedure

15

Model Factor Mode Prompt GPU Latency (s, ↓) Storage (↓)

Sample A Sample B

Reference No RAG Query 0.380± 0.010 0.988± 0.002 0GB
RAG Query then Document 1.014± 0.002 1.053± 0.002 43GB

Query Caching Query then Document 1.188± 0.002 0.465± 0.002 43GB

Factor 1 No RAG Query 0.405± 0.011 1.177± 0.091 0GB
RAG Query then Document 1.083± 0.023 1.129± 0.024 43GB

Query Caching Query then Document 1.308± 0.066 0.482± 0.003 43GB

Factor 2 No RAG Query 0.403± 0.011 0.762± 0.011 0GB
RAG Query then Document 0.772± 0.006 0.789± 0.007 43GB

Query Caching Query then Document 0.965± 0.009 0.446± 0.002 43GB

Factor 4 No RAG Query 0.380± 0.013 0.634± 0.014 0GB
RAG Query then Document 0.662± 0.006 0.666± 0.008 43GB

Query Caching Query then Document 0.836± 0.009 0.406± 0.008 43GB

Factor 8 No RAG Query 0.383± 0.017 0.585± 0.016 0GB
RAG Query then Document 0.610± 0.008 0.627± 0.011 43GB

Query Caching Query then Document 0.792± 0.011 0.415± 0.006 43GB

Table 3: RAG latency benchmarking on Natural Questions with GritLM 7B reference and baseline
elastic versions at various form factors. Sample A has a query of 1 token and a document of 4000
tokens, and sample B is the inverse. For each approach, we generate 16 tokens.

Dataset Reference
GritLM 7B

Training-
Based

MLP Only

Post-Training

Gaussian
Leverage

Scores SVD DEIM

BIOSSES 86.31 32.04 7.79 -23.49 9.90 8.85
SICK-R 83.13 44.16 0.38 1.59 27.54 11.50
STS12 77.34 29.53 -3.59 18.22 35.80 9.58
STS13 85.05 32.06 -1.92 3.29 4.70 10.12
STS14 82.91 24.80 -1.61 -2.59 17.45 8.55
STS15 88.13 45.04 -0.38 5.54 27.77 9.11
STS16 86.24 46.58 -1.80 6.59 23.82 15.70
STS17 90.15 64.22 -5.73 8.86 18.37 9.54
STS22 68.61 36.25 -3.15 36.42 20.49 13.32
STSBenchmark 85.64 30.40 2.43 9.40 14.13 5.59

Average 83.35 38.51 -0.76 6.38 20.00 10.19

Table 4: Performance comparison between reference GritLM-7B and various elastic GritLM baselines
employing form-factor 2 on the STS subset of MTEB. Among the post-training baselines, weight
SVD achieves the highest performance, followed by DEIM.

E SparseDecomp: Sparse Decomposition of FFN Weights

E.1 Failure cases

In this section, we examine examples where SparseDecomp with 25% sparsity failed to perform
accurately on the GSM8K dataset. Case 1 shows that the model fails to aggregate useful information
from the previous reasoning stage, and case 2 shows that the model fails to calculate three digit
addition correctly.

16

Case 1

Question: George, a grade six teacher, ordered 600 burritos for the sixth-grade class picnic.
If there were 50 students at the picnic, and each student was given ten burritos, with Mr.
George eating 20 of them, calculate the total number of leftover burritos from the picnic?
Answer: 80
Model Output: George ordered 600 burritos. He gave 50 students 10 burritos each, so he
gave 50 * 10 = 500 burritos. Mr. George ate 20 burritos, so there were 600 - 20 = 580 burritos.
So the answer is 580.
Prediction: 580

Case 2

Question: Joey has 214 points before his turn in Scrabble. He scores 26 points. Then Marcy,
who has 225 points, scores 10 points. By how many points is Joey now winning?
Answer: 5
Model Output: Joey had 214 points. He scored 26 points. So he is now at 214 + 26 = 239
points. Marcy had 225 points. She scored 10 points. So she is now at 225 + 10 = 235 points.
Joey is now winning by 239 - 235 = 4 points. So the answer is 4.
Prediction: 4

F RankDecomp: Basis-Agnostic Low-Rank Decomposition

F.1 Failure cases

In this section, we examine several instances where RankDecomp failed to perform accurately on the
GSM8K dataset. These examples involve using a WikiText-calibrated model with 25% sparsity. This
configuration exhibits notable weaknesses in reasoning capabilities, often resulting in hallucinations
or repetitive answers.

Case 1

Question: Tom’s ship can travel at 10 miles per hour. He is sailing from 1 to 4 PM. He then
travels back at a rate of 6 mph. How long does it take him to get back?
Answer: 5
Model Output: Tom’s ship can travel at 10 miles per hour. He is sailing from 1 to 4 PM. He
then travels back at a rate of 6 mph. He travels back for 1 hour. So the answer is 1.
Prediction: 1

Case 2

Question: Jen got 3 fish. They each need $1 worth of food a day. How much does she spend
on food in the month of May?
Answer: 93
Model Output: Jen got 3 fish. They each need $1 worth of food a day. 3 fish are worth 3
fish. So the answer is 3.
Prediction: 3

G Benchmark Results

We provide additional plots to visualize the experiment results of SparseDecomp and RankDecomp
and the comparison. Figures 2 and 3 show their performance on generative benchmarks. Figures 4
and 5 show their performance on embedding benchmarks. Figures 6 to 9 show their latency per-
formance using line plots with error bars. Figures 10 to 13 show the trade-off between the average
generative performance and latency under the RAG mode and the query caching mode, evaluated on
Sample A and Sample B. Table 5 includes the full RAG latency benchmarking results.

17

GritLM 7B 5% 10% 25% 50%
Sparsity

Av
er

ag
e

pe
rfo

rm
an

ce
 (%

) 50.0% 49.4% 48.1% 47.4%
43.0%

Methods: GritLM VS. SparseDecomp

Figure 2: SparseDecomp results on generative
benchmarks.

GritLM 7B 5% 10% 25% 50%
Sparsity

Av
er

ag
e

pe
rfo

rm
an

ce
 (%

) 50.0% 47.6% 44.8%

30.6%

11.5%

Methods: GritLM VS. RankDecomp

Figure 3: RankDecomp results on generative
benchmarks.

GritLM 7B 5% 10% 25% 50%
Sparsity

Av
er

ag
e

pe
rfo

rm
an

ce
 (%

) 83.35 83.34 83.34 83.30 83.16

Methods: GritLM VS. SparseDecomp

Figure 4: SparseDecomp results on embed-
ding benchmarks.

GritLM 7B 5% 10% 25% 50%
Sparsity

Av
er

ag
e

pe
rfo

rm
an

ce
 (%

) 83.35 82.79 82.48
81.69

75.50

Methods: GritLM VS. RankDecomp

Figure 5: RankDecomp results on embedding
benchmarks.

GritLM 7B5% 10% 25% 50% 75% 90%
Sparsity

0.4

0.6

0.8

1.0

1.2

1.4

1.6

GP
U

La
te

nc
y

(s
)

Methods: GritLM VS. SparseDecomp on Sample A

No RAG
RAG
Query Caching

Figure 6: SparseDecomp latency performance
on sample A.

GritLM 7B 5% 10% 25% 50%
Sparsity

0.4

0.6

0.8

1.0

1.2

1.4

1.6

GP
U

La
te

nc
y

(s
)

Methods: GritLM VS. RankDecomp on Sample A
No RAG
RAG
Query Caching

Figure 7: RankDecomp latency performance
on sample A.

18

GritLM 7B5% 10% 25% 50% 75% 90%
Sparsity

0.4

0.6

0.8

1.0

1.2

1.4

1.6
GP

U
La

te
nc

y
(s

)

Methods: GritLM VS. SparseDecomp on Sample B
No RAG
RAG
Query Caching

Figure 8: SparseDecomp latency performance
on sample B.

GritLM 7B 5% 10% 25% 50%
Sparsity

0.4

0.6

0.8

1.0

1.2

1.4

1.6

GP
U

La
te

nc
y

(s
)

Methods: GritLM VS. RankDecomp on Sample B
No RAG
RAG
Query Caching

Figure 9: RankDecomp latency performance
on sample B.

0.6 0.8 1.0 1.2 1.4
Latency ratio

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Av
er

ag
e

pe
rfo

rm
an

ce
 ra

tio

5%10%
25%

50%

75%

90%

5%
10%

25%

50%

Generative vs. RAG Sample A Latency

SparseDecomp
RankDecomp

Figure 10: Trade-off between generative per-
formance and latency under the RAG mode,
evaluated on Sample A.

0.6 0.8 1.0 1.2 1.4
Latency ratio

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Av
er

ag
e

pe
rfo

rm
an

ce
 ra

tio

5%10%
25%

50%

75%

90%

5%
10%

25%

50%

Generative vs. RAG Sample B Latency

SparseDecomp
RankDecomp

Figure 11: Trade-off between generative per-
formance and latency under the RAG mode,
evaluated on Sample B.

0.6 0.8 1.0 1.2 1.4
Latency ratio

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Av
er

ag
e

pe
rfo

rm
an

ce
 ra

tio

5%10%
25%

50%

75%

90%

5%
10%

25%

50%

Generative vs. Query Caching Sample A Latency

SparseDecomp
RankDecomp

Figure 12: Trade-off between generative
performance and latency under the Query
Caching mode, evaluated on Sample A.

0.6 0.8 1.0 1.2 1.4
Latency ratio

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Av
er

ag
e

pe
rfo

rm
an

ce
 ra

tio

5%
10%
25%

50%

75%

90%

5%
10%

25%

50%

Generative vs. Query Caching Sample B Latency

SparseDecomp
RankDecomp

Figure 13: Trade-off between generative
performance and latency under the Query
Caching mode, evaluated on Sample B.

19

Model Mode Prompt SparseDecomp GPU Latency (s, ↓) RankDecomp GPU Latency (s, ↓) Storage (↓)
Sample A Sample B Sample A Sample B

Reference No RAG Query 0.477± 0.081 1.112± 0.436 0.477± 0.081 1.112± 0.436 0GB
RAG Query then Document 1.197± 0.045 1.205± 0.032 1.197± 0.045 1.205± 0.032 43GB

Query Caching Query then Document 1.531± 0.199 0.541± 0.006 1.531± 0.199 0.541± 0.006 43GB

5% No RAG Query 0.464± 0.083 1.064± 0.077 0.427± 0.013 1.098± 0.016 0GB
RAG Query then Document 1.438± 0.207 1.318± 0.175 1.140± 0.011 1.186± 0.013 43GB

Query Caching Query then Document 1.691± 0.247 0.544± 0.009 1.308± 0.016 0.519± 0.003 43GB

10% No RAG Query 0.472± 0.076 1.063± 0.078 0.401± 0.012 1.054± 0.013 0GB
RAG Query then Document 1.288± 0.193 1.214± 0.082 1.078± 0.010 1.124± 0.012 43GB

Query Caching Query then Document 1.472± 0.169 0.533± 0.007 1.243± 0.012 0.488± 0.003 43GB

25% No RAG Query 0.457± 0.081 1.018± 0.072 0.375± 0.013 0.895± 0.012 0GB
RAG Query then Document 1.192± 0.121 1.160± 0.072 0.918± 0.007 0.953± 0.008 43GB

Query Caching Query then Document 1.376± 0.126 0.534± 0.006 1.087± 0.009 0.439± 0.003 43GB

50% No RAG Query 0.446± 0.096 0.957± 0.171 0.311± 0.013 0.655± 0.008 0GB
RAG Query then Document 1.087± 0.074 1.061± 0.020 0.739± 0.011 0.774± 0.008 43GB

Query Caching Query then Document 1.318± 0.138 0.522± 0.004 0.916± 0.011 0.380± 0.003 43GB

75% No RAG Query 0.438± 0.106 0.948± 0.166
RAG Query then Document 1.157± 0.147 1.065± 0.023

Query Caching Query then Document 1.356± 0.185 0.510± 0.004

90% No RAG Query 0.437± 0.080 0.938± 0.076
RAG Query then Document 1.067± 0.074 1.035± 0.019

Query Caching Query then Document 1.275± 0.132 0.505± 0.003

Table 5: RAG latency benchmarking on Natural Questions with GritLM 7B reference and SparseDe-
comp and RankDecomp at various sparsity levels.

H Other Benchmarks

H.1 Generative Latency Benchmark

Figure 14: Generative latency benchmarking of elastic Grit-LM at form factors 1,2,4 and 8 for various
sequence lengths. We find that for generative modeling reducing form factor does not reduce latency
significantly, as the bottleneck is memory bandwidth bound.

In Figure 14, we benchmark the generative latency of the baseline GritLM model with formfactor
1 against the elastic GritLM models at form factors 2,4, and 8. The benchmark is on an “NVIDIA
A100 80GB: HBM2E" using prompts from GSM8k, and generated sequence lengths 128,256,512
and 1024. We find that inducing elasticity is less effective for generative decoding where the bulk of
time is spent in between decoding steps to move generated tokens (memory bandwidth bound) as
opposed to matrix multiplication in the FFN.

I RAG Latency benchmark

I.1 Depiction of RAG with Grit

Figure 15 illustrates how Grit-LM uses RAG.

20

Figure 15: RAG with Grit-LM [28, Figure 4] Left: Traditional Retrieval-Augmented Generation
(RAG) relies on a separate embedding model and generative model. Right: GritLM simplifies RAG
as it handles both embedding and generation. Query Caching removes the duplicate forward pass of
the query by reusing its representation. Query-Doc Caching also removes the forward pass on the
document during inference, as the cached index also stores the document key-value states.

I.2 Inference latency of RAG with RankDecomp when truncating model dimension

In Figure 16, Figure 17, Figure 18, we benchmark with model dimension reduction at various query
and document lengths.

Figure 16: Inference latency of RAG with 5% sparsity. When benchmarking scaling query length
(left), document length is fixed at 1, whereas query length is fixed at 1 when scaling document length
(right). In addition to the query/doc lengths, the formatting and prompt take up around 40 tokens. We
visualize the standard deviation across 100 runs as the shaded area. For each approach, we generate
16 tokens.

21

Figure 17: Inference latency of RAG with 10% sparsity. When benchmarking scaling query length
(left), document length is fixed at 1, whereas query length is fixed at 1 when scaling document length
(right). In addition to the query/doc lengths, the formatting and prompt take up around 40 tokens. We
visualize the standard deviation across 100 runs as the shaded area. For each approach, we generate
16 tokens.

Figure 18: Inference latency of RAG with 25% sparsity. When benchmarking scaling query length
(left), document length is fixed at 1, whereas query length is fixed at 1 when scaling document length
(right). In addition to the query/doc lengths, the formatting and prompt take up around 40 tokens. We
visualize the standard deviation across 100 runs as the shaded area. For each approach, we generate
16 tokens.

I.3 Inference latency of RAG baseline with SparseDecomp at various form factors.

Figure 19: Inference latency of RAG with GritLM 7B. When benchmarking scaling query length
(left), document length is fixed at 1, whereas query length is fixed at 1 when scaling document length
(right). In addition to the query/doc lengths, the formatting and prompt take up around 40 tokens. We
visualize the standard deviation across 100 runs as the shaded area. For each approach, we generate
16 tokens

22

Figure 20: Inference latency of RAG with GritLM 7B Factor 1. When benchmarking scaling query
length (left), document length is fixed at 1, whereas query length is fixed at 1 when scaling document
length (right). In addition to the query/doc lengths, the formatting and prompt take up around 40
tokens. We visualize the standard deviation across 100 runs as the shaded area. For each approach,
we generate 16 tokens

Figure 21: Inference latency of RAG with GritLM 7B Factor 2. When benchmarking scaling query
length (left), document length is fixed at 1, whereas query length is fixed at 1 when scaling document
length (right). In addition to the query/doc lengths, the formatting and prompt take up around 40
tokens. We visualize the standard deviation across 100 runs as the shaded area. For each approach,
we generate 16 tokens

Figure 22: Inference latency of RAG with GritLM 7B Factor 4. When benchmarking scaling query
length (left), document length is fixed at 1, whereas query length is fixed at 1 when scaling document
length (right). In addition to the query/doc lengths, the formatting and prompt take up around 40
tokens. We visualize the standard deviation across 100 runs as the shaded area. For each approach,
we generate 16 tokens

23

Figure 23: Inference latency of RAG with GritLM 7B Factor 8. When benchmarking scaling query
length (left), document length is fixed at 8, whereas query length is fixed at 1 when scaling document
length (right). In addition to the query/doc lengths, the formatting and prompt take up around 40
tokens. We visualize the standard deviation across 100 runs as the shaded area. For each approach,
we generate 16 tokens

24

	Introduction
	Methodology
	Weight Decomposition for Adaptable Inference
	MatFormer: A Training-Based Nested Decomposition
	SparseDecomp: Sparse Decomposition of FFN Weights
	RankDecomp: Basis-Agnostic Low-Rank Decomposition

	Experiments And Results
	Experimental Setup
	Results
	Ablation Studies
	Discussion

	Related Work
	Conclusion And Future Work
	Additional Related Works
	Experiment Benchmark Details
	Generative Performance Benchmark
	Embedding Performance Benchmark
	Latency Benchmark

	Other Baselines
	Training-based Approaches
	Post-training Approaches
	Discrete Empirical Interpolation Method

	Experiments and Results
	Experimental Details
	Latency Benchmark
	Embedding Benchmark

	SparseDecomp: Sparse Decomposition of FFN Weights
	Failure cases

	RankDecomp: Basis-Agnostic Low-Rank Decomposition
	Failure cases

	Benchmark Results
	Other Benchmarks
	Generative Latency Benchmark

	RAG Latency benchmark
	Depiction of RAG with Grit
	Inference latency of RAG with RankDecomp when truncating model dimension
	Inference latency of RAG baseline with SparseDecomp at various form factors.

