
NeuZip: Memory-Efficient Training and Inference
with Dynamic Compression of Neural Networks

Yongchang Hao♠∗ Yanshuai Cao♢ Lili Mou♠♡
♠Dept. Computing Science & Alberta Machine Intelligence Institute (Amii), University of Alberta

♢Borealis AI ♡Canada CIFAR AI Chair
yongcha1@ualberta.ca

yanshuai.cao@borealisai.com doublepower.mou@gmail.com

Abstract

The performance of neural networks improves when more parameters are used.
However, the model sizes are constrained by the available on-device memory
during training and inference. Although applying techniques like quantization
can alleviate the constraint, they suffer from performance degradation. In this
work, we introduce NeuZip, a new weight compression scheme based on the
entropy of floating-point numbers in neural networks. With NeuZip, we are able to
achieve memory-efficient training and inference without sacrificing performance.
Notably, we significantly reduce the memory footprint of training a Llama-3 8B
model from 31GB to less than 16GB, while keeping the training dynamics fully
unchanged. In inference, our method can reduce memory usage by more than half
while maintaining near-lossless performance. Our code is publicly available.1

1 Introduction

Deep learning with neural networks has become the backbone of numerous artificial intelligence appli-
cations. The search for better-performing networks is a longstanding topic in deep learning. Without
modifying the design, scaling up the number of parameters (e.g., number of hidden dimensions or
layers) has been demonstrated as an effective practice to boost the performance of neural networks of
the same kind [1]. This idea has been successfully applied to text, image, audio, and multi-modal
tasks with a wide range of model architectures [2, 3, 4]. Recently, the number of parameters in the
state-of-the-art models has become more than 100 billion or even a trillion parameters. For example,
one of the state-of-the-art language models in 2020, GPT-3, has 175B parameters [4], growing by
nearly 100 times compared with the largest Transformer architecture in the 2017 paper [5].

Despite the growth in the model size, the hardware capacity is not keeping up with the pace: the
largest on-device memory of GPUs was 32GB in 2017, and is 80GB to this date in 2024, growing
by only 2.5 times. The available hardware supply poses a limitation on the trainable model size,
bottlenecking the scaling capacity. Although this problem can be alleviated by using more GPUs
and sharding the model in multiple devices [6], such a practice introduces more communication
overheads among GPUs, making large-scale distributed training less efficient. Therefore, saving the
total memory usage is critical in scaling up neural networks.

The peak memory usage is dominated by three relatively independent parts: the optimizer, the saved
activations for back-propagation, and the model itself. For the optimizer, there are already memory-
efficient optimizers achieving a sublinear space complexity [7, 8]; for the activations, the memory
can be saved by enabling activation checkpointing [9], which saves the storage by recomputing the

∗Project done during Mitacs internship at Borealis AI.
1https://github.com/BorealisAI/neuzip

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/BorealisAI/neuzip

forward activations during the back-propagation. For the model parameters, there has not been an
effective method to save the memory while preserving the ability to train the model. Recently, [10]
proposed the quantized low-rank adaptation (QLoRA), which freezes the parameters using a 4-bit
data type for the backbone pre-trained model. While significantly saving the memory for the model,
it imposes a constraint on the overall change of the model to be low-rank, limiting the model capacity.

In this paper, we propose NeuZip, an algorithm to compress the neural networks while maintaining
their full abilities. Specifically, each floating-point number is represented by three parts: the sign
bit, the exponent bits, and the mantissa bits. Following the observation that weights are concentrated
around zero [11], we demonstrate that this corresponds to the low-entropy nature of the exponent bits.
We hence compress the exponent bits using the asymmetric numeral system (ANS [12]), a lossless
compression algorithm that achieves a high throughput on parallel computing devices like GPUs.
Since the compression is lossless, the memory reduction comes without compromising any precision
loss and enables full-parameter training.

In addition to lossless compression for training, we also propose a lossy variant of NeuZip for
inference that further reduces the memory footprint. Specifically, we control the relative change of
each parameter by storing only the top-k significant bits of the mantissa. We empirically show that
lossy NeuZip lies at the Pareto frontier of the memory–performance trade-off when compared with
several state-of-the-art quantization baselines.

2 Our Approach

The Shannon entropy [13] is used to measure the “stochasticity” of a random variable with the
following definition:

H(X) := E
X∼p(X)

[− log2 p(X)] (1)

for a random variable X with probability p. A lower entropy indicates a less stochasticity of a random
variable. In fact, the entropy equals the minimum number of bits required, in expectation, to represent
a random variable, therefore corresponding to data compressibility. For the non-concentrating
random variable with all possible values sharing an equal probability, the entropy of which reaches
the maximum value log2 n, where n is all possible values X can take. On the other hand, for
highly-concentrating (e.g., fully deterministic) random variables, the entropy can be as low as 0.

2.1 Low-Entropy Nature of Neural Network Parameters

We argue that the parameters in neural network tend to have low entropy. First, parameters are
typically initialized with Gaussian distribution for matrices [14, 15]. This encourages all weights to
be centered around zero, effectively reducing the entropy (or randomness). In addition, regularization
is also applied for better generalization ability. For example, the weight decay technique reduces the
magnitudes of weights at every update iteration. Similarly in Bayesian inference, prior distributions
(e.g., Gaussian and Laplace distributions) are often applied, imposing a zero-concentrated preference
over the parameters.Even without explicit regularization, stochastic gradient descent (SGD) or its
variants are shown to have the implicit regularization effect on neural networks, meaning the model
parameters are implicitly encouraged to have smaller magnitudes during training [16, 17]. All the
above effects and techniques lead to the following observation:
Observation 2.1 Assuming neural network parameters are i.i.d. random variables, the entropy of
the distribution is likely to be low.

Specifically, each parameter is represented is represented by three components: the sign bit, the
exponent bits, and the mantissa bits in the IEEE 754 standard [18].2 Therefore, we conduct a fine-
grained analysis and investigate the distribution of each component of a floating-point number in
neural networks.

As shown in Figure 1, the sign bit has a high entropy as it is evenly distributed; hence, it is not
compressible. For the exponent bits, there is a clear pattern that they demonstrate a low-entropy
nature, carrying only less than 3 bits of information with 8 bits of capacity. For the mantissa bits,

2We use BF16 [11] in this paper.

2

Figure 1: The histograms of different components of the parameters of LLama-3 8B model [19]. The
x-axis is all possible binary values and the y-axis represent the frequency of each value.

they store nearly 7-bit information with 7-bit capacity. In fact, we shown in Appendix A that this is
common in deep learning.

This phenomenon suggests that by simply compressing the exponents, we are able to recover the
overall optimal compression ratio. In this example, an ideal compression algorithm is able to achieve
a ratio as high as 1.501 (the sum of the three entropy values), only marginally below the overall
compression ratio 1.505.

2.2 Lossless NeuZip: Compressing Exponents for Training

Compressed representation. Based on observation, we see that the number of bits per exponent is
largely inflated compared with the information entropy. However, previous research demonstrates
that the dynamic range provided by the 8-bit exponents are critical for neural networks [11]. We
therefore propose to compress the exponent bits in a lossless manner based on the entropy. This
practice mainly has three benefits: (1) it increases the throughput of compression as only part of
the bits are processed by the compression; (2) it reduces the burden of maintaining the statistics
of a large set of symbols (e.g., 256 symbols for 8-bit exponents versus 65,536 symbols for 16-bit
representations), enabling a great efficiency of compression algorithms; (3) most importantly, it
recovers most of the compressibility as shown in Figure 1.

Multi-layer neural networks. The compression alone does not save any memory for maintaining
a single array. This is because, either compression or decompression, requires at least one buffer
of the same size as the uncompressed array. In the scope of neural networks, the whole model is
prohibitively large and it is infeasible to duplicate the memory. In NeuZip, however, we exploit the
multi-layer structure of modern neural networks to avoid creating a large buffer. Without loss of
generality, we focus on the linear function as a common building block in neural networks at layer l:

xl ←Wlxl−1 + bl, (2)

where Wl ∈ Rm×n is the weight matrix, bl ∈ Rm is the bias vector of layer l, and xl is the input of
layer l. We propose to modify the compressed forward pass in the following form

Ŵ ←decompress(cl) (3)

xl ←Ŵxl−1 + bl, (4)

where cl is the compressed storage of the matrix Wl. In this way, we only need to store ci for each
layer, enjoying low-memory usage. During each forward pass, weight matrices stay in the compressed
form until the original data is needed, in which case it is decompressed into a temporary space Ŵ for
computation. As a result, the entire network is never fully decompressed at any point in time, making
the overall forward pass memory efficient. The per-layer procedure is shown in Figure 2.

Note that although we alter the forward pass, the back-propagation for each linear layer is fully
unaffected. This is because

∂L
∂Wl

=
∂L
∂xl

∂xl

∂Wl
= (∇xl

L)x⊤
l−1. (5)

3

Input

Weight

Output Gradient
output

Gradient
input

Gradient
weight

(a) Vanilla

Input

Weight

Output Gradient
output

Gradient
input

Gradient
weight

(b) AC

Input

Weight

Output Gradient
output

Gradient
input

Gradient
weight

(c) AC+LOMO

Input

Weight

Output Gradient
output

Gradient
input

Gradient
weightCompressed

Layer-wise
Global

(d) NeuZip

Figure 2: Reverse-mode automatic differentiation (e.g., back-propagation) with different memory-
saving techniques for a linear layer. Blocks colored blue are loaded in memory temporarily for the
calculation of this layer, whereas the blocks colored red are always in memory throughout training.

Therefore, we are able to obtain the gradient as long as the activations are saved. Similarly, we can
also propagate the gradient of inputs with

∂L
∂xl−1

=
∂L
∂xl

∂xl

∂xl−1
= (∇xl

L)⊤ Wl, (6)

where Wl can be constructed by decompression. It is worth noting that our NeuZip is compatible
with activation checkpointing [9] by recomputing the activations, opening more opportunity for
memory saving.

For weight updates, we decompress the matrix into the original floating-point format and compress
the updated matrix again. This procedure is done in a layer-by-layer fashion, similar to LOMO [20].
The overall training procedure is described in Appendix B.

Compression algorithm. In our implementation, we choose to use the asymmetric numeral systems
(ANS) [12] as our backbone compression algorithm because it can be easily parallelized and achieves
a high throughput with parallel execution, making it an ideal candidate on deep learning accelerators
like GPUs. Specifically, ANS encodes a sequence of symbols by treating them as base-n numbers.
However, unlike the common numerical system that uses a uniform base for each digit, ANS treats
every single digit with a different base ⌈1/p̂i⌉, where p̂ is the frequency of symbols. As a result, it
achieves a near-optimal compression rate by suing around 1/p̂i bits for the ith symbol.

2.3 Lossy NeuZip: Additionally Truncating Mantissa for Inference

In the algorithm above, we show that the training of neural networks can be completely unaffected by
lossless compression. On the other hand, inference is known to be less sensitive to precision loss
compared with training [21, 22]. This enables further memory reduction of NeuZip by reducing
the precision. In our study, we conduct a pilot experiment that perturbs each weight with a noise
proportional to the weight magnitude. We observe that with a small noise ratio there is little or no
effect on the overall performance (Appendix C). Motivated by this, we propose a variant of NeuZip
that compresses mantissa in a lossy way during inference.

In its core, we simply round and truncate the mantissa to fewer bits. Specifically, we assume the
original floating-point number f has an exponent e and mantissa m. After rounding, the mantissa is
denoted by m̂ and the resulting floating-point number is denoted by f̂ .

The rounding introduces an error expressed as:

|f − f̂ | =
∣∣∣∣2e−127 · m

27
− 2e−127 · m̂

27

∣∣∣∣ = 2e−134 · |m− m̂| (7)

where e − 127 interprets the exponent bits e as an integer, which can be either positive, negative,
or 0. In the fraction m/27, m is the significand (an unsigned integer) and 7 is the precision. It is
straightforward to see that the relative error is given by

|f − f̂ |
|f |

=
2e−134 · |m− m̂|

2e−134 · |m|
=
|m− m̂|

m
. (8)

4

Suppose our rounding keeps k most significant bits in m̂, the earliest point where m̂ could differ from
the original number m is at the (k + 1)th bit. This means that the maximum possible relative change
introduced by this rounding is 1/2k. Given that the mantissa bits are highly uniform as shown in
Figure 1, such a practice resembles the weight perturbation based on relative magnitudes, justifying
the rounding trick applied to mantissas.

In our implementation, we store the sign and mantissa bits together as a signed integer to minimize
the requests of memory write. Further, given that modern architectures are mostly byte (8-bit)
addressable, we pack multiple such signed integers into a single byte for memory efficiency. To align
with an 8-bit byte, we let the precision after rounding to be {0, 1, 3}, ensuring that all the bits in a
byte are utilized efficiently. We illustrate the process in Figure 7b.

Lastly, we enable a block-wise normalization technique [10], where a block is a chunk of weights that
are stored contiguously in memory. Such block-wise normalization makes sure that the weight with
the largest magnitude in a block will always be normalized to 1, invariant to mantissa rounding and
truncation. The normalization coefficient—which handles mantissa while ignoring the exponent—
is stored with 8 bits, and is used for de-normalization during the decompression of the weight.
This strategy is based on the observation that larger weights play a more important role in neural
networks [23].

3 Experiments

We empirically verify the effectiveness of NeuZip across different model architectures and datasets.
Given the success of large language models, we mainly consider Transformer-based models for our
experiments. We choose two designs of Transformer, decoder-only and encoder–decoder models, to
show the generality of our method. All experiments are conducted on RTX A6000 GPUs where the
uncompressed data type is BFloat16.

3.1 Lossless NeuZip for Pre-Training

Settings. We choose decoder-only models to evaluate our method on the pre-training task. We
select 3 models with different sizes to study the scaling effect, including GPT-Neo 2.7B [24], Llama-3
8B [19], and LLama-2 13B [25]. For fair comparison, all competing methods are initialized with the
same random weights.

For the task, we consider language modeling, which requires the model to predict the next token given
the context. We use the Wikitext-2 dataset [26], where each data sample is a fixed-length sequence
from an article on Wikipedia. We set the length to 1024 following the common practice [3].

For each experiment, we report the loss (negative log-likelihood) on unseen samples. To study
memory saving, we report the peak memory usage for each run during the training process. The
numbers are shown in gibibyte (GiB, 10243 bytes). We also report the speed by the number of
iterations per second to demonstrate the time-efficiency of each method.

We apply the vanilla SGD update to all runs for efficiency. The activation checkpointing technique [9]
is enabled by default. It is worth noting that pre-training these large models to the optimal performance
is extremely expensive [6]. Given that our NeuZip training method is lossless, we only train the
models for 1 epoch to showcase its effectiveness. We use the same hyper-parameters for all runs.

Results. We present the results in Table 1. We first test the vanilla training method, where only the
activation checkpointing is applied (shown in Figure 2b). As shown, the vanilla training requires the
highest amount of memory because it stores the uncompressed weights and gradients for all layers.

We also test the LOMO technique [20], which promptly updates the weights in a layer-by-layer
fashion (shown in Figure 2c). This allows LOMO to reuse a buffer to store the gradients for each
layer. As a result, LOMO approximately reduces the peak memory usage by the size of a model.

Finally, we apply our NeuZip on top of LOMO (shown in Figure 2d). For all models, NeuZip
additionally reduces more than 20% percentage of memory compared with LOMO, accounting for a
total memory reduction of more than 50%. Notably, NeuZip reduces the peak memory of training
a Llama-2 13B model to less than 20GB, enabling training a 13B model on consumer-grade GPUs
without any precision loss.

5

Table 1: Pre-training decoder-only models on the language modeling task. The loss numbers are
calculated on the validation set with the cross-entropy loss. Memory is reported in GiB (10243 B).
Speed represents the number of iterations per second. The bold numbers represent the top results.

GPT-Neo-XL 2.7B Llama-3 8B LLama-2 13B

Name Loss Mem Speed Loss Mem Speed Loss Mem Speed

Vanilla 8.81 11.22 0.96 8.61 30.97 0.77 - OOM -
LOMO 8.81 6.97 0.94 8.61 19.47 0.78 9.10 26.26 0.49
+NeuZip Lossless 8.81 5.54 0.70 8.61 15.25 0.45 9.10 18.58 0.28

Table 2: Fine-tuning encoder–decoder models on the SQL generation task. The BLEU scores are
calculated with SacreBLEU. Memory is reported in GiB (10243 B). Speed represents the number of
iterations per second. The bold numbers represent the top results.

T5 1B T5 3B T5 11B

Name BLEU Mem Speed BLEU Mem Speed BLEU Mem Speed

Vanilla 79.9 3.82 3.69 85.1 11.32 2.43 - OOM -
LOMO 79.9 2.75 3.68 85.1 7.07 2.47 82.3 25.95 0.69
+ NeuZip Lossless 79.9 2.39 2.02 85.1 5.21 1.33 82.3 20.68 0.46

QLoRA INT8 70.4 5.84 1.11 72.1 11.54 1.12 63.5 33.36 0.37
QLoRA FP4 70.1 3.63 1.70 72.1 7.35 1.74 63.3 22.73 0.58
QLoRA FP42 70.6 3.61 1.63 72.0 7.27 1.61 60.6 22.38 0.57
QLoRA NF4 70.4 3.63 1.83 71.2 7.35 1.65 59.4 22.73 0.57
QLoRA NF42 70.5 3.61 1.64 71.2 7.07 1.57 57.9 22.38 0.57

3.2 Lossless NeuZip for Fine-Tuning

Settings. A benefit of using lossless compression comes from retaining the pre-trained weight
without any information loss. We conduct a fine-tuning experiment with encoder–decoder models
to test the performance of our NeuZip on broader architectures. In particular, we choose three T5
models: T5 1B, T5 3B, and T5 11B [27], where the pre-trained parameters are used for initialization.

The T5 models are pre-trained on the C4 dataset [28], which is filtered to contain natural language only.
To avoid data leaks from pre-training, we choose a non-natural language generation dataset for fine-
tuning. Specifically, we use a public SQL generation dataset [29, 30] as the test bed. For each sample,
the model is required to generate the SQL command from a human question. For example, the question
could be “CREATE TABLE head (age INTEGER). How many heads of the departments are older
than 56 ?”. The model is expected to generate “SELECT COUNT(*) FROM head WHERE age > 56”.
We feed the question and response into the encoder and decoder, respectively. The objective is to
minimize the cross-entropy loss on the response.

Similar to the pre-training experiments, we also sweep the learning rate from 10−3 to 3× 10−1 for
each run. After fine-tuning, we generate with the model on the validation set with greedy decoding.
The generated SQL commands are then compared with the ground truths by SacreBLEU [31], a
metric that evaluates the similarity between corpora based on precision scores.

Results. The results are reported in Table 2. All baselines in the pre-training experiment (i.e., the
vanilla training, LOMO, and NeuZip) are included in this table. Similar to the results in Section 3.1,
they achieve the same BLEU scores for each model. Specifically, our NeuZip is able to train a 11B
model within 24GB.

For fine-tuning, it is possible to apply other memory-efficient training techniques. For example,
QLoRA [10] compresses the pre-trained model by using low-precision data types and train the LoRA
modules only [32]. In our comparison experiment, we choose the widely used quantization data types
for QLoRA, including INT8 [21], FP4, and NF4 [10]. We apply the LoRA modules [32] on all linear
layers, where every LoRA rank is set to 8 to control the memory usage.3 As shown in the second half
of Table 2, all quantization methods underperform NeuZip in terms of both generation quality and
memory usage. In terms of time efficiency, some quantization methods are slower than others, but in
general, they are in the same magnitude as our method. Overall, NeuZip achieves the least memory
usage while maintaining the highest performance. The results strongly suggests the practicality of
our NeuZip.

3It should be noted that the down-projection matrices in each T5 feed-forward network are not quan-
tized for stability, as otherwise the model performance is seriously jeopardized. See https://github.com/
huggingface/transformers/issues/20287 for more details.

6

https://github.com/huggingface/transformers/issues/20287
https://github.com/huggingface/transformers/issues/20287

Table 3: Evaluating lossy NeuZip on different models and tasks. ‘PPL” represents the perplexity
values. Memory is reported in GiB. Speed represents the number of iterations per second. The bold
numbers represent the top results, whereas the underlined numbers are the second-best ones.

(a) Evaluating decoder-only models on the language modeling task. Here, the perplexities are adjusted to word
level to compare across different tokenizations.

Llama-3 8B Llama-2 13B Yi-1.5 34B

Name PPL Mem Speed PPL Mem Speed PPL Mem Speed

Vanilla 9.89 15.08 5.07 10.87 24.36 3.59 - OOM -

Quant INT8 10.07 8.63 3.54 10.97 12.74 2.27 10.87 33.41 1.13
Quant FP4 11.51 5.77 3.45 11.38 7.37 1.87 11.57 19.54 1.75
Quant NF4 10.75 5.77 3.38 11.15 7.37 1.83 11.06 19.54 1.67
Quant FP42 11.50 5.44 3.41 11.38 6.87 1.86 11.57 18.11 1.61
Quant NF42 10.75 5.44 3.34 11.15 6.87 1.81 11.06 18.11 1.54

NeuZip 0-bit 13.64 5.24 3.44 12.46 6.30 1.87 12.06 16.20 0.94
NeuZip 1-bit 10.77 6.05 3.38 11.17 7.77 1.86 11.04 20.14 0.93
NeuZip 3-bit 9.93 7.70 3.38 10.90 10.73 1.84 10.76 27.92 0.93
NeuZip 7-bit (lossless) 9.89 10.95 3.39 10.87 16.66 1.84 10.72 43.40 0.94

(b) Evaluating encoder–decoder models on the language modeling task. Since all models use the same tokenizer,
we reported perplexities at the token level for simplicity.

T5 1B T5 3B T5 11B

Name PPL Mem Speed PPL Mem Speed PPL Mem Speed

Vanilla 2.614 1.37 23.73 2.571 5.31 19.86 2.568 21.06 6.20
Quant INT8 2.615 1.28 4.24 2.573 4.94 4.28 2.569 19.59 2.58
Quant NF4 2.632 1.08 11.64 2.588 4.12 11.82 2.579 16.28 4.48
Quant FP4 2.646 1.08 11.92 2.594 4.12 11.99 2.585 16.28 4.59
Quant FP42 2.646 1.05 10.39 2.594 4.03 9.72 2.585 15.93 4.52
Quant NF42 2.632 1.05 10.39 2.587 4.03 9.96 2.579 15.93 4.39

NeuZip 0-bit 2.731 0.40 11.82 2.668 1.41 8.70 2.651 5.35 3.24
NeuZip 1-bit 2.641 0.48 11.68 2.591 1.78 8.61 2.581 6.65 3.21
NeuZip 3-bit 2.614 0.66 11.99 2.574 2.42 8.60 2.569 9.27 3.19
NeuZip 7-bit (lossless) 2.614 0.99 11.55 2.571 3.73 8.77 2.568 14.46 3.23

3.3 Lossy Compression for Inference

As mentioned in Section 2.3, the inference process is less sensitive in precision loss, which provides
an opportunity for compressing mantissa in a lossy fashion during inference. We evaluate the
performance of our lossy NeuZip in such scenarios.

Settings. Following the settings in previous sections, we test our approach with both decoder-only
and encoder–decoder architectures. For the decoder-only models, we select the LLama-3 8B [19],
LLama-2 13B [25], and Yi-1.5 34B [33]. For the encoder–decoder architecture, we use the T5 1B,
3B, and 11B models as in Section 3.2.

Since all decoder-only models are trained for language modeling, we evaluate the performance with
language modeling tasks. Specifically, we test all methods on the Wikitext-2 validation set [26]
following Section 3.1, where each sequence consists of 1024 tokens. On the other hand, the encoder–
decoder models (T5 series) contain multiple tasks in pre-training. Since they excel at zero-shot
translation, we evaluate them on the WMT14 En-De translation task [34], where each source sentence
is prepended with “translate from English to German:” based on the pre-training format [27].

Following the standard evaluation pipeline for lossy compression [35, 22], we evaluate all models
with the perplexity metric, which is sensitive to how distorted the compressed model is.

Results. The results for decoder-only and encoder–decoder models are shown in Tables 3a and 3b,
respectively. We see that the vanilla (uncompressed BFloat16) models achieve the best perplexity
scores in all experiments at a cost of the excessive memory usage. For quantization methods, we
choose the same INT8 [21], FP4, and NF4 [10] data types mentioned in Section 3.2. In general,
quantization methods suffer from notable perplexity degradation. Although the INT8 variant [21]
manages to better preserve the perplexity, it uses around 50% more memory compared with other
quantization methods.

For our lossy NeuZip, we set three different levels of precision: 0-bit, 1-bit, and 3-bit mantissa
preserved. We choose these values because they are aligned in 8-bit byte arrays (discussed in

7

Figure 3: The trade-off between memory and performance for different methods.

Section 2.3). All these variants use a block size of 512 for normalization. We additionally include
the lossless NeuZip (7-bit mantissa) for a full comparison. As shown in the table, our lossy NeuZip
demonstrates a spectrum of memory saving and performance preservation. The 0-bit NeuZip attains
the best memory efficiency in all experiments, whereas the lossless 7-bit NeuZip obtains the best
perplexity scores. Notably, the 3-bit NeuZip achieves nearly lossless performance in all experiments
while using less than 50% memory compared with the uncompressed model. The results confirm the
effectiveness of our method.

4 Related Work

Model compression. Previous work has explored different techniques to reduce the memory usage
of neural networks, including knowledge distillation [36] and pruning [37]. Most related to our
work is the quantization technique, which represents each parameter with fewer bits; common
approaches include k-means-based quantization [38], linear quantization [38], and mixed precision
quantization [21, 10]. When training data are available, one may incorporate the quantization into
the training process to improve performance [39, 35]. In this paper, our NeuZip compression is a
zero-shot method, and therefore, our experiments consider the widely used zero-shot quantization
methods [21, 10] for fair comparison. We leave the utilization of additional data of NeuZip to future
work.

Memory-efficient optimizers. The optimizer also occupies a considerable amount of memory
during training [6]. To address this, memory-efficient optimizers [7, 40, 8] are developed to reduce
the memory footprint of training. Our NeuZip is orthogonal to these optimization techniques, as it
can be seamlessly combined with any of these methods for further memory saving. In particular, the
lossless NeuZip is expected to have exactly the same results with less memory.

Parameter-efficient training. Another line of research saves memory by training a subset of
parameters [41, 42] so the optimizer only stores information about a small set of trainable parameters.
One notable example is the low-rank adaptation (LoRA [32]). However, such a practice restricts
the optimization space of parameters, and thus usually leads to significant performance degradation.
Moreover, low-rank methods are unsuitable for pre-training.

It is important to mention that memory-efficient optimizers and parameter-efficient training cannot
reduce the memory cost during inference. By contrast, our NeuZip is suitable for both training and
inference.

5 Conclusion

Summary. In this work, we present NeuZip, a novel compression scheme for neural networks that
achieves memory-efficient training and inference. By analyzing the floating-point structures, we
propose to compress the exponent in a lossless way and to compress the mantissa in a lossy way. The
lossless variant of our NeuZip may be applied to both training and inference, while yielding exactly
the same result as the uncompressed model. The lossy NeuZip provides additional memory saving
for inference, achieving superior memory–performance trade-off.

8

Acknowledgments

The research is supported in part by the Natural Sciences and Engineering Research Council of
Canada (NSERC), a Mitacs Accelerate project, the Amii Fellow Program, the Canada CIFAR
AI Chair Program, an Alberta Innovates Program, and the Digital Research Alliance of Canada
(alliancecan.ca).

References
[1] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,

Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv: 2001.08361, 2020. URL https://arxiv.org/abs/2001.
08361.

[2] Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay
Vasudevan, Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, B. Hutchinson, Wei Han, Zarana
Parekh, Xin Li, Han Zhang, Jason Baldridge, and Yonghui Wu. Scaling autoregressive models
for content-rich text-to-image generation. TMLR, 2022. URL https://openreview.net/
forum?id=AFDcYJKhND.

[3] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 2019. URL https:
//openai.com/research/better-language-models.

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
NeurIPS, pages 1877–1901, 2020. URL https://papers.nips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

[5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In NIPS, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

[6] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimiza-
tions toward training trillion parameter models. International Conference For High Performance
Computing, Networking, Storage And Analysis, 2019. URL https://arxiv.org/abs/1910.
02054.

[7] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory
cost. In ICML, pages 4596–4604, 2018. URL https://proceedings.mlr.press/v80/
shazeer18a.html.

[8] Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-rank adapters are secretly gradient
compressors. In ICML, 2024. URL https://openreview.net/forum?id=uubBZKM99Y.

[9] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016. URL https://arxiv.org/abs/1604.
06174.

[10] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. QLoRA: Efficient
finetuning of quantized LLMs. In NeurIPS, 2023. URL https://openreview.net/forum?
id=OUIFPHEgJU.

[11] Dhiraj Kalamkar, Dheevatsa Mudigere, Naveen Mellempudi, Dipankar Das, Kunal Banerjee,
Sasikanth Avancha, Dharma Teja Vooturi, Nataraj Jammalamadaka, Jianyu Huang, Hector Yuen,
Jiyan Yang, Jongsoo Park, Alexander Heinecke, Evangelos Georganas, Sudarshan Srinivasan,
Abhisek Kundu, Misha Smelyanskiy, Bharat Kaul, and Pradeep Dubey. A study of BFloat16 for

9

https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://openreview.net/forum?id=AFDcYJKhND
https://openreview.net/forum?id=AFDcYJKhND
https://openai.com/research/better-language-models
https://openai.com/research/better-language-models
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/1910.02054
https://proceedings.mlr.press/v80/shazeer18a.html
https://proceedings.mlr.press/v80/shazeer18a.html
https://openreview.net/forum?id=uubBZKM99Y
https://arxiv.org/abs/1604.06174
https://arxiv.org/abs/1604.06174
https://openreview.net/forum?id=OUIFPHEgJU
https://openreview.net/forum?id=OUIFPHEgJU

deep learning training. arXiv preprint arXiv: 1905.12322, 2019. URL https://arxiv.org/
abs/1905.12322.

[12] Jarek Duda. Asymmetric numeral systems: Entropy coding combining speed of Huffman
coding with compression rate of arithmetic coding. arXiv preprint arXiv: 1311.2540, 2013.
URL https://arxiv.org/abs/1311.2540.

[13] C. E. Shannon. A mathematical theory of communication. The Bell System Technical Journal,
27(3):379–423, 1948. URL https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.

[14] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In AISTATS, pages 249–256, 2010. URL https://proceedings.mlr.
press/v9/glorot10a.html.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. ICCV, pages 1026–1034, 2015.
URL https://doi.org/10.1109/ICCV.2015.123.

[16] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro.
The implicit bias of gradient descent on separable data. JMLR, 19(70):1–57, 2018. URL
http://jmlr.org/papers/v19/18-188.html.

[17] Gal Vardi and Ohad Shamir. Implicit regularization in relu networks with the square loss. In
COLT, pages 4224–4258, 2021. URL http://proceedings.mlr.press/v134/vardi21b.
html.

[18] IEEE. IEEE standard for floating-point arithmetic, 2019. URL https://doi.org/10.1109/
IEEESTD.2019.8766229.

[19] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, and et al. The Llama 3 herd of models.
arXiv preprint arXiv: 2407.21783, 2024. URL https://arxiv.org/abs/2407.21783.

[20] Kai Lv, Yuqing Yang, Tengxiao Liu, Qinghui Gao, Qipeng Guo, and Xipeng Qiu. Full parameter
fine-tuning for large language models with limited resources. arXiv preprint arXiv: 2306.09782,
2023. URL https://arxiv.org/abs/2306.09782.

[21] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. GPT3.int8(): 8-bit matrix
multiplication for Transformers at scale. In NeurIPS, 2022. URL https://openreview.net/
forum?id=dXiGWqBoxaD.

[22] Tim Dettmers and Luke Zettlemoyer. The case for 4-bit precision: k-bit inference scaling laws.
ICML, 2023. URL https://proceedings.mlr.press/v202/dettmers23a.html.

[23] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections
for efficient neural network. In NeurIPS, 2015. URL https://proceedings.neurips.cc/
paper_files/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf.

[24] Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. GPT-Neo: Large scale
autoregressive language modeling with Mesh-Tensorflow, 2021. URL https://doi.org/10.
5281/zenodo.5297715.

[25] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernan-
des, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal,
Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez,
Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux,
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor
Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein,
Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Sub-
ramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan,

10

https://arxiv.org/abs/1905.12322
https://arxiv.org/abs/1905.12322
https://arxiv.org/abs/1311.2540
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://doi.org/10.1109/ICCV.2015.123
http://jmlr.org/papers/v19/18-188.html
http://proceedings.mlr.press/v134/vardi21b.html
http://proceedings.mlr.press/v134/vardi21b.html
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2306.09782
https://openreview.net/forum?id=dXiGWqBoxaD
https://openreview.net/forum?id=dXiGWqBoxaD
https://proceedings.mlr.press/v202/dettmers23a.html
https://proceedings.neurips.cc/paper_files/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715

Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan
Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2:
Open foundation and fine-tuned chat models. arXiv preprint arXiv: 2307.09288, 2023. URL
https://arxiv.org/abs/2307.09288.

[26] Stephen Merity, Caiming Xiong, James Bradbury, and R. Socher. Pointer sentinel mixture
models. ICLR, 2016. URL https://arxiv.org/abs/1609.07843.

[27] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text Transformer. JMLR, 21(1):5485–5551, 2020. URL http://jmlr.org/papers/
v21/20-074.html.

[28] Zhaojiang Lin, Andrea Madotto, and Pascale Fung. Exploring versatile generative language
model via parameter-efficient transfer learning. In EMNLP Findings, pages 441–459, 2020.
URL https://aclanthology.org/2020.findings-emnlp.41.

[29] Victor Zhong, Caiming Xiong, and Richard Socher. Seq2SQL: Generating structured queries
from natural language using reinforcement learning. arXiv preprint arXiv:1709.00103, 2017.
URL https://arxiv.org/abs/1709.00103.

[30] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene
Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. Spider: A large-scale
human-labeled dataset for complex and cross-domain semantic parsing and text-to-SQL task.
In EMNLP, pages 3911–3921, 2018. URL https://aclanthology.org/D18-1425.

[31] Matt Post. A call for clarity in reporting BLEU scores. In WMT, pages 186–191, 2018. URL
https://aclanthology.org/W18-6319.

[32] Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In
ICLR, 2022. URL https://openreview.net/forum?id=nZeVKeeFYf9.

[33] Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei Zhang, Heng Li,
Jiangcheng Zhu, Jianqun Chen, Jing Chang, Kaidong Yu, Peng Liu, Qiang Liu, Shawn Yue,
Senbin Yang, Shiming Yang, Tao Yu, Wen Xie, Wenhao Huang, Xiaohui Hu, Xiaoyi Ren,
Xinyao Niu, Pengcheng Nie, Yuchi Xu, Yudong Liu, Yue Wang, Yuxuan Cai, Zhenyu Gu,
Zhiyuan Liu, and Zonghong Dai. Yi: Open foundation models by 01.ai. arXiv preprint arXiv:
2403.04652, 2024. URL https://arxiv.org/abs/2403.04652.

[34] Ondrej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Johannes
Leveling, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, Radu Soricut, Lucia
Specia, and Ale s Tamchyna. Findings of the 2014 workshop on statistical machine translation.
In Proceedings of the Ninth Workshop on Statistical Machine Translation, pages 12–58, 2014.
URL http://www.aclweb.org/anthology/W/W14/W14-3302.

[35] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. OPTQ: Accurate quantization
for generative pre-trained Transformers. In ICLR, 2023. URL https://openreview.net/
forum?id=tcbBPnfwxS.

[36] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv: 1503.02531, 2015. URL https://arxiv.org/1503.02531.

[37] Woosuk Kwon, Sehoon Kim, Michael W Mahoney, Joseph Hassoun, Kurt Keutzer, and Amir
Gholami. A fast post-training pruning framework for Transformers. In NeurIPS, pages
24101–24116, 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/987bed997ab668f91c822a09bce3ea12-Abstract-Conference.html.

[38] Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural
network with pruning, trained quantization and huffman coding. In ICLR, 2016. URL http:
//arxiv.org/abs/1510.00149.

11

https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/1609.07843
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/2020.findings-emnlp.41
https://arxiv.org/abs/1709.00103
https://aclanthology.org/D18-1425
https://aclanthology.org/W18-6319
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2403.04652
http://www.aclweb.org/anthology/W/W14/W14-3302
https://openreview.net/forum?id=tcbBPnfwxS
https://openreview.net/forum?id=tcbBPnfwxS
https://arxiv.org/1503.02531
https://proceedings.neurips.cc/paper_files/paper/2022/file/987bed997ab668f91c822a09bce3ea12-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/987bed997ab668f91c822a09bce3ea12-Abstract-Conference.html
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1510.00149

[39] Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han.
SmoothQuant: Accurate and efficient post-training quantization for large language models. In
ICML, 2023. URL https://arxiv.org/abs/2211.10438.

[40] Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. GaLore: Memory-efficient LLM training by gradient low-rank projection. In ICML, 2024.
URL https://arxiv.org/abs/2403.03507.

[41] N. Houlsby, A. Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and S. Gelly. Parameter-efficient transfer learning for
NLP. In ICML, pages 2790–2799, 2019. URL https://proceedings.mlr.press/v97/
houlsby19a.html.

[42] Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. BitFit: Simple parameter-efficient
fine-tuning for Transformer-based masked language-models. In ACL, volume 2, pages 1–9,
2022. URL https://aclanthology.org/2022.acl-short.1.

[43] Vilfredo Pareto. Manual of Political Economy: A Variorum Translation and Critical Edition.
Oxford University Press UK, 2014. URL https://global.oup.com/academic/product/
manual-of-political-economy-9780198867661.

[44] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint arXiv:
2009.03300, 2020. URL https://arxiv.org/abs/2009.03300.

12

https://arxiv.org/abs/2211.10438
https://arxiv.org/abs/2403.03507
https://proceedings.mlr.press/v97/houlsby19a.html
https://proceedings.mlr.press/v97/houlsby19a.html
https://aclanthology.org/2022.acl-short.1
https://global.oup.com/academic/product/manual-of-political-economy-9780198867661
https://global.oup.com/academic/product/manual-of-political-economy-9780198867661
https://arxiv.org/abs/2009.03300

A Inspecting the Entropy on More Models

Random initialization. When training from scratch, the parameters are randomly initialized. To
verify the compressibility in this case, we check the parameter entropy of a randomly initialized model
with the same architecture as Lllama-3. The initialization methods follow the standard procedure
provided in the Hugging Face library. The results show a similar pattern to what the released Llama
model has, suggesting the compressibility with NeuZip occurs even with random weights.

Figure 4: The histograms of different floating-point components of the parameters of a randomly
initialized Llama-3 8B model.

Diffusion. We also inspect the parameter entropies beyond Transformer models. In Figure 5, we
check all four models in a diffusion pipeline. We see that the low-entropy exponents not only occur
in Transformer models but other architectures like convolution-based VAE and U-Net models.

Figure 5: The histograms of the exponent bits in different components of Stable Diffusion 1.5 model.
We omit the sign and mantissa bits for simplicity as we do not compress them based on their entropies.

Both experiments show that the occurrence of low-entropy components is a common phenomenon in
deep learning.

B The Algorithm for Training with Lossless NeuZip

In this section, we describe the forward-backward procedure of NeuZip. First, we compress all
the linear layers in the original model and store the compressed information on-device. During the
training iterations, we decompress the compressed weights in a layer-by-layer manner for the forward
pass. For the backward pass, the input is recalculated again following the forward pass like activation
checkpointing [9]. A linear operation calculates the gradients for both the weight matrix and input. To
do so, we need to decompress the weight again, which is used to calculate the gradient of input. After
the gradient is calculated, we directly update the weight without storing it similar to LOMO [20].

C The Tolerance of Random Perturbation

In this experiment, we would like to explore the sensitivity of neural network weights to random
perturbations. For each parameter, we have two types of magnitudes: absolute and relative magnitudes.

13

Algorithm 1 Memory-efficient training with NeuZip

Require: number of linear layers L, linear layer weights {Wi}Li=1.
Require: data stream D that yields training data x for each iteration

▷ Initialization
1: for l ∈ 1 . . . L do
2: sl, el,ml ← split(Wl) ▷ Split each element in the matrix into three components
3: cl ← compression(el) ▷ Compress the exponents losslessly
4: store(sl, cl,ml) ▷ Store the compressed exponents cL on device
5: end for

▷ Training loop
6: for x in D do
7: ▷ Model forward
8: x0 ← x
9: for l ∈ 1 . . . L do

10: ê← decompression(cl) ▷ Decompress the exponents using temporary space
11: Ŵ ← merge(sl, êl,ml) ▷ Concatenate into a floating-point number matrix using temporary space
12: xl ← Ŵ⊤xl−1 + bl ▷ Linear calculation
13: save_for_backward(xl) ▷ Label the variable required for back-propagation
14: end for
15: ▷ Model backward and update
16: ∆x ← ∂L/∂xL ▷ Calculate the gradient w.r.t. the model output
17: for l ∈ L . . . 1 do
18: ê← decompression(cl) ▷ Decompress the exponents using temporary space
19: Ŵ ← merge(sl, êl,ml) ▷ Concatenate into a floating-point number matrix using temporary space
20: ∆W ← (∆x)x

⊤
l−1 ▷ Calculate gradient by Equation (5)

21: Ŵ ← Ŵ − optimizer(∆W) ▷ Update the weight on-the-fly
22: sl, el,ml ← split(Ŵ) ▷ Split each element in the matrix into three components again
23: cl ← compression(ei) ▷ Compress the exponents losslessly again
24: store(sl, cl,ml) ▷ Replace the stored components for layer l on device
25: ∆x ← Ŵ∆x ▷ Calculate the gradient of input for next layers
26: end for
27: end for

The former one represents the actual numerical error, whereas the second one is calculated based
on the original value. For example, when the original value is −1.5, an absolute magnitude of
0.125 means the perturbed range is [−1.5 − 0.125,−1.5 + 0.125]. On the other hand, a relative
magnitude of 0.125 means the perturbed range is [−1.5∗(1+0.125),−1.5∗(1−0.125]. We conduct
such a experiment with the perturbation grid in Figure 6. For each cell, we choose the maximum
error between relative error and absolute value for perturbing. A random value is sampled from the
perturbed range uniformly as the perturbation. The weight value is then set to the random sample.

As shown in Figure 6, we see a clear pattern that the model tends to tolerate the relative change rather
than the absolute change.

D The Storage for Lossless and Lossy Compression

In this section, we describe the underlying storage layout for NeuZip in Figure 7.

Essentially, each BFloat16 number is first split into an exponent and a signed mantissa. We group all
the exponents in the matrix and perform the lossless compression. The signed mantissa is optionally
truncated, depending on the required precision. The signed mantissa is then stored separately in
memory.

E In-depth analyses

The memory–performance trade-off. In Section 3.3, we observe that the performance is generally
decreased with less memory usage. We analyze this trade-off of our NeuZip as well as quantization
methods in Figure 3. Note that the optimal methods are the ones on the Pareto frontier [43], i.e., the

14

Figure 6: Evaluating the byte-level perplexity with perturbed LLama-3 8B model [19] on Wikitext-
2 [26]. Each parameter is perturbed with controlled noises. Both the x- and y-axes are log-scale with
base 2.

(a) Lossless compression scheme. (b) Lossy compression scheme (with 3 bits).

Figure 7: The storage structures for NeuZip.

Table 4: The effect of block size.
Block 32 Block 64 Block 128 Block 256 Block 512

Name PPL Mem PPL Mem PPL Mem PPL Mem PPL Mem
NeuZip 0-bit 6.341 35.7 6.694 34.6 6.853 34.2 7.639 33.8 7.104 33.5
NeuZip 1-bit - OOM 4.611 42.7 4.662 42.2 4.640 41.8 4.649 41.4

more bottom-left, the better. In addition to measuring the perplexity, we also include a preliminary
study by evaluating the end-to-end performance on the MMLU dataset [44] in Appendix F.

As shown, three out of four NeuZip variants are on the Pareto frontier, with the remaining one
staying fairly close to the frontier. On the other hand, there is only one quantization technique that
lies on the Pareto frontier. This result demonstrates that our NeuZip generally achieves a better
memory–performance trade-off than quantization.

The effect of block size in lossy compression. As introduced in Section 2, we apply normalization
to lossy NeuZip to ensure the weight with the largest absolute value will not be affected by truncation.
We show the effect of block size in this experiment with a giant model, Llama-3 70B evaluated on
the Wikitext-2 dataset.

As seen in Table 4, a smaller block size clearly leads to better performance at the cost of compromising
memory efficiency due to the overhead of storing normalization coefficients. Therefore, the block-

15

wise normalization provides a more fine-grained trade-off between memory and performance by
varying the block size.

Figure 8: The throughput experiment. (a) Comparison of CPU-offloading, quantization, lossy NeuZip
compression, and lossless NeuZip compression. (b) Comparison of GPU-reloading, de-quantization,
lossy NeuZip decompression, and lossless NeuZip decompression.

Throughputs of NeuZip. In addition to overall time efficiency presented in Tables 1–3, we analyze
the throughput of matrix compression and decompression with our NeuZip, in comparison with the
throughput of matrix quantization and de-quantization based on the NF4 data type [10] using the
popular library bitsandbytes.4 We additionally include the CPU-offloading technique as a baseline,
which lowers the GPU memory pressure by transferring data to CPU and reloading them to GPU
when needed. Figure 8 measures the throughput of matrix processing in GiB/s when we vary the
matrix size from 105 to 108 bytes.

We see that CPU-offloading is generally slow across different sizes of matrices. This is due to
the bottleneck of CPU–GPU communication through PCIe. For quantization, the bitsandbytes
package has been highly optimized for GPU, and its throughput is one magnitude higher than the
CPU-offloading technique when the matrix size is large. Profoundly, our NeuZip achieves the highest
throughput for compression among all methods (Figure 4a), and a high throughput for decompression
similar to de-quantization (Figure 4b). The results suggest that our NeuZip, albeit causing overhead
compared with uncompressed vanilla models, is still highly efficient in practice.

F Evaluating on MMLU

We provide the results on MMLU [44] in Figure 9. Here, the theoretical optimal point should be at
the top left corner.

Figure 9: The memory–performance trade-off on the MMLU dataset.

Similar to the results in Appendix E, all of our NeuZip variants are on the Pareto frontier, suggesting
the optimal trade-off between memory and performance.

4Available at https://github.com/bitsandbytes-foundation/bitsandbytes

16

https://github.com/bitsandbytes-foundation/bitsandbytes

	Introduction
	Our Approach
	Low-Entropy Nature of Neural Network Parameters
	Lossless NeuZip: Compressing Exponents for Training
	Lossy NeuZip: Additionally Truncating Mantissa for Inference

	Experiments
	Lossless NeuZip for Pre-Training
	Lossless NeuZip for Fine-Tuning
	Lossy Compression for Inference

	Related Work
	Conclusion
	Inspecting the Entropy on More Models
	The Algorithm for Training with Lossless NeuZip
	The Tolerance of Random Perturbation
	The Storage for Lossless and Lossy Compression
	In-depth analyses
	Evaluating on MMLU

