
ThinK: Thinner Key Cache by Query-Driven Pruning

Yuhui Xu1 Zhanming Jie1 Hanze Dong1 Lei Wang1 Xudong Lu2

Aojun Zhou2 Amrita Saha1 Caiming Xiong1 Doyen Sahoo1

1Salesforce AI Research 2 The Chinese University of Hong Kong

Abstract

Large Language Models (LLMs) have revolutionized the field of natural language
processing, achieving unprecedented performance across a variety of applications.
However, their increased computational and memory demands present significant
challenges, especially when handling long sequences. This paper focuses on the
long-context scenario, addressing the inefficiencies in KV cache memory con-
sumption during inference. Unlike existing approaches that optimize the memory
based on the sequence length, we identify substantial redundancy in the channel
dimension of the KV cache, as indicated by an uneven magnitude distribution and
a low-rank structure in the attention weights. In response, we propose THINK, a
novel query-dependent KV cache pruning method designed to minimize attention
weight loss while selectively pruning the least significant channels. Our approach
not only maintains or enhances model accuracy but also achieves a reduction in
KV cache memory costs by over 20% compared with vanilla KV cache eviction
and quantization methods. For instance, THINK integrated with KIVI can achieve
a 2.8× reduction in peak memory usage while maintaining nearly the same quality,
enabling up to a 5× increase in batch size when using a single GPU. Extensive eval-
uations on the LLaMA and Mistral models across various long-sequence datasets
verified the efficiency of THINK, establishing a new baseline algorithm for efficient
LLM deployment without compromising performance.

1 Introduction

Large language models (LLMs) [17, 5, 36, 42, 43, 38, 37] have emerged as a dominant paradigm
in natural language processing, achieving state-of-the-art performance across various tasks. A key
principle, the Scaling Law [25], suggests that LLMs exhibit emergent abilities as model size increases,
improving their capacity to understand complex context and handle long sequences [52]. This growth
in capacity enables LLMs to generate coherent, contextually accurate responses and supports a variety
of downstream applications, such as document summarization [56, 55], code generation [7], solving
mathematical problems [18, 59, 46, 29], and conversational AI [35, 36].

Despite their success in various applications, generating outputs with LLMs incurs significant
computational and financial costs, which rise with increasing model size and sequence length. Both
the training [40, 19, 12] and inference [1] stages involve frequent generation, further contributing
to these costs. Consequently, efficient LLMs have gained traction in recent years [21, 45]. To
address these challenges, quantization [15, 30, 10, 53] and pruning methods [41, 14] are employed to
reduce model size. Additionally, the key-value (KV) cache, stored in GPU memory alongside model
parameters, scales linearly with both sequence length and batch size, creating a substantial memory
burden when handling long sequences. Consequently, effective management of extended contexts is
essential for the practical deployment of LLMs. In this paper, we focus on the long-context scenario,
aiming to reduce memory consumption associated with processing lengthy sequences.

4th NeurIPS Efficient Natural Language and Speech Processing Workshop (ENLSP-IV 2024).

Query

S

D

5.2
0.1

0.1
0.2
7.8

4.5

Head N-1
 Eviction:

H2O,
SnapKV

....

Cache

1 0 1 0 0 1

Key
Channel Mask

Query

S

D

5.2
0.1

0.1
0.2
7.8

4.5

Head 1
 Eviction:

H2O,
SnapKV

....

Cache

1 0 1 0 0 1

Key
Channel Mask

Query

S

D

obs

5.2
0.1

0.1
0.2
7.8

4.5

Head 0
 Eviction:

H2O,
SnapKV

....

Cache

1 0 1 0 0 1

Key
Channel Mask

Figure 1: An illustration of the pruning procedure of THINK. Within each head, scores are calculated
for each channel, and only the top T channels out of D are selected for retention. A binary channel
mask, along with the pruned keys, is subsequently stored in the cache memory.

Specifically, the number of KV cache parameters is the product of batch size B, sequence length
S, number of layers L, number of heads N , channel size per head D, i.e., K,V ∈ RB×S×L×N×D,
which need to be stored in the GPU memory during inference. To reduce memory and computational
costs during inference, efficiency can only be achieved by pruning the dimensions across S,L,N,D
or applying quantization to the caches. It is well-acknowledged that token importance tends to be
sparse. Consequently, KV eviction algorithms have been proposed to reduce the memory footprint by
addressing the sequence length dimension S [51, 28, 58, 27]. Additionally, inter-layer redundancy
has been explored [31, 49, 4] to address the layer dimension L. Despite these advances, existing
methods have largely overlooked the channel dimension D. In this paper, we highlight that the
magnitudes across key cache channel dimensions are significantly imbalanced, and we observe a
low-rank structure in attention weights. Based on these findings, we hypothesize that the channel
dimension of the key cache exhibits redundancy. Consequently, we focus on exploring the redundancy
in the KV cache along dimension D, aiming to develop strategies that reduce memory costs without
compromising performance.

In this paper, we introduce THINK, a simple yet effective method for KV cache pruning. To pinpoint
the least significant channels, we formulate the problem as an optimization task, aiming to minimize
the loss in attention weights caused by pruning. To effectively address this problem, we propose a
novel query-dependent criterion that assesses the importance of each channel. Using this criterion, we
then select the most critical channels in a greedy fashion. We evaluate THINK using the LLaMA [34]
and Mistral [23] models, and validate its effectiveness across various long-sequence datasets. The
results indicate that, when paired with token eviction and KV cache quantization methods, THINK
not only maintains comparable or superior accuracy but also reduces KV cache memory costs by
over 20%.

Contributions. This work pioneers the investigation into the sparsity within the channels of the KV
cache. Specifically, we uncover that the activated key cache is sparse for a given query. This insight
allows us to prune the key cache channels using a query-induced norm. Building on this insight,
we introduce THINK, the first channel pruning method specifically designed for KV cache. THINK
reduces the dimensionality of the cache channels, leading to linear savings in memory usage. As a
plug-and-play technique, THINK is orthogonal to other KV cache compression schemes (e.g. KV
cache eviction, quantization). Our extensive experiments demonstrate THINK’s remarkable efficiency
on the LLaMA and Mistral models. Moreover, we explore the potential extension of THINK to value
cache pruning (THINKV), showcasing the broad applicability of our method.

2 Observations

We identify several key observations (in Appendix A.1) that motivate our approach to pruning the
channels of the KV cache. Specifically, we visualize the magnitude of the KV cache and perform
singular value decomposition (SVD) on the attention mechanism of the LLaMA model.

2

3 ThinK

Notations. We use uppercase letters (e.g., X,Y) to denote scalar values and boldface uppercase
letters (e.g., Q,K) to denote matrices and tensors. The notation ∥ · ∥p denotes the lp-norm for vectors.
Unless otherwise specified, ∥ · ∥ denotes the l2-norm. The Frobenius norm is denoted by ∥ · ∥F . The
floor function is denoted by ⌊·⌋, and the ceiling function is denoted by ⌈·⌉.

3.1 Preliminary Study of KV Cache Optimization

In scenarios with extended contexts or batch processing, the main limitations in terms of memory
and speed are due to the handling of the KV cache size. Considering a batch of requests to a Large
Language Model (LLM) service that provides a long input prompt consisting of tokens [xB1, ..., xBS],
the total KV cache size can be computed as follows: 2×B×S×L×N ×D, where L is the number
of layers, N is the number of heads, D is the head dimension. The KV cach size grows linearly as
the batch size B and sequence length S. For a model with multihead attention (MHA) [44], such
as LLaMA2-7B [43], a context length of 2048 and a batch size of 13 require storing a 13 GB KV
cache, which is equivalent to the size of the model parameters. The KV cache must be transferred
from off-chip memory (HBM) [22] to on-chip memory (cache) for each token generated, leading
to a memory bottleneck. This substantial memory demand highlights the challenges in managing
large-scale models and the need for efficient memory utilization strategies. Current methods optimize
the KV cache based on the sequence length S [51, 58, 28] and precision [20, 32]. We will introduce
a new method, THINK, to optimize it from the perspective of the number of head dimensions D.

Table 1: Performance comparison of pruning key cache by lp norm on LongBench.

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.

NrtvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

H2O 0.0 23.52 17.93 34.68 42.11 33.52 19.92 22.11 22.56 23.82 41.00 90.46 40.20 5.87 69.50 56.71 51.69 37.23
+l1 0.3 23.38 17.15 34.99 40.56 31.49 19.90 21.37 22.13 23.44 40.50 90.10 40.65 5.41 69.00 58.64 54.99 37.11
+l1 0.4 23.51 15.40 34.37 40.71 31.28 20.24 21.25 22.29 22.54 38.50 89.22 39.27 5.87 68.33 58.47 54.33 36.60
+l2 0.3 23.98 17.04 35.19 39.27 31.29 20.40 21.62 22.46 23.34 40.50 89.75 40.71 5.54 68.67 60.12 58.52 37.40
+l2 0.4 23.76 16.23 32.19 40.23 32.13 20.69 21.30 22.25 23.20 39.50 89.61 40.24 5.66 69.00 60.09 59.45 37.22

SnapKV0.0 24.84 23.96 38.77 42.75 34.55 20.87 22.26 22.61 23.97 70.00 90.52 40.29 5.81 69.50 59.04 51.81 40.10
+l1 0.3 24.43 24.63 40.11 41.83 33.47 21.22 21.47 22.41 23.73 66.50 90.39 40.20 5.70 68.10 61.04 55.37 40.04
+l1 0.4 24.58 24.87 39.30 42.76 31.95 20.47 20.95 22.22 23.42 55.50 90.22 39.13 5.82 68.39 60.71 56.10 39.15
+l2 0.3 24.47 24.73 38.16 41.86 32.23 20.23 21.59 22.45 23.77 67.50 90.33 40.31 5.70 68.42 62.65 60.07 40.28
+l2 0.4 24.52 23.75 38.35 42.42 32.96 20.39 21.21 22.28 23.41 60.00 90.20 39.59 5.75 68.29 61.96 60.59 39.74

Magnitude based Pruning: Based on the observations in Figure 3 which depicts the significant
variation in the magnitudes across different channels, one straightforward criterion is to use the norm
of the magnitude to measure the importance of different channels in key cache.

Mn,d =
∥∥K[n, :, d]

∥∥
p
. (1)

Given pruning ratio λ, We only keep T = ⌊(1 − λ)D⌋ most important channels among the D
channels of each head: I = TopT (M,T) where ∥ · ∥p is the lp norm of each channel. n ∈ [1, N] and
d ∈ [1, D] are indicators of heads and channels in key cache. I ∈ (Z+)

N×T stores the indicators of
the top T values in tensor M per head.

In Table 1, we present the results of key cache pruning with various pruning ratios applied to
the LLaMA-3-8B model. We utilize the l1 and l2 norms as criteria for evaluation, and validate
performance using the LongBench benchmark [2]. Compared to the baseline methods, H2O [58] and
SnapKV [28], both with a KV length of 512, we further prune the channels of the key cache. A 30%
pruning ratio can maintain accuracy; however, increasing it to 40% results in significant performance
degradation, especially for l1 norm based pruning. The results of magnitude-based pruning support
our assumption that the key cache is redundant in the channel dimension. These results also indicate
the need for a better pruning matrix to achieve higher pruning ratios effectively.

3.2 Query-Driven Pruning

For each head, the attention scores are computed using the queries and keys, and then applied to
the values. The formula for the attention for head i is: Attention(Qi,Ki,Vi) = softmax(QiKT

i√
D

)Vi,

3

where Qi,Ki,Vi ∈ RS×D. When one channel of Ki is pruned, the corresponding channel in Qi
will also be removed. We aim to find the optimal subset of channels to prune, denoted by the
selection matrix S ∈ {0, 1}D×D, where S is a diagonal matrix with binary entries (1 for keeping
a channel, 0 for pruning it). To better maintain the performance after pruning the channels, we
minimize the Frobenius norm of the difference between the original and pruned attention weights:
minS ∥QiK

T
i − QiS(KiS)T ∥F . Given a pruning ratio λ, it can further expanded as:

min
S

∥∥QiK
T
i −QiSK

T
i

∥∥
F

(2)

subject to trace(S) = ⌊(1− λ)D⌋
S = diag(s1, s2, . . . , sD), where sj ∈ {0, 1}

For simplicity, we use greedy algorithm to optimize S. To achieve the pruning goal, we define a
criterion for evaluating the importance of each channel and greedily select the channels with largest
scores: Scorei[j] =

∥∥Qi[:, j]Ki[:, j]
T
∥∥
F
, Ii = TopT (Scorei, T). Here’s a detailed explanation

of why it optimizes the selection matrix. The scorei[j] measures the magnitude of the interaction
between the query and key vectors for channel j in each head i. By selecting channels with the
highest interaction magnitudes, we aim to retain the most significant contributions to the attention
mechanism. This criterion ensures that the selected channels preserve the primary information flow
in the attention computation, thereby minimizing the loss of important information.

Observation Window. Based on the observations in SnapKV [28] that the last window of input
sequence recognizes highly similar attention pattern with generation. To reduce the computation cost,
we only use the last Sobs window to calculate the score: ∥Qi[−Sobs :, j]Ki[:, j]

T ∥F .

4 Experiment Results

4.1 Settings

Benchmark Datasets. We evaluate our proposed method against state-of-the-art KV cache com-
pression methods on two widely recognized benchmarks: LongBench and Needle-in-a-Haystack.
LongBench [2] is designed to comprehensively assess the long context understanding capabilities of
LLMs. It includes 17 datasets covering six different tasks: single-document QA, multi-document QA,
summarization, few-shot learning, synthetic tasks, and code completion. The average input length of
LongBench is 6,711 words, which necessitates reducing the KV cache to lower memory usage for
inference. Needle-in-a-Haystack [24] is a recently developed benchmark that tests a model’s ability
to accurately locate a small but crucial piece of information (the "needle") embedded within a lengthy
document (the "haystack"). The random positioning of the needle in this challenge serves as a critical
test to determine whether KV cache compression methods can retain essential information without
loss of accuracy.

Baseline Approaches. The baseline methods in our evaluations include Heavy Hitter Oracle (H2O),
SnapKV and KIVI, all of which are the state-of-the-art KV cache compression methods but use
different strategies. H2O [58] is designed to reduce memory usage by dynamically managing the
balance between recent tokens and Heavy Hitter (H2) tokens. H2 tokens represent a small set of
tokens that contribute most of the value when computing attention scores. SnapKV [28] introduces an
automated compression mechanism that selects clustered, important KV positions for each attention
head, optimizing the KV cache without sacrificing performance. KIVI [32] reduces memory overhead
by quantizing the KV cache into lower-precision formats, significantly lowering the memory cost
while preserving model accuracy.

Implementation Details. In this paper, we use LLaMA-2-7B-chat, LLaMA-3-8B-Instruct, LLaMA-
3-70B-Instruct [34] and Mistral-7B-Instruct-v0.2 [23] as the backbone LLMs, both accessible via
HuggingFace [48]. Our THINK aims to prune channels of the key cache, which is agnostic to KV
cache compression methods. If there is no other statement, we prune the key cache by default. All
the experiments are conducted using NVIDIA A100 GPUs. To ensure a fair comparison between KV
cache compression methods and their integration with THINK, we applied consistent hyperparameters
across both settings. For instance, when comparing SnapKV and SnapKV integrated with THINK,
we used a maximum pooling kernel size of 7 and an observation window size of 32, maintaining the
same KV-size for both configurations.

4

Table 2: Performance comparison of key cache pruning on LLaMA-3-(8B/70B)-Instruct on Long-
Bench. THINK (λ) indicates we prune the key cache channels with a pruning ratio of λ.

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.

NrtvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

LLaMA-3-8B-Instruct, KV-size Full
ALL KV 25.56 32.27 39.71 43.56 35.09 21.18 28.71 23.26 26.64 73.50 90.48 42.33 4.80 69.25 59.29 54.05 41.86

LLaMA-3-8B-Instruct, KV-size 128
H2O 22.12 13.20 31.61 37.79 32.71 18.45 20.32 22.02 21.10 38.50 87.75 39.14 5.83 69.50 55.06 50.97 35.38
+THINK (0.4) 22.85 14.55 29.49 38.63 30.84 18.90 20.12 21.96 20.68 38.50 86.38 38.40 5.50 69.17 57.93 56.12 35.63
+THINK (0.5) 23.47 14.06 28.67 38.35 30.21 17.87 19.69 21.94 19.95 38.50 87.14 38.07 4.92 69.50 57.99 56.66 35.44
SnapKV 21.19 13.55 32.64 38.75 29.64 18.73 18.98 21.62 20.26 45.00 88.36 37.64 5.13 68.85 55.84 51.82 35.50
+THINK (0.4) 22.11 14.67 32.49 36.25 28.63 18.80 18.93 21.49 20.14 44.50 88.11 38.32 5.75 69.17 58.21 55.89 35.84
+THINK (0.5) 21.79 14.73 32.03 37.52 27.86 18.28 18.50 21.52 19.71 43.50 86.00 38.35 5.59 69.50 57.96 56.96 35.61

LLaMA-3-8B-Instruct, KV-size 512
H2O 23.52 17.93 34.68 42.11 33.52 19.92 22.11 22.56 23.82 41.00 90.46 40.20 5.87 69.50 56.71 51.69 37.23
+THINK (0.4) 23.76 17.80 33.80 40.39 30.70 19.09 21.82 22.51 23.78 41.00 90.16 40.67 5.15 69.25 60.77 57.58 37.39
+THINK (0.5) 24.17 16.96 35.76 39.47 30.29 18.67 21.39 22.59 23.06 41.00 89.81 40.35 5.23 69.33 60.20 58.34 37.29
+THINK (0.6) 23.40 14.83 32.62 38.47 30.97 19.81 20.80 22.04 21.60 40.00 88.79 38.90 5.36 69.50 58.28 57.65 36.44
SnapKV 24.84 23.96 38.77 42.75 34.55 20.87 22.26 22.61 23.97 70.00 90.52 40.29 5.81 69.50 59.04 51.81 40.10
+THINK (0.4) 24.58 25.44 37.03 41.87 33.45 20.58 21.77 22.42 24.16 70.00 90.39 40.29 6.06 69.50 62.05 59.23 40.55
+THINK (0.5) 24.85 25.10 37.06 41.58 32.34 20.60 21.61 22.44 23.66 69.50 90.39 39.70 5.84 69.79 61.57 59.42 40.34
+THINK (0.6) 25.98 22.77 38.37 40.44 33.19 19.90 20.84 22.21 22.55 59.00 90.32 38.12 6.39 69.50 59.14 58.40 39.20

LLaMA-3-8B-Instruct, KV-size 1024
H2O 25.62 22.16 36.81 41.01 33.53 19.41 23.28 22.65 25.41 46.50 90.82 41.78 5.79 69.25 59.69 55.50 38.70
+THINK (0.4) 25.52 21.93 37.17 41.56 31.22 20.17 22.89 22.95 25.21 47.00 90.74 41.34 5.57 69.50 62.58 58.67 39.00
+THINK (0.5) 25.41 22.19 37.64 40.92 31.27 18.66 22.17 22.22 24.84 46.50 90.34 40.59 5.20 69.50 61.71 57.99 38.57
+THINK (0.6) 24.06 17.80 37.85 38.63 29.98 19.40 21.41 22.32 23.42 44.50 90.16 39.43 5.84 69.50 58.31 58.73 37.58
SnapKV 24.62 25.99 37.64 43.84 34.99 20.00 24.28 22.39 25.63 72.5 90.56 40.41 5.36 69.25 60.57 56.11 40.88
+THINK (0.4) 24.88 27.72 38.60 43.16 32.44 20.67 24.21 22.79 25.56 71.50 90.45 40.94 5.93 69.50 62.77 59.45 41.29
+THINK (0.5) 24.82 27.26 39.66 42.82 32.09 19.56 23.52 22.48 25.34 71.50 90.43 40.74 5.20 69.50 62.46 59.75 41.07
+THINK (0.6) 24.46 27.35 38.22 41.96 31.64 20.18 21.89 22.83 23.68 70.00 90.19 38.69 6.10 69.50 58.87 59.26 40.30

LLaMA-3-8B-Instruct, KV-size 2048
H2O 25.56 26.85 39.54 44.30 32.92 21.09 24.68 23.01 26.16 53.00 90.65 41.84 4.91 69.25 58.43 51.31 39.59
+THINK (0.4) 25.56 26.31 39.20 42.96 31.81 20.53 24.23 23.35 25.90 53.50 90.56 41.03 5.52 69.25 62.10 59.00 40.05
+THINK (0.5) 25.01 25.37 38.82 42.32 31.27 20.50 23.78 23.21 26.03 53.00 90.37 40.86 5.13 69.50 61.91 58.95 39.75
+THINK (0.6) 24.37 22.14 37.77 40.13 29.50 20.26 22.09 22.76 24.78 49.50 90.16 39.69 5.56 69.50 59.24 58.78 38.51
SnapKV 25.86 29.55 41.10 44.99 35.80 21.81 25.98 23.40 26.46 73.50 90.56 41.66 5.17 69.25 58.67 51.52 41.58
+THINK (0.4) 25.41 29.79 39.21 43.35 33.96 21.49 25.78 23.11 26.23 73.00 90.56 41.79 5.81 69.50 62.45 59.19 41.91
+THINK (0.5) 25.00 30.25 39.27 43.23 32.93 21.24 25.16 23.01 26.5 73.00 90.37 41.26 5.45 69.50 62.3 59.84 41.77
+THINK (0.6) 24.89 28.88 40.44 41.30 29.99 21.34 23.48 22.9 24.99 72.50 90.36 38.5 5.71 69.50 59.77 59.50 40.88

LLaMA-3-70B-Instruct, KV-size 128
SnapKV 25.91 39.41 43.83 49.60 51.23 27.76 22.14 21.91 23.16 69.00 91.55 43.54 12.50 72.00 48.41 63.49 44.09
+THINK (0.4) 25.64 39.20 43.60 50.22 50.50 29.32 21.70 21.96 23.35 68.00 91.27 43.24 12.50 73.00 48.01 62.43 44.00
+THINK (0.5) 26.31 38.76 44.86 48.54 49.62 28.97 21.46 22.01 22.91 67.00 91.52 43.15 12.50 72.50 47.21 60.82 43.63

LLaMA-3-70B-Instruct, KV-size 512
SnapKV 27.95 45.19 48.50 50.97 54.53 29.78 25.34 22.36 26.03 73.50 92.63 45.07 12.50 72.50 45.21 68.22 46.27
+THINK (0.4) 27.47 45.31 48.57 51.22 54.32 30.05 25.42 22.72 26.20 73.50 92.13 45.53 12.50 73.00 48.32 66.99 46.45
+THINK (0.5) 26.97 44.55 48.16 50.84 53.80 30.57 25.29 22.65 25.53 73.00 92.13 43.66 12.50 73.00 50.52 64.82 46.12

LLaMA-3-70B-Instruct, KV-size 1024
SnapKV 26.80 46.21 49.93 51.70 54.71 29.86 27.61 22.43 27.15 73.50 92.38 46.18 12.50 72.50 42.84 69.89 46.64
+THINK (0.4) 27.04 46.01 50.13 51.96 54.36 29.87 27.74 22.78 27.07 73.50 91.88 46.35 12.50 73.00 45.05 67.87 46.69
+THINK (0.5) 27.62 46.22 48.97 51.79 53.39 30.47 27.45 23.05 26.57 73.50 91.88 43.99 12.50 72.50 47.41 66.84 46.51

LLaMA-3-70B-Instruct, KV-size 2048
SnapKV 27.44 46.51 49.60 51.80 54.77 31.05 29.67 22.44 27.43 73.50 92.38 45.98 12.50 72.50 41.86 68.72 46.76
+THINK (0.4) 27.13 46.26 50.04 51.72 55.03 31.19 29.75 22.47 27.28 73.50 91.88 46.37 12.50 72.50 42.66 67.77 46.75
+THINK (0.5) 27.84 46.86 49.18 51.97 53.58 31.44 29.41 22.89 27.33 73.50 91.88 43.60 12.50 72.50 44.78 66.65 46.62

4.2 Results on LongBench

Tables 2 and 3 present the results of KV compression methods and their integration with our proposed
channel pruning technique for the key cache (THINK) across three different base LLMs, evaluated at
various KV-sizes on the LongBench benchmark. The following observations can be drawn: (1) Our
method successfully prunes the channels of the key cache after the KV cache has been compressed
using H2O and SnapKV. For the LLaMA-3-8B-Instruct base model, our approach reduces memory
usage while slightly improving performance for both H2O and SnapKV. For the Mistral-7B-Instruct-
v0.2 base model, our method similarly reduces memory usage, with only a minor performance drop in
some cases. For the larger LLaMA-3-70B base model, our method achieves comparable or superior
performance after pruning 40% of the key cache channels, compared to the SnapKV baselines. (2)
When Comparing SnapKV or H2O integrated with THINK in Table 2 to SnapKV or H2O integrated
with l1 or l2 norm in Table 1, our query-driven channel pruning approach demonstrates superior
performance when the pruning ratio of λ = 0.4. (3) Lower pruning ratios generally result in better
performance compared to higher pruning ratios. (4) As the KV-size increases from 128 to 2048,
the performance of our channel pruning method improves. Notably, with a KV-size of 2048 and

5

Table 3: Performance comparison of key cache pruning on Mistral-7B-Instruct-v0.2 on LongBench.
THINK (λ) indicates we prune the key cache channels with a pruning ratio of λ.

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.

NrtvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

Mistral-7B-Instruct-v0.2, KV-size Full
ALL KV 26.63 32.99 49.34 42.77 27.35 18.77 32.87 24.24 27.10 71.00 86.23 42.96 2.75 86.98 56.93 54.49 42.71

Mistral-7B-Instruct-v0.2, KV-size 128
H2O 21.21 21.81 38.87 30.42 20.36 12.30 20.58 22.61 22.10 39.00 82.37 40.44 2.90 79.56 51.22 48.38 34.63
+THINK (0.4) 21.17 21.90 39.29 29.92 20.99 12.30 20.84 22.91 21.92 39.00 82.70 40.35 2.97 79.21 51.19 48.32 34.69
+THINK (0.5) 21.67 21.80 39.48 28.74 20.65 13.14 20.57 22.83 21.78 39.00 82.54 40.12 3.61 78.39 50.27 48.4 34.56
+THINK (0.6) 21.04 21.30 39.56 28.68 21.29 13.97 20.13 22.52 21.81 39.50 82.05 39.14 4.16 74.23 49.83 47.67 34.18
SnapKV 19.17 21.40 42.93 36.76 22.44 15.86 19.16 21.84 21.55 47.50 84.15 40.24 2.30 68.26 52.31 48.80 35.29
+THINK (0.4) 20.52 21.00 42.65 37.58 22.09 15.23 19.29 22.01 21.22 47.00 83.85 39.64 3.20 67.45 51.48 48.31 35.16
+THINK (0.5) 20.67 20.60 43.37 37.27 21.58 15.66 19.06 21.79 21.02 47.00 83.38 39.77 3.65 67.06 50.80 48.35 35.06
+THINK (0.6) 21.25 20.82 44.20 36.21 21.68 16.47 19.05 21.99 20.73 45.00 83.81 38.79 4.19 66.90 49.99 47.61 34.92

Mistral-7B-Instruct-v0.2, KV-size 512
H2O 21.83 26.00 44.69 32.46 23.05 14.69 23.53 23.06 24.59 42.00 85.22 41.49 3.40 86.20 54.78 51.09 37.38
+THINK (0.4) 21.58 26.15 44.49 32.73 23.99 15.09 23.56 23.28 24.45 42.00 85.58 42.58 3.18 85.7 54.39 51.15 37.49
+THINK (0.5) 22.76 25.74 44.61 31.74 23.25 13.91 23.31 23.13 24.34 41.00 85.39 41.85 2.82 84.36 54.69 50.88 37.11
+THINK (0.6) 22.91 25.57 44.04 29.48 22.88 13.67 23.31 22.64 24.10 41.00 85.31 41.15 2.98 82.34 53.70 50.25 36.58
SnapKV 24.44 27.81 48.98 39.46 25.25 16.98 23.70 22.96 24.37 67.00 85.88 41.26 2.78 86.56 56.46 53.41 40.46
+THINK (0.4) 24.27 28.46 49.26 38.13 24.22 16.92 23.59 23.70 24.46 67.50 85.9 42.51 2.92 85.32 55.89 53.35 40.40
+THINK (0.5) 24.56 29.22 48.59 37.70 24.27 17.39 23.68 23.65 24.58 67.50 86.05 42.01 3.07 86.30 56.49 53.29 40.52
+THINK (0.6) 24.07 28.27 49.10 38.65 24.31 17.52 23.16 23.51 24.23 67.00 86.33 40.78 3.69 83.74 54.94 52.23 40.10

Mistral-7B-Instruct-v0.2, KV-size 1024
H2O 23.67 28.55 46.40 36.99 24.82 15.02 25.21 23.04 25.77 46.00 85.93 41.98 3.24 86.57 56.40 52.75 38.90
+THINK (0.4) 23.97 28.91 45.84 35.78 24.88 14.55 25.11 23.35 25.83 45.50 86.11 42.44 3.23 84.82 56.21 53.02 38.72
+THINK (0.5) 23.89 28.40 46.60 35.57 24.26 14.78 24.98 23.31 25.68 44.50 86.16 42.72 3.38 83.20 55.88 52.63 38.50
+THINK (0.6) 23.87 27.76 46.25 35.28 24.38 14.74 24.35 23.35 25.50 44.50 85.38 41.37 3.34 81.42 55.21 51.89 38.04
SnapKV 25.47 29.57 49.33 40.90 25.53 19.01 25.94 23.89 26.21 69.50 86.48 42.10 2.98 88.56 57.19 53.60 41.64
+THINK (0.4) 25.22 30.48 48.58 41.11 25.28 18.99 25.91 24.00 26.13 70.00 86.64 43.35 2.98 86.3 56.71 54.19 41.62
+THINK (0.5) 25.63 30.08 49.41 40.59 25.13 19.58 25.47 24.23 25.92 69.5 86.67 42.31 2.74 84.78 57.43 53.59 41.44
+THINK (0.6) 24.69 29.3 48.90 40.44 25.33 19.58 25.23 23.6 25.25 69.00 86.85 40.86 3.19 83.70 56.3 53.30 40.97

Mistral-7B-Instruct-v0.2, KV-size 2048
H2O 25.76 31.10 49.06 40.38 26.43 16.78 27.17 23.64 26.69 55.00 86.35 42.48 2.72 86.64 56.98 53.91 40.69
+THINK (0.4) 25.40 30.80 48.45 39.64 26.08 16.82 27.12 23.79 26.65 53.50 86.39 43.03 3.29 86.39 56.61 53.60 40.47
+THINK (0.5) 25.68 31.24 48.69 39.65 25.84 16.72 26.69 23.57 26.78 52.00 86.74 42.85 4.01 83.46 57.12 53.67 40.29
+THINK (0.6) 25.83 31.00 48.23 38.58 25.71 16.54 26.51 23.81 26.28 50.50 86.57 42.05 3.36 82.49 56.04 52.67 39.76
SnapKV 25.89 32.56 48.55 41.68 27.24 18.75 28.90 24.47 26.63 70.00 86.27 42.57 3.09 86.93 57.44 53.83 42.18
+THINK (0.4) 25.77 32.67 48.70 41.06 27.07 19.14 28.91 24.37 26.88 70.00 86.37 42.75 3.61 87.38 57.21 54.44 42.27
+THINK (0.5) 26.44 32.94 49.02 40.86 26.84 19.49 28.46 24.51 26.72 70.00 86.50 41.75 2.78 84.70 56.47 54.15 41.98
+THINK (0.6) 26.00 32.53 48.73 40.95 26.77 18.92 27.40 23.97 26.37 70.00 86.45 41.12 3.31 82.24 56.01 53.53 41.52

Table 4: Performance evaluation of combining THINK with KIVI [32] on LongBench. THINK (0.4)
indicates we prune the key cache channels with a pruning ratio of λ = 0.4.

Method Bit

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.

NrtvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

KIVI 2/2 19.47 18.62 30.28 29.42 25.00 10.30 21.34 20.51 25.10 63.00 85.04 40.16 4.00 8.00 58.04 52.48 31.92
+THINK (0.4) 2/2 19.46 19.01 30.52 28.79 25.78 9.53 22.11 20.66 25.73 63.00 84.62 41.54 3.50 7.00 56.51 48.92 31.77

a pruning ratio of 0.4, our method even surpasses the performance of LLaMA-3-8B-Instruct with
a full KV cache. These findings suggest that our method is agnostic to the underlying KV cache
compression techniques and can further enhance both performance and memory efficiency. Moreover,
query-driven channel pruning proves more effective than l1 and l2 norm-based methods for channel
pruning in LLMs. We further validate the efficacy of our method by applying it to the KV cache
quantization technique KIVI [32], as shown in Table 4. First, we prune 40% of the key cache channels,
followed by quantization of the remaining channels into 2-bit (implementation details provided in
Appendix C.2). Compared to the standard KIVI method, our approach reduces KV cache memory by
20%, with minimal performance degradation.

4.3 Ablations

Performance Comparison Under the Same Memory Usage. To ensure a fair comparison, we
adjust the KV-size of H2O or SnapKV to match the memory usage of H2O with THINK or SnapKV
with THINK on Mistral-7B-Instruct-v0.2. For example, the KV-size of H2O with THINK is set to
128. Due to channel pruning applied to the key cache, the memory consumption of H2O with THINK
at a KV-size of 128 is lower than that of H2O at the same KV-size. Consequently, the KV-size of

6

100 200 300 400 500 600 700 800

KV Cache Memory (M)

34

35

36

37

38

39

40

41

42

L
on

gB
en

ch
P

er
fo

rm
an

ce

H2O + ThinK (0.4)

H2O

SnapKV + ThinK (0.4)

SnapKV

(a)

100 200 300 400 500 600

Batch Size

20

30

40

50

60

70

M
em

or
y

U
sa

ge
(G

B
)

Vanilla

KIVI 4/4

KIVI 4/4, ThinK (0.4)

KIVI 2/2

KIVI 2/2, ThinK (0.4)

(b)

Figure 2: (a) presents the performance comparison with token eviction methods under identical
memory usage for Mistral-7B-Instruct-v0.2, while (b) illustrates the memory usage comparison
with the KV cache quantization method KIVI across different batch sizes for LLaMA-2-7B-chat.
THINK (0.4) indicates we prune the key cache channels with a pruning ratio of λ = 0.4.

Table 5: Needles-in-a-Haystack Test Results

Model Method λ
KV-size

128 512 1024 2048

LLaMA3-8B-Instruct
SnapKV 0.0 79.6 90.2 91.2 91.7
SnapKV+THINK 0.4 79.6 90.3 91.2 91.7
SnapKV+THINK 0.5 77.4 89.6 91.0 91.7

Mistral-7B-Instruct-v0.2

SnapKV 0.0 77.8 89.5 90.4 90.8
SnapKV+THINK 0.4 78.6 90.1 90.6 90.9
SnapKV+THINK 0.5 78.1 90.1 90.8 91.1
SnapKV+THINK 0.6 75.9 89.2 90.6 91.1

H2O is adjusted from 128 to 109 to equalize memory usage. Table 7 and Figure 2a present the
results of these comparisons on the LongBench benchmark. The results demonstrate that H2O or
SnapKV combined with THINK consistently outperforms their counterparts without THINK while
maintaining the same memory footprint. This highlights the effectiveness of integrating query-driven
channel pruning with KV cache compression methods, enabling more efficient memory utilization
and improved compression of the KV cache.

Memory Usage Comparison. To evaluate the efficiency of THINK, we follow the methodology used
in KIVI [32]. We generate synthetic workloads with an input prompt length of 160 and an output
length of 338. The peak memory usage is reported for the vanilla FP16 baseline, KIVI, and KIVI
combined with THINK (0.4) for LLaMA-2-7B-chat. As in Figure 2b, the memory savings from our
method become increasingly evident as the batch size grows, in both the KIVI 2/2 and KIVI 4/4
configurations. Compared to the baseline model, our approach achieves over a 5× increase in batch
size while maintaining the same memory footprint when integrated with KIVI. More ablations are
presented in Appendix A.2.

4.4 Results on Needle-in-a-Haystack

Table 5 presents the results of the Needle-in-a-Haystack test, using the SnapKV [28] approach with
varying KV-sizes, ranging from 128 to 2048. With a modest pruning ratio of λ = 0.4, THINK
consistently outperforms or matches the accuracy of the original SnapKV across both LLaMA-3
and Mistral models, regardless of KV-size. These comparisons demonstrate that the proposed query-
driven channel pruning method effectively retains informative channels while discarding noisy ones.
However, when the pruning ratio increases to λ ≥ 0.5, we observe a drop in accuracy with smaller
KV-sizes, particularly for 128 and 512, across both LLaMA-3 and Mistral models. Despite this,
THINK achieves comparable performance with SnapKV when the KV-size is larger(i.e., 1024 and

7

2048). Intuitively, a larger pruning ratio with a smaller KV-size may lead to the loss of more critical
information compared to scenarios with a larger KV-size. In addition, the performance on larger
KV-sizes suggests that THINK is robust for long-context tasks.

Figure 5 (a)-(d) (in Appendix B) visualize the Needle-in-a-Haystack accuracy across varying token
lengths and depth percentages. The KV-sizes are set to 128 and 1024, with pruning ratios of λ = 0.4
and λ = 0.5, respectively. THINK preserves the retrieval capabilities of SnapKV, although there
are minor numerical differences in overall accuracy (e.g., 77.8 vs. 78.6 and 90.4 vs. 90.6). THINK
matches SnapKV in accuracy for the majority of token limits and depths, demonstrating consistency
in performance. Furthermore, THINK successfully retrieves certain "needles" that SnapKV fails to
capture, resulting in improved overall accuracy. These visualizations highlight the robustness of
THINK from a fine-grained perspective, illustrating its capacity to enhance the original approach.

5 Related Work

In scenarios involving long contexts, the most significant computational burden from the attention
mechanism is the key-value (KV) cache. Reducing the KV cache is a high priority for optimizing de-
ployment efficiency. System-level optimizations, such as FlashAttention [8] and PagedAttention [26],
have been developed to address this issue. Additionally, algorithm-level optimizations are being
explored to further enhance efficiency.

KV Cache Eviction. StreamingLLM [51] maintains a few initial tokens and some recent tokens based
on the observation of attention sink, which may result in the loss of important information carried by
the dropped tokens. H2O [58] retains only a small portion of the tokens by greedily dropping tokens
based on their contributions to the cumulative attention. SnapKV [28] selects clustered important KV
positions for each attention head from an ‘observation’ window located at the end of the prompts.
FastGen [16] adaptively evicts tokens from attention heads that emphasize local contexts. This
approach focuses on discarding non-special tokens centered on special tokens, while the standard
KV cache is used only for attention heads that broadly attend to all tokens. PyramidKV [57] and
PyramidInfer [54] considers adjusting the KV cache size across different layers by allocating more
cache in the lower layers and less in the higher ones.

KV Cache Quantization. SmoothQuant [50] can quantize the KV cache to 8-bit with minimal
performance degradation. Q-Hitter [58] uses accumulated attention scores and ‘Quantization Friend-
liness’ metrics to identify tokens that are essential for maintaining the generalization capabilities of
LLMs and are suitable for KV cache quantization. Some studies have found that the key cache and
value cache should be quantized differently [32, 20]: the key cache should be quantized per-channel,
while the value cache should be quantized per-token.

Structured Pruning of LLMs. Structured pruning [33, 11] of LLMs traditionally focuses on
removing unimportant layers, heads, and hidden dimensions, which often results in significant
performance degradation. In contrast, our methodology preserves the original architecture of the
LLM and specifically targets the channel dimension within each head’s key cache. By dynamically
identifying unimportant channels based on data dependant criterion, our approach greatly reduce the
key cache-size with negligible performance loss.

6 Conclusion

Motivated by the observation that certain channels have significantly larger magnitudes compared to
others, and the singular value analysis indicates that the key cache is inherently low-rank [39], we
propose THINK to perform pruning over the key cache channel. The proposed pruning strategy is
query-dependant and optimized based on the attention scores, ensuring that essential information
is retained for each input query. In addition, THINK can be seamlessly integrated with other
popular token-level KV cache quantization techniques [28, 58], further enhancing inference efficiency.
Extensive experiments on LongBench [2] and Needle-in-a-Haystack tests with two foundation models
demonstrate the effectiveness and robustness of our query-dependent channel pruning method. Our
approach achieves comparable or superior performance to baseline methods while reducing the key
cache size by 40%. Our analysis indicates that THINK can maintain superior performance over
baselines with a smaller KV cache size under equivalent memory consumption conditions.

8

References
[1] Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and

Sumit Sanghai. Gqa: Training generalized multi-query transformer models from multi-head
checkpoints. arXiv preprint arXiv:2305.13245, 2023.

[2] Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long
context understanding. arXiv preprint arXiv:2308.14508, 2023.

[3] Srinadh Bhojanapalli, Ayan Chakrabarti, Himanshu Jain, Sanjiv Kumar, Michal Lukasik, and
Andreas Veit. Eigen analysis of self-attention and its reconstruction from partial computation.
arXiv preprint arXiv:2106.08823, 2021.

[4] William Brandon, Mayank Mishra, Aniruddha Nrusimha, Rameswar Panda, and Jonathan Ragan
Kelly. Reducing transformer key-value cache size with cross-layer attention. arXiv preprint
arXiv:2405.12981, 2024.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[6] Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatterbrain:
Unifying sparse and low-rank attention. Advances in Neural Information Processing Systems,
34:17413–17426, 2021.

[7] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[8] Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

[9] James W Demmel. Applied numerical linear algebra. SIAM, 1997.

[10] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient
finetuning of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

[11] Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan Liu, Maosong
Sun, and Bowen Zhou. Enhancing chat language models by scaling high-quality instructional
conversations. arXiv preprint arXiv:2305.14233, 2023.

[12] Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen
Sahoo, Caiming Xiong, and Tong Zhang. Rlhf workflow: From reward modeling to online rlhf.
arXiv preprint arXiv:2405.07863, 2024.

[13] Harry Dong, Xinyu Yang, Zhenyu Zhang, Zhangyang Wang, Yuejie Chi, and Beidi Chen. Get
more with less: Synthesizing recurrence with kv cache compression for efficient llm inference.
arXiv preprint arXiv:2402.09398, 2024.

[14] Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned
in one-shot. In International Conference on Machine Learning, pages 10323–10337. PMLR,
2023.

[15] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

[16] Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells
you what to discard: Adaptive kv cache compression for llms. arXiv preprint arXiv:2310.01801,
2023.

[17] Muhammad Usman Hadi, Rizwan Qureshi, Abbas Shah, Muhammad Irfan, Anas Zafar, Muham-
mad Bilal Shaikh, Naveed Akhtar, Jia Wu, Seyedali Mirjalili, et al. Large language models: A
comprehensive survey of its applications, challenges, limitations, and future prospects. TechRxiv,
2023.

9

[18] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
arXiv preprint arXiv:2103.03874, 2021.

[19] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

[20] Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia
Shao, Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm
inference with kv cache quantization. arXiv preprint arXiv:2401.18079, 2024.

[21] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021.

[22] Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele P Scarpazza. Dissecting the nvidia
volta gpu architecture via microbenchmarking. arXiv preprint arXiv:1804.06826, 2018.

[23] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, et al. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

[24] Gregory Kamradt. Needle In A Haystack - pressure testing LLMs. Github, 2023.

[25] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

[26] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pages 611–626, 2023.

[27] Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via
speculative decoding. In International Conference on Machine Learning, pages 19274–19286.
PMLR, 2023.

[28] Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye,
Tianle Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for
before generation. arXiv preprint arXiv:2404.14469, 2024.

[29] Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

[30] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization
for on-device llm compression and acceleration. Proceedings of Machine Learning and Systems,
6:87–100, 2024.

[31] Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gholamreza Haffari, and Bohan Zhuang. Mini-
cache: Kv cache compression in depth dimension for large language models. arXiv preprint
arXiv:2405.14366, 2024.

[32] Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv
preprint arXiv:2402.02750, 2024.

[33] Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023.

[34] AI Meta. Introducing meta llama 3: The most capable openly available llm to date. Meta AI,
2024.

10

[35] OpenAI. OpenAI: Introducing ChatGPT, 2022.

[36] OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

[37] Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al.
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv
preprint arXiv:2403.05530, 2024.

[38] Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow,
Roman Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A
176b-parameter open-access multilingual language model. arXiv preprint arXiv:2211.05100,
2022.

[39] Prajwal Singhania, Siddharth Singh, Shwai He, Soheil Feizi, and Abhinav Bhatele. Loki:
Low-rank keys for efficient sparse attention. arXiv preprint arXiv:2406.02542, 2024.

[40] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for
modern deep learning research. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pages 13693–13696, 2020.

[41] Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning
approach for large language models. arXiv preprint arXiv:2306.11695, 2023.

[42] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[43] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[44] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[45] Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam, Yu Zheng, Zhongnan Qu, Shen Yan, Yi Zhu,
Quanlu Zhang, Mosharaf Chowdhury, et al. Efficient large language models: A survey. arXiv
preprint arXiv:2312.03863, 1, 2023.

[46] Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun Luo, Weikang Shi, Renrui Zhang, Linqi
Song, Mingjie Zhan, and Hongsheng Li. Mathcoder: Seamless code integration in llms for
enhanced mathematical reasoning. arXiv preprint arXiv:2310.03731, 2023.

[47] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

[48] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-
of-the-art natural language processing. In Proceedings of the 2020 conference on empirical
methods in natural language processing: system demonstrations, pages 38–45, 2020.

[49] Haoyi Wu and Kewei Tu. Layer-condensed kv cache for efficient inference of large language
models. arXiv preprint arXiv:2405.10637, 2024.

[50] Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han.
Smoothquant: Accurate and efficient post-training quantization for large language models.
In International Conference on Machine Learning, pages 38087–38099. PMLR, 2023.

[51] Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

[52] Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang, Prajjwal Bhargava, Rui Hou, Louis
Martin, Rashi Rungta, Karthik Abinav Sankararaman, Barlas Oguz, et al. Effective long-context
scaling of foundation models. arXiv preprint arXiv:2309.16039, 2023.

11

[53] Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng Chang, Hengheng Zhang, Zhensu Chen,
Xiaopeng Zhang, and Qi Tian. Qa-lora: Quantization-aware low-rank adaptation of large
language models. arXiv preprint arXiv:2309.14717, 2023.

[54] Dongjie Yang, XiaoDong Han, Yan Gao, Yao Hu, Shilin Zhang, and Hai Zhao. Pyramid-
infer: Pyramid kv cache compression for high-throughput llm inference. arXiv preprint
arXiv:2405.12532, 2024.

[55] Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy Liang, Kathleen McKeown, and Tatsunori B
Hashimoto. Benchmarking large language models for news summarization. Transactions of the
Association for Computational Linguistics, 12:39–57, 2024.

[56] Xingxing Zhang, Furu Wei, and Ming Zhou. Hibert: Document level pre-training of hierarchical
bidirectional transformers for document summarization. arXiv preprint arXiv:1905.06566,
2019.

[57] Yichi Zhang, Bofei Gao, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao Chang,
Junjie Hu, Wen Xiao, et al. Pyramidkv: Dynamic kv cache compression based on pyramidal
information funneling. arXiv preprint arXiv:2406.02069, 2024.

[58] Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao
Song, Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing
Systems, 36, 2024.

[59] Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun Luo, Zipeng Qin, Shaoqing Lu, Anya
Jia, Linqi Song, Mingjie Zhan, et al. Solving challenging math word problems using gpt-4 code
interpreter with code-based self-verification. arXiv preprint arXiv:2308.07921, 2023.

A Appendix

A.1 Observations

Magnitudes of KV cache channels. Figure 3 visualizes the absolute values of the KV cache across
tokens in each channel1. Consistent with previous findings [30, 50, 32], we observe that only certain
channels have significant magnitudes in the key cache, whereas the value cache lacks obvious patterns.
For instance, in layer 14 (Figure 3 (a)), the magnitudes in the key cache are substantially higher
around the 50th channel across all tokens. A similar pattern is observed in the 50th and 150th

channels of the first head in layer 20 (Figure 3 (c)). Given such an observation, [32] proposed to
perform quantization over the channels of the key cache. Beyond quantization, our findings suggest
that certain key cache channels with smaller contributions to the attention mechanism can be pruned.
Moreover, channel quantization and pruning are orthogonal techniques, meaning they can be applied
concurrently to further improve model efficiency.

Singular value analysis. We conducted singular value decomposition (SVD) [9] on the attention
weights of the specified layers to investigate their principal components. The singular values derived
from SVD capture the effective rank of the attention matrix, indicating how the information is
distributed across different components.

Figure 4 (a) illustrates the energy distribution of the singular values, plotted on a logarithmic scale to
enhance visibility of the differences. Notably, only a few singular values exhibit high energy levels
exceeding 0.01 across all heads and layers, highlighting their relative significance. This observation
aligns with previous findings [3], where a small subset of singular values often captures most of
the information in attention mechanisms. In addition, the rapid decay of the energy suggests that a
low-rank approximation can effectively capture the essential information in the key cache.

Figure 4 (b), the normalized cumulative energy sum reveals that the top 50 singular values account
for over 90% of the total energy. These findings suggest that the attention matrix is inherently
low-rank [47, 6, 13], indicating that the key cache can be approximated using low-dimensional
vectors [39].

1We use the visualization code from https://github.com/jy-yuan/KIVI/tree/main/vis.

12

https://github.com/jy-yuan/KIVI/tree/main/vis

0 200 400 600
Token 0

50
100

Cha
nn

els0

5

10

(a) Key Cache (14th layer)

0 200 400 600
Token 0

50
100

Cha
nn

els0.0
0.5
1.0
1.5
2.0

(b) Value Cache (14th

layer)

0 200 400 600
Token 0

50
100

Cha
nn

els0

5

10

(c) Key Cache (20th layer)

0 200 400 600
Token 0

50
100

Cha
nn

els0

1

2

(d) Value Cache (20th

layer)

Figure 3: Magnitude of key and value cache for LLaMA3-8B. The first head of layer 14 and layer 20
of LLaMA3-8B is selected to visualize the magnitude of the key and value caches. We observe that
the magnitudes of the key cache channels vary differently, whereas the channels of the value cache
do not exhibit such variation.

0 100 200 300 400 500 600
Index

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

En
er

gy

Head
0
10
30

Layer
0
10
30

(a) Energy of singular values

0 100 200 300 400 500 600
Index

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cu
m

ul
at

ed
 E

ne
rg

y

Head
0
10
30

Layer
0
10
30

(b) Cumulative energy of singular values

Figure 4: The energy and cumulative energy of the singular values.

A.2 Ablation Studies

Impact of Different Recent Sizes. Preserve the most recent KV embeddings [58, 28] is important
for maintaining the performance of LLMs after KV cache compression. Note that a tradeoff exists:
increasing the recent-size allows more infomation to be propagated, while increasing the cache size
to be stored. To study its impacts, we evaluate the performance produced by three recent-size, namely
0, 32 and 128, on LongBench, using Mistral-7B-Instruct-v0.2 as the basleline model. The results
are summarized in Table 6. One can observe that a recent-size of 32 yields superior performance
than 0 in terms of averaged score on LongBench which demonstrates the importance of keeping the
most recent KVs. On the other hand, the performance of 32 and 128 is negligible, suggesting that
maintaining the most recent 32 KVs suffices to preserve optimal performance.

Pruning Channels of Both Key and Value Cache. In our previous study, we evaluate methods
with pruning channels of the key cache. In this part, we explore the impact of pruning channels
of the value cache. Specifically, for KV cache compression methods, we prune channels of the
key cache at one pruning ratio and channels of the value cache at another pruning ratio. Table 8
presents the results with LLaMA3-8B and Mistral-7B on LongBench. When testing on the base
model LLaMA3-8B, H2O or SnapKV with key and value channel pruning can perform on par with
H2O or SnapKV without channel pruning. In some cases, H2O or SnapKV with key and value
channel pruning may even perform better. Pruning the channels of the value cache over the base
model Mistral-7B experiences a slight performance drop. Despite this, note that KV cache with
additional value channel pruning can further reduce memory usage.

B Needle-in-a-Haystack test performance comparison

Figure 5 visualizes the test performance comparison on Needle-in-a-Haystack on Mistral-7B-Instruct-
v0.2.

13

10
00
14

00
18

00
22

00
26

00
30

00
34

00
38

00
42

00
46

00
50

00
54

00
58

00
62

00
66

00
70

00
74

00
78

00
82

00
86

00
90

00
94

00
98

00
10

20
0
10

60
0
11

00
0
11

40
0
11

80
0
12

20
0
12

60
0
13

00
0
13

40
0
13

80
0
14

20
0
14

60
0
15

00
0
15

40
0
15

80
0
16

20
0
16

60
0
17

00
0
17

40
0
17

80
0
18

20
0
18

60
0
19

00
0
19

40
0
19

80
0
20

20
0
20

60
0
21

00
0
21

40
0
21

80
0
22

20
0
22

60
0
23

00
0
23

40
0
23

80
0
24

20
0
24

60
0
25

00
0
25

40
0
25

80
0
26

20
0
26

60
0
27

00
0
27

40
0
27

80
0
28

20
0
28

60
0
29

00
0
29

40
0
29

80
0
30

20
0
30

60
0
31

00
0
31

40
0
31

80
0

Token Limit

0.0

11.0

22.0

33.0

44.0

56.0

67.0

78.0

89.0

100.0

De
pt

h
Pe

rc
en

t

Pressure Testing Mistral-7B-Instruct-v0.2
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

(a) KV-size 128, SnapKV, Acc. 77.8

10
00
14

00
18

00
22

00
26

00
30

00
34

00
38

00
42

00
46

00
50

00
54

00
58

00
62

00
66

00
70

00
74

00
78

00
82

00
86

00
90

00
94

00
98

00
10

20
0
10

60
0
11

00
0
11

40
0
11

80
0
12

20
0
12

60
0
13

00
0
13

40
0
13

80
0
14

20
0
14

60
0
15

00
0
15

40
0
15

80
0
16

20
0
16

60
0
17

00
0
17

40
0
17

80
0
18

20
0
18

60
0
19

00
0
19

40
0
19

80
0
20

20
0
20

60
0
21

00
0
21

40
0
21

80
0
22

20
0
22

60
0
23

00
0
23

40
0
23

80
0
24

20
0
24

60
0
25

00
0
25

40
0
25

80
0
26

20
0
26

60
0
27

00
0
27

40
0
27

80
0
28

20
0
28

60
0
29

00
0
29

40
0
29

80
0
30

20
0
30

60
0
31

00
0
31

40
0
31

80
0

Token Limit

0.0

11.0

22.0

33.0

44.0

56.0

67.0

78.0

89.0

100.0

De
pt

h
Pe

rc
en

t

Pressure Testing Mistral-7B-Instruct-v0.2
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

(b) KV-size 128, SnapKV + THINK (0.4) Acc. 78.6

10
00
14

00
18

00
22

00
26

00
30

00
34

00
38

00
42

00
46

00
50

00
54

00
58

00
62

00
66

00
70

00
74

00
78

00
82

00
86

00
90

00
94

00
98

00
10

20
0
10

60
0
11

00
0
11

40
0
11

80
0
12

20
0
12

60
0
13

00
0
13

40
0
13

80
0
14

20
0
14

60
0
15

00
0
15

40
0
15

80
0
16

20
0
16

60
0
17

00
0
17

40
0
17

80
0
18

20
0
18

60
0
19

00
0
19

40
0
19

80
0
20

20
0
20

60
0
21

00
0
21

40
0
21

80
0
22

20
0
22

60
0
23

00
0
23

40
0
23

80
0
24

20
0
24

60
0
25

00
0
25

40
0
25

80
0
26

20
0
26

60
0
27

00
0
27

40
0
27

80
0
28

20
0
28

60
0
29

00
0
29

40
0
29

80
0
30

20
0
30

60
0
31

00
0
31

40
0
31

80
0

Token Limit

0.0

11.0

22.0

33.0

44.0

56.0

67.0

78.0

89.0

100.0

De
pt

h
Pe

rc
en

t

Pressure Testing Mistral-7B-Instruct-v0.2
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

(c) KV-size 1024, SnapKV, Acc. 90.4

10
00
14

00
18

00
22

00
26

00
30

00
34

00
38

00
42

00
46

00
50

00
54

00
58

00
62

00
66

00
70

00
74

00
78

00
82

00
86

00
90

00
94

00
98

00
10

20
0
10

60
0
11

00
0
11

40
0
11

80
0
12

20
0
12

60
0
13

00
0
13

40
0
13

80
0
14

20
0
14

60
0
15

00
0
15

40
0
15

80
0
16

20
0
16

60
0
17

00
0
17

40
0
17

80
0
18

20
0
18

60
0
19

00
0
19

40
0
19

80
0
20

20
0
20

60
0
21

00
0
21

40
0
21

80
0
22

20
0
22

60
0
23

00
0
23

40
0
23

80
0
24

20
0
24

60
0
25

00
0
25

40
0
25

80
0
26

20
0
26

60
0
27

00
0
27

40
0
27

80
0
28

20
0
28

60
0
29

00
0
29

40
0
29

80
0
30

20
0
30

60
0
31

00
0
31

40
0
31

80
0

Token Limit

0.0

11.0

22.0

33.0

44.0

56.0

67.0

78.0

89.0

100.0

De
pt

h
Pe

rc
en

t

Pressure Testing Mistral-7B-Instruct-v0.2
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

(d) KV-size 1024, SnapKV + THINK (0.5), Acc. 90.8

Figure 5: Needle-in-a-Haystack test performance comparison with Mistral-7B-Instruct-v0.2.
THINK (λ) indicates we prune the key cache channels with a pruning ratio of λ

14

Table 6: Performance comparison of key cache pruning with varying recent-sizes.

Recent-Size

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.

NrtvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

H2O + THINK (λ = 0.4)
0 24.40 27.50 45.42 35.17 24.45 13.02 27.65 23.88 26.86 53.50 86.06 41.73 3.01 83.42 55.12 51.32 38.91

32 25.40 30.80 48.45 39.64 26.08 16.82 27.12 23.79 26.65 53.50 86.39 43.03 3.29 86.39 56.61 53.60 40.47
128 25.69 30.93 48.32 39.63 26.08 16.82 27.18 23.92 26.62 53.50 86.39 42.96 3.29 86.39 56.77 53.60 40.51

SnapKV + THINK (λ = 0.4)
0 24.94 28.58 45.78 39.59 25.40 15.92 29.50 24.05 26.72 70.00 85.60 41.38 2.97 84.00 55.27 52.39 40.76

32 25.77 32.67 48.70 41.06 27.07 19.14 28.91 24.37 26.88 70.00 86.37 42.75 3.61 87.38 57.21 54.44 42.27
128 25.75 32.49 48.61 41.01 27.18 19.14 28.79 24.64 26.77 70.00 86.37 42.77 3.61 87.13 57.19 54.39 42.24

Table 7: Performance comparison of key cache pruning with the same memory consumption.

Methods Memory(M)

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.

NrtvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

H2O
Vanilla 54.5 21.29 20.69 37.66 28.65 21.08 14.01 20.20 22.11 21.33 38.50 82.55 39.87 3.66 78.14 50.32 48.54 34.29
THINK 54.4 21.17 21.90 39.29 29.92 20.99 12.30 20.84 22.91 21.92 39.00 82.70 40.35 2.97 79.21 51.19 48.32 34.69
Vanilla 208.0 22.13 23.83 43.24 30.92 23.36 14.56 22.92 22.77 24.23 41.50 85.04 41.26 3.02 86.03 54.91 50.50 36.89
THINK 208.0 21.58 26.15 44.49 32.73 23.99 15.09 23.56 23.28 24.45 42.00 85.58 42.58 3.18 85.7 54.39 51.15 37.49
Vanilla 413.0 22.90 28.45 46.16 35.57 23.86 13.74 24.90 23.19 25.77 44.50 85.54 41.97 3.22 85.82 55.96 52.33 38.37
THINK 412.8 23.97 28.91 45.84 35.78 24.88 14.55 25.11 23.35 25.83 45.50 86.11 42.44 3.23 84.82 56.21 53.02 38.72
Vanilla 822.5 25.51 30.23 48.23 39.72 25.56 16.75 26.98 23.81 26.47 50.50 86.43 42.09 2.78 85.57 57.4 53.42 40.09
THINK 822.4 25.40 30.80 48.45 39.64 26.08 16.82 27.12 23.79 26.65 53.50 86.39 43.03 3.29 86.39 56.61 53.60 40.47

SnapKV
Vanilla 54.5 19.25 19.95 42.80 35.88 21.96 14.59 18.76 21.71 20.70 46.00 84.12 39.43 2.59 65.36 51.39 47.81 34.52
THINK 54.4 20.52 21.00 42.65 37.58 22.09 15.23 19.29 22.01 21.22 47.00 83.85 39.64 3.20 67.45 51.48 48.31 35.16
Vanilla 208.0 23.31 27.45 48.85 38.77 23.93 16.50 23.44 23.63 24.13 66.00 86.05 41.00 2.62 87.01 56.13 52.60 40.09
THINK 208.0 24.27 28.46 49.26 38.13 24.22 16.92 23.59 23.70 24.46 67.50 85.90 42.51 2.92 85.32 55.89 53.35 40.40
Vanilla 413.0 24.24 29.53 49.13 40.48 25.05 18.74 25.46 23.64 25.60 68.00 86.14 41.42 3.03 88.55 57.08 53.86 41.25
THINK 412.8 25.22 30.48 48.58 41.11 25.28 18.99 25.91 24.00 26.13 70.00 86.64 43.35 2.98 86.30 56.71 54.19 41.62
Vanilla 822.5 24.84 31.90 48.16 41.32 26.77 19.49 28.23 24.63 26.41 70.00 86.32 41.83 2.91 88.06 56.98 53.74 41.97
THINK 822.4 25.77 32.67 48.7 41.06 27.07 19.14 28.91 24.37 26.88 70.00 86.37 42.75 3.61 87.38 57.21 54.44 42.27

C Implementations

C.1 Implementation of THINK

Prompt Length Decoding Length

Update

Recent-sizePruned Query Pruned Key

Key CacheChannel Mask

QueryKey

Concatenate MatMulMatMul

Figure 6: Implementation during decoding.

Following SnapKV, we focus on the long context input
scenario. We opt not to prune the most recent tokens
and newly generated keys. Consequently, our key-
value (KV) cache will store two distinct categories
of keys: one subset consists of pruned keys with a
reduced channel size, while the other retains keys at
their original size. Additionally, we maintain a binary
mask to indicate which channels have been pruned.
Note that the memory overhead associated with this
mask is negligible. Figure 6 illustrates one implemen-
tation of our method during the decoding stage. This
implementation involves initially pruning the query using the mask. The pruned query is then multi-
plied by the pruned key, while the unpruned query is applied to the unpruned Key. Subsequently, the
two outputs are concatenated.

C.2 Implementation with quantization

Figure 7 illustrates the implementation of our method when integrated with the KV cache quantization
method KIVI [32]. During the prefill phase, we first prune the unimportant channels of XK before
applying quantization. In the decoding phase, each newly arrived key cache tK is added to XKr

.
Once XKr

reaches G tokens, the residual length hyperparameter in KIVI, we prune and quantize the
data, then concatenate it with the previously quantized Q(P (XKg

)).

15

Table 8: Performance comparison of pruning both K and V cache with different pruning ratios on
LongBench. H2O + THINKV (λ1+λ2) indicates that the key cache channels of H2O are pruned with
a pruning ratio of λ1 and the value cache channels are pruned of a pruning ratio of λ2.

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.

NrtvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

L
L

aM
A

-3
-8

B
-I

ns
tr

uc
t

KV-size 128
H2O 22.12 13.20 31.61 37.79 32.71 18.45 20.32 22.02 21.10 38.50 87.75 39.14 5.83 69.50 55.06 50.97 35.38
+THINKV (0.3+0.3) 23.71 13.65 33.08 41.86 29.88 18.04 19.60 21.65 20.26 38.00 86.08 38.61 5.16 69.50 57.59 55.19 35.74
SnapKV 21.19 13.55 32.64 38.75 29.64 18.73 18.98 21.62 20.26 45.00 88.36 37.64 5.13 68.85 55.84 51.82 35.50
+THINK(0.3+0.3) 21.86 13.79 33.26 40.93 29.39 19.22 18.81 21.30 19.26 41.50 87.00 37.95 5.78 69.50 57.84 55.62 35.81

KV-size 512
H2O 23.52 17.93 34.68 42.11 33.52 19.92 22.11 22.56 23.82 41.00 90.46 40.20 5.87 69.50 56.71 51.69 37.23
+THINKV (0.3+0.3) 22.83 17.57 34.18 42.67 33.52 19.95 21.17 22.23 22.82 38.50 90.11 39.08 5.21 69.0 59.99 56.83 37.23
SnapKV 24.84 23.96 38.77 42.75 34.55 20.87 22.26 22.61 23.97 70.00 90.52 40.29 5.81 69.50 59.04 51.81 40.10
+THINKV (0.3+0.3) 24.57 24.59 38.09 44.61 34.37 20.37 21.23 21.95 23.30 66.00 90.69 39.38 5.60 69.00 61.75 58.46 40.25

KV-size 2048
H2O 25.56 26.85 39.54 44.30 32.92 21.09 24.68 23.01 26.16 53.00 90.65 41.84 4.91 69.25 58.43 51.31 39.59
+THINKV (0.3+0.3) 25.03 26.77 39.68 42.12 33.08 19.59 23.00 22.89 25.27 51.00 91.11 40.58 5.23 69.00 61.12 57.95 39.59
+THINKV (0.4+0.4) 24.87 24.31 37.77 43.13 34.42 19.60 21.67 22.70 24.52 49.00 90.81 39.28 6.00 69.00 61.81 58.08 39.19
SnapKV 25.86 29.55 41.10 44.99 35.80 21.81 25.98 23.40 26.46 73.50 90.56 41.66 5.17 69.25 58.67 51.52 41.58
+THINKV (0.3+0.3) 25.13 29.97 40.35 44.12 34.64 19.94 23.62 23.03 25.30 72.50 90.78 39.46 5.35 69.00 61.50 57.91 41.41
+THINKV (0.4+0.4) 25.13 28.85 40.70 44.21 36.36 21.07 22.31 22.89 24.80 72.50 90.88 38.77 6.41 69.00 61.49 58.87 41.52

M
is

tr
al

-7
B

-I
ns

tr
uc

t-
v0

.2

KV-size 128
H2O 21.21 21.81 38.87 30.42 20.36 12.30 20.58 22.61 22.10 39.00 82.37 40.44 2.90 79.56 51.22 48.38 34.63
+THINKV (0.3+0.3) 20.71 21.49 38.01 30.66 22.28 13.87 20.13 22.45 21.07 38.50 82.20 38.69 2.94 78.56 51.55 48.28 34.46
SnapKV 19.17 21.40 42.93 36.76 22.44 15.86 19.16 21.84 21.55 47.50 84.15 40.24 2.30 68.26 52.31 48.80 35.29
+THINKV (0.3+0.3) 19.92 20.61 42.68 37.63 23.19 15.09 18.97 21.93 20.55 45.00 84.06 39.33 2.99 66.00 51.51 47.51 34.81

KV-size 512
H2O 21.83 26.00 44.69 32.46 23.05 14.69 23.53 23.06 24.59 42.00 85.22 41.49 3.40 86.20 54.78 51.09 37.38
+THINKV (0.3+0.3) 22.36 24.26 44.77 30.47 22.94 14.96 22.63 22.90 23.73 41.50 85.30 40.21 3.08 80.07 54.48 50.96 36.54
+THINKV (0.3+0.1) 22.14 25.15 45.29 31.78 23.21 14.62 23.36 22.70 24.51 41.50 85.61 41.58 2.75 84.03 54.50 51.09 37.11
SnapKV 24.44 27.81 48.98 39.46 25.25 16.98 23.70 22.96 24.37 67.0 85.88 41.26 2.78 86.56 56.46 53.41 40.46
+THINKV (0.3+0.3) 24.10 27.04 47.76 38.66 25.45 17.51 22.64 22.81 23.91 66.00 86.62 39.91 3.36 82.24 55.96 52.81 39.80
+THINKV (0.3+0.1) 23.90 28.14 48.35 39.03 24.83 16.68 23.51 23.12 24.34 67.50 86.09 41.69 2.65 84.34 57.29 53.22 40.29

KV-size 1024
H2O 23.67 28.55 46.4 36.99 24.82 15.02 25.21 23.04 25.77 46.00 85.93 41.98 3.24 86.57 56.40 52.75 38.90
+THINKV (0.3+0.3) 23.65 26.54 47.00 35.52 24.79 17.15 23.64 23.12 25.20 44.00 86.38 41.67 3.46 80.14 56.53 52.86 38.23
+THINKV (0.3+0.1) 24.13 28.57 46.31 35.59 24.92 15.34 24.58 23.33 25.93 45.50 85.91 42.97 2.57 83.64 55.39 52.73 38.59
SnapKV 25.47 29.57 49.33 40.90 25.53 19.01 25.94 23.89 26.21 69.50 86.48 42.10 2.98 88.56 57.19 53.60 41.64
+THINKV (0.3+0.3) 25.29 29.25 49.17 41.25 25.75 19.37 24.64 23.02 25.27 69.00 86.70 40.92 3.29 82.06 57.15 54.15 41.02
+THINKV (0.3+0.1) 25.84 29.30 49.56 41.44 25.29 19.02 25.21 23.73 25.72 69.00 86.69 42.55 2.44 85.76 57.55 54.10 41.45

KV-size 2048
H2O 25.76 31.10 49.06 40.38 26.43 16.78 27.17 23.64 26.69 55.0 86.35 42.48 2.72 86.64 56.98 53.91 40.69
+THINKV (0.3+0.3) 25.60 28.74 47.54 38.67 26.25 17.35 24.54 23.27 26.15 51.00 87.01 43.02 2.94 81.46 56.41 54.26 39.64
+THINKV (0.3+0.1) 25.64 30.65 48.95 40.42 26.43 16.65 26.76 23.51 26.59 52.50 86.53 43.45 2.66 83.96 56.55 53.83 40.32
SnapKV 25.89 32.56 48.55 41.68 27.24 18.75 28.90 24.47 26.63 70.00 86.27 42.57 3.09 86.93 57.44 53.83 42.18
+THINKV (0.3+0.3) 27.01 30.72 48.81 41.15 26.93 18.93 25.81 23.59 26.42 70.00 86.82 41.91 3.05 82.65 57.01 54.25 41.57
+THINKV (0.3+0.1) 26.22 32.69 48.96 40.83 26.70 19.02 27.87 24.23 26.64 70.00 86.65 42.63 2.22 85.13 57.00 54.28 41.94

Pruning Channels
Quantization by Channel

Quantization by Token

Full Precision Tensor

Low Precision Tensor

Pr
un

in
g

an
d

Q
ua

nt
iz

at
io

n

MatMul

Q_MatMul

Concat

Prefill Phase Decoding Phase

KVCache

Figure 7: Implementations of THINK when incorporated with KIVI.

16

	Introduction
	Observations
	ThinK
	Preliminary Study of KV Cache Optimization
	Query-Driven Pruning

	Experiment Results
	Settings
	Results on LongBench
	Ablations
	Results on Needle-in-a-Haystack

	Related Work
	Conclusion
	Appendix
	Observations
	Ablation Studies

	Needle-in-a-Haystack test performance comparison
	Implementations
	Implementation of ThinK
	Implementation with quantization

