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Abstract

Large Language Models (LLMs) have demonstrated exceptional performance in
automating various tasks, such as text generation and summarization. Currently
LLMs are trained and fine-tuned on large cloud server. Deploying and fine-tuning
these models on resource-constrained edge devices remains a significant challenge
due to their substantial memory and computational requirements. This paper
introduces a resource-efficient zeroth-order optimization approach that lowers the
barriers for fine-tuning LLMs in such constrained environments. Our method
features a parallelized randomized gradient estimation (P-RGE) technique, which
performs gradient estimation with high parallel efficiency. P-RGE leverages outer-
loop and inner-loop parallelization to perform multiple function queries and forward
passes in parallel, reducing the wall-clock end-to-end training time. By integrating
this technique with parameter-efficient fine-tuning methods (e.g., LoRA) and on-
device inference engines (e.g., ExecuTorch), we demonstrate efficient fine-tuning
of LLMs on both server-side and edge devices. Experiments show that P-RGE
achieves significant runtime speedups and memory savings while maintaining
fine-tuning accuracy, which paves the way for more practical deployment of LLMs
in real-time, on-device applications.

1 Introduction

Large Language Models (LLMs) have recently achieved remarkable success across various domains,
including chatbot assistants [27, 8], image and video generation [33, 14], and healthcare applications
[30, 31]. As the field continues to progress, there is a growing demand to deploy LLMs with billions
of parameters directly on resource-constrained edge devices, such as smartphones, wearables, and
other IoT devices [48, 43, 28]. In these scenarios, the ability to fine-tune models on users’ data for
personalized experiences, while preserving privacy, becomes crucial [5, 17, 42]. However, fine-tuning
LLMs requires significant memory to store model weights, activations, and optimizer states [36],
which poses substantial challenges for edge devices.

Resource-efficient fine-tuning methods, such as parameter-efficient fine-tuning (PEFT) [16, 15, 21,
20] and memory-efficient fine-tuning [9, 23, 18, 24], have been explored to reduce the memory
footprint. However, even these methods struggle with the memory overhead of storing intermediate
activations during backpropagation. For instance, fine-tuning Llama-7B can require 45.6 GB of
memory for activations alone [23], making it impractical for many edge devices.

Zeroth-order (ZO) optimization has gained traction in resource-constrained setups, as it estimates
gradients using only forward passes, reducing the memory required for activations. This approach,
particularly the randomized gradient estimator (RGE) [10, 26], approximates gradients by computing
function differences along randomly chosen directions, eliminating the need for backpropagation.
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However, RGE improves accuracy by increasing the number of function queries (i.e., estimating
the gradient multiple times for a given input), which causes runtime to scale linearly [47, 12, 40].
Although ZO fine-tuning for LLMs holds promise for edge devices, practical implementations on
non-CUDA platforms, such as Android, remain underexplored.

In this work, we propose the parallelized randomized gradient estimator (P-RGE), which introduces
both outer-loop and inner-loop parallelization to efficiently handle multiple function queries and
forward passes in parallel. P-RGE enhances the real-time performance while maintaining minimal
memory overhead and integrates seamlessly with quantization methods for further optimization.
Moreover, we demonstrate the deployment of P-RGE on edge devices using ExecuTorch and PyTorch,
showcasing its real-world feasibility for fine-tuning LLMs on resource-constrained devices. In
summary, our key contributions are:

• We introduce the parallelized randomized gradient estimator (P-RGE), a novel optimization frame-
work that combines zeroth-order optimization with two key innovations: outer-loop parallelization
and inner-loop parallelization. This combination enables efficient fine-tuning of LLMs on resource-
constrained devices.

• Our outer-loop parallelization innovation allows multiple function queries to be executed simul-
taneously during each training step. By trading off a larger batch size for ZO fine-tuning with
more function queries and a smaller batch size, we show that multi-query RGE with outer-loop
parallelization improves performance without increasing computational cost or runtime compared
to single-query RGE.

• Our second innovation proposes inner-loop parallelization, which enables parallel execution of two
forward passes (with positive and negative perturbations), achieving up to 2× speedup per training
step when combined with outer-loop parallelization.

• We benchmark and demonstrate on-device fine-tuning of LLMs, deploying P-RGE on both Android
smartphones (with NPU backend via ExecuTorch) and Jetson Nano (with CUDA backend via
PyTorch), showcasing the feasibility of deploying large models on edge devices.

2 Background and Related Work

Low-Rank Adaptation. To reduce the resource demands of fine-tuning LLMs while maintaining
comparable performance, parameter-efficient fine-tuning methods like LoRA [16] have been intro-
duced. LoRA is designed to update only a small fraction of the model’s parameters by leveraging
the observation that weight changes in LLMs during fine-tuning exhibit a low-rank structure. In a
linear layer, LoRA freezes the pre-trained weights W ∈ Rkin×kout and injects trainable low-rank
matrices A ∈ Rkin×r and B ∈ Rr×kout . Given that the rank r is much smaller than min(kin, kout),
the total number of trainable parameters is significantly reduced. The forward pass is then modified
as y = xW + xAB, where the input is x ∈ Rkin and the output is y ∈ Rkout . The matrix A is
initialized from a random Gaussian distribution, while B is initialized to zero to ensure the output y
remains the same as the original layer at the beginning of training.

LoRA-FA [44], a variation of LoRA, further reduces the number of trainable parameters by freezing
the randomly initialized matrix A and only updating the matrix B, while still maintaining performance.
QLoRA [9] further reduces the memory footprint of weight storage by quantizing the non-trainable
weight matrices, excluding A and B, into 4-bit integers. Since these matrices are not updated during
training, their quantization scale remains unchanged. During forward and backward propagation,
these parameters are dequantized back to BF16 precision for computation.

Zeroth-Order Optimization. ZO optimization methods have been widely applied across various
machine learning applications [32, 39, 22]. Unlike FO optimization methods, which rely on direct
gradient calculations to find optimal solutions, ZO optimization methods are gradient-free alternatives.
They approximate FO gradients using function value-based estimates, referred to as ZO gradient
estimates. ZO methods typically follow the algorithmic structure of their FO counterparts but replace
the FO gradient with the ZO gradient estimate. Among ZO gradient estimators, the randomized
gradient estimator (RGE) is particularly effective, especially for fine-tuning LLMs [24].

Given a labeled dataset D and a model with parameters θ ∈ Rd, let the loss function on a minibatch
B ⊂ D of size B be denoted as L(θ;B). The RGE estimates the gradient of the loss L with respect
to the parameters θ on a minibatch B using the following approximation:
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∇̂L(θ;B) =
1

q

q∑
i=1

[
L(θ + ϵzi;B)− L(θ − ϵzi;B)

2ϵ
zi

]
, (1)

where zi ∈ Rd is a random vector drawn from ∼ N (0, Id), q is the number of function queries, and
ϵ > 0 is the perturbation scale.

RGE requires only two forward passes through the model to compute a single gradient estimate. As
a result, there is no need to implement automatic differentiation to perform backpropagation. The
choice of q balances the variance of the ZO gradient estimate and the computational cost. According
to [47], the variance of the RGE is approximately O(d/q).

ZO-SGD is an optimizer similar to standard SGD, but it replaces first-order gradients with ZO
gradient estimates for updates, defined as θt+1 = θt − η∇̂L(θ;Bt), where η is the learning rate and
∇̂L(θ;Bt) represents the ZO gradient estimate at training step t.

ZO LLM Fine-Tuning. Conventional ZO methods using RGE require twice the inference memory
due to the need to cache the random noise z. Memory-efficient ZO (MeZO) [24] is a memory-efficient
variant of ZO that addresses this issue by storing the random seed instead of the random noise. During
the forward pass, it resamples the same random noise z using the stored seed, thereby reducing the
training memory cost to nearly match the inference memory cost.

MeZO sets q = 1 to minimize computational costs in each training step, although this comes with
a performance trade-off. While MeZO eliminates the need for backpropagation, it still requires
sequential operations to apply the perturbation tensor on the model weights, leading to longer runtime
per training step. For LLMs, this sequential process can be especially time-consuming, potentially
offsetting the advantages gained from bypassing backpropagation. A detailed description of the
MeZO algorithm and its limitations is provided in Appendix A.1.

Extreme-sparse-MeZO [13] proposed integrating first-order Fisher information-based sparse training
with the MeZO method. This approach significantly reduces the number of trainable parameters and
outlines a potential workflow for on-device training, but it still lacks real-world validation. MeZO-
SVRG [12] incorporates the first-order SVRG approach into MeZO. While this method demonstrates
strong performance, it occasionally requires estimating gradients on the entire dataset, resulting
in substantial computational overhead. DeepZero [6] proposed to use coordinate-wise gradient
estimation to pre-train DNNs from scratch, which is not applicable to LLM fine-tuning. AdaZeta
[40] introduced an adaptive query scheduling strategy to address persistent divergence issues in ZO
fine-tuning. However, it still relies on sequentially execution of multiple function queries per training
step, which slows down overall training time.

3 Methods

To address the challenges in ZO fine-tuning of LLMs, we propose parallelized randomized gradient
estimation (P-RGE). P-RGE introduces a series of optimizations aimed at improving runtime speed
and memory efficiency while still harnessing the performance gains from multi-query RGE. It is built
on two key innovations: outer-loop parallelization and inner-loop parallelization for fast gradient
estimation. We further present an implementation of P-RGE in PyTorch to facilitate the deployment
of on-device training via inference engines.

3.1 Outer-loop Parallelization

Previous work [47] has shown that increasing the query budget improves the accuracy of RGE
but comes at the cost of linearly increased computational overhead resulting in slower execution.
To overcome this limitation, we propose parallel execution of multiple queries per training step
by duplicating the model inputs and trainable parameters, then performing forward passes across
different queries in parallel. To maintain the same computational cost as single-query RGE, we
proportionally reduce the input batch size. To mitigate memory overhead associated with model
parameters and reduce slowdown caused by sequential operations on parameters, we adopt PEFT
methods to reduce the number of trainable parameters. Our preliminary experiments (see Appendix
A.2 for more details) show that combining ZO with LoRA-FA outperforms other PEFT methods, such
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Figure 1: Proposed P-RGE method.

as DoRA [41] and VeRA [19], making LoRA-FA our default setup. Although our implementation is
based on LoRA-FA, this approach is adaptable to other PEFT methods.

As illustrated in Figure 1 (a), we first duplicate the model input batch (x) q times. We keep W
and LoRA-A matrix frozen. Then, we duplicate the LoRA-B matrix q times. Each LoRA-B
matrix is perturbed with different random noise during the forward pass, and each input batch is
multiplied by its corresponding LoRA-B matrix using batched matrix multiplication. The layer
inputs x1, x2, . . . , xq originate from the same model input batch of arbitrary size B, but their values
diverge after passing through the first LoRA module. Since the model input batch is duplicated across
queries, the effective batch size becomes E = q · B. To keep the computational cost and memory
usage constant across different values of q, we proportionally reduce the batch size B, ensuring that
E remains consistent. As we demonstrate later this trade-off of reducing B while increasing q leads
to better model accuracy.

By adopting outer-loop parallelization, we increase parallelism across queries while enhancing
data locality for model parameters. Specifically, the required weights are loaded once and reused
across different queries, significantly reducing external memory access. With minimal overhead
from batched matrix multiplication, P-RGE achieves comparable runtime per gradient estimation as
single-query RGE but with the advantage of multiple-query gradient estimation.

3.2 Inner-loop Parallelization

While outer-loop parallelization increases parallelism across multiple queries, gradient estimation
still requires two forward passes per query: one with positive perturbation and one with negative
perturbation, traditionally executed sequentially in the RGE algorithm.

To further accelerate gradient estimation, we propose inner-loop parallelization, which performs both
forward passes simultaneously. As illustrated in Figure 1 (b), each input batch and LoRA-B matrix is
duplicated once more. One copy of the LoRA-B matrix is perturbed with positive noise, and the other
with negative noise. By computing the loss difference in parallel, we can estimate the gradient using
a single combined forward pass. This approach reduces external memory access for loading model
parameters, alleviating the memory bandwidth burden, particularly for LLMs. As a result, P-RGE
achieves a faster wall-clock time per training step compared to the sequential two step forward-pass
execution in conventional RGE.

With inner-loop parallelization, the activations at each layer are doubled, as it doubles the effective
batch size. However, this does not result in significant memory overhead. Unlike first-order methods,
ZO methods allow activations from previous layers to be discarded during forward passes, preventing
accumulation across layers. This property, as noted in [47], enables ZO methods to scale more
efficiently with long sequence lengths and large batch sizes compared to FO methods. To minimize
memory costs for storing LoRA-B weight matrices, it is possible to keep a master copy of LoRA-B
and generate perturbed copies dynamically during the forward pass. At each LoRA layer, only the
master copy is updated with the gradient and learning rate. Perturbed copies of LoRA-B are then
generated and discarded once the output is computed, ensuring that the number of additional trainable
parameters remains the same as in the standard LoRA-FA method.
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Figure 2: On-device training workflow via ExecuTorch. The green box represents additional procedure
in addition to standard steps for inference deployment on edge devices.

3.3 On-Device Training Workflow

For the on-device implementation of our proposed methods, we have selected ExecuTorch [1] as the
inference engine. ExecuTorch, the successor to PyTorch Mobile [3], allows developers to perform
model inference across various platforms with different backends (e.g., CPUs, NPUs, and DSPs)
using the same toolchains and SDKs provided by PyTorch.

Deploying a PyTorch model (nn.Module) on edge devices for inference via ExecuTorch generally
involves two main steps. First, we convert the PyTorch model into an ExecuTorch program, which is
essentially a computation graph of the model with its parameters. This process generates a binary
file that contains ExecuTorch instructions, which the ExecuTorch runtime can interpret and execute.
Second, we offload both the binary file and the runtime library to the target platform. The runtime,
written in C++ and OS-independent, includes an operator library tailored for the hardware backend
of the device and is responsible for executing the ExecuTorch program.

However, the MeZO implementation (Algorithm 2) is not natively supported in the ExecuTorch
workflow as it requires major modifications on the device side (e.g., resetting the random seed,
generating noise, extracting weights, applying gradients, etc.). Extracting weights from the binary
file is particularly challenging, as ExecuTorch runtime does not provide an API for this purpose.
To simplify the deployment process, we leverage inner-loop parallelization and propose a dual-
forwarding LoRA module implementation in PyTorch. In this approach, the training procedure
for P-RGE is defined within the model’s forward function and fully exportable to an ExecuTorch
program. This enables us to generate and offload the ExecuTorch program with minimal server-side
modifications, allowing for training without any changes to the ExecuTorch runtime on edge devices.

In our dual-forwarding LoRA module as shown in Algorithm 1, the first step is to compute the differ-
ence between the perturbed weights B[0] (positive perturbation) and B[1] (negative perturbation),
which is the same random noise scaled by ϵ from the previous step. Since resetting the random
seed is not an exportable operation when converting to an ExecuTorch program (line 14 and 22 in
Algorithm 2), we retain all copies of matrix B in memory rather than maintaining a single master
copy. This allows us to recover the random noise from the previous step without regenerating it using
a seed. Lines 4 and 5 in the algorithm restore the original value of matrix B from the previous step,
update the weights with gradients, and then apply new random noise. The output is subsequently
computed by combining the original linear transformation xW with a batched matrix multiplication
between matrices xA and B. This method can also be extended to handle larger input batch sizes
and incorporate with the outer-loop parallelization technique.

Figure 2 illustrates the workflow for enabling on-device training using dual-forwarding through
ExecuTorch. Starting with a pre-trained PyTorch model, we inject the dual-forwarding LoRA module
and direct the projected gradient g to each LoRA module. Following the standard ExecuTorch work-

Algorithm 1 Dual-forwarding LoRA-FA module definition

Require: x ∈ R2×seq_len×k, A ∈ Rk×r, B ∈ R2×r×k, Wk×k, learning rate η, perturbation scale ϵ,
projected gradient g

1: diff← B[0]−B[1]
2

2: update← η · g · diff
ϵ

3: z← ϵ · randn_like(B[0])
4: B[0]← B[0]− diff− update + z
5: B[1]← B[1] + diff− update− z
6: return output← xW + bmm(xA,B)
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flow, we export, compile, and offload the model to the edge device. On the device, the ExecuTorch
runtime executes the binary file. For random noise generation, a customized operator can be easily
integrated into the existing runtime library via the ExecuTorch API [2].

4 Experiments

We conduct comprehensive experiments on the TinyLlama-1.1B [45] and Llama2-7B [35] models
across different systems to evaluate both model performance and system efficiency. The experiments
begin by fine-tuning the models on server-side systems to establish their baseline accuracy.

4.1 Fine-Tuning Performance

We compare two sets of baselines: the first uses an FO-Adam optimizer in both the full and LoRA-FA
parameter spaces, and the second employs a ZO-SGD optimizer with q = 1 in the same parameter
spaces. To ensure equivalent computation per training step while varying q, we set the effective batch
size E = 16 for all ZO methods. Zero-shot performance is also reported. For ZO-LoRA-FA with
q > 1 (multi-query RGE), it is implemented by outer-loop parallelization to improve computational
efficiency. Additional experimental details, including the training procedure and hyperparameters,
are provided in Appendix A.3 and A.4.

For the smaller-scale TinyLlama-1.1B model, we evaluate its performance on the GLUE dataset [37].
The results in Table 1 show that increasing the number of queries while decreasing the batch size
outperforms the baseline (i.e., q = 1, B = 16) by 1.4− 8.5% accuracy.

Table 1: Performance of fine-tuning TinyLlama-1.1B on different tasks with different optimizers.

Task SST-2 RTE MRPC QQP QNLI WNLI
Zero-shot 55.3 52.3 68.3 32.8 52.7 43.6

FO-Full 91.9 72.5 77.4 82.4 80.8 56.3
FO-LoRA-FA 94.2 82.6 82.3 84.4 86.5 56.3

ZO-Full (q = 1) 91.5 66.4 71.3 71.4 73.9 63.4
ZO-LoRA-FA (q = 1) 88.8 70.8 74.8 76.0 74.0 57.7

ZO-LoRA-FA (q > 1) 91.6 72.9 77.7 78.0 79.4 66.2

For the larger Llama2-7B model, we evaluate its performance on SST-2 [37], WinoGrande [29],
and the SuperGLUE [38] dataset using the same experimental setup. As shown in Table 2, multi-
query RGE consistently improves performance over the baseline in the LoRA-FA parameter space.
Although ZO in the full parameter space with q = 1 achieves higher accuracy on some tasks, it is
computationally inefficient, as detailed in Appendix A.1.

Table 2: Performance of fine-tuning Llama2-7B on different tasks with different optimizers. ZO-
LoRA-FA (q > 1) is implemented by outer-loop parallelization.

Task SST-2 RTE BoolQ WSC WiC MultiRC COPA WinoGrande SQuAD
Zero-shot 58.0 59.2 71.9 51.9 50.0 54.6 79.0 62.7 23.8

FO-Full 92.5 78.7 80.6 63.4 67.2 71.7 81.0 68.2 79.2
FO-LoRA-FA 95.5 87.7 86.5 76.9 75.3 82.8 87.0 70.0 76.5

ZO-Full (q = 1) 94.7 77.3 81.9 70.2 58.8 72.7 82.0 65.0 76.9
ZO-LoRA-FA (q = 1) 89.3 65.0 80.2 65.4 59.2 68.2 88.0 64.3 78.3

ZO-LoRA-FA (q > 1) 92.2 76.2 81.5 66.3 63.5 72.9 89.0 64.6 82.1

4.2 Server-Side System Performance

We further evaluate the server-side performance of P-RGE by measuring the runtime per training
step and memory usage across different sequence lengths and batch sizes. The ZO-SGD optimizer
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performs the forward pass in FP16 precision to maximize computational efficiency, due to its tolerance
for low-precision gradient estimation [47]. For a fair comparison, the FO optimizer uses standard
SGD without momentum, combined with FP16 mixed-precision training.

Runtime Speedup. Figure 3 shows the runtime per training step for vanilla MeZO-Full, ZO-LoRA-
FA (q = 1), and ZO-LoRA-FA (q = 1) with inner-loop parallelization, measured at different
sequence lengths and effective batch sizes. ZO-LoRA-FA achieves faster runtime per training step
than vanilla ZO-Full, as PEFT methods reduce the overhead associated with sequential process of
model parameters. We observe that as long as the effective batch size E remains constant, ZO-LoRA-
FA (q > 1) implemented by outer-loop parallelization introduces no runtime overhead compared to
the ZO-LoRA-FA (q = 1) baseline as shown in Appendix A.6, meaning measuring ZO-LoRA-FA
(q = 1) is sufficient for runtime analysis.

More importantly, when inner-loop parallelization is enabled, the training runtime is further improved,
up to 1.79× for Llama2-7B when the sequence length is 64 and the batch size is 1. This speedup is
achieved by reusing model weights across two forward passes, reducing cache access and increasing
arithmetic intensity. As a result, system performance improves, particularly when the system is
memory-bound. In addition, when inner-loop parallelization is combined with NF4 quantization,
runtime speedup improves further, reaching up to 1.97×. Detailed experiments and discussion on
this are provided in Appendix A.5.

In practice, outer-loop and inner-loop parallelization can yield even greater speedups. Unlike the
benchmarks reported above, which use unpadded batches, realistic datasets often include tokenized
sequences of varying lengths, which are padded to ensure uniform batch sizes. Larger batch sizes can
result in more padding tokens, leading to wasted computation. However, using smaller and duplicated
batch sizes in the P-RGE optimizer reduces the number of padding tokens during the forward pass,
resulting in faster runtime per step. The wall-clock end-to-end training time for actual tasks are
provided in Appendix A.6.

zo-full
zo-lora-fa

zo-inner
0.06

0.08

0.1

R
un

tim
e

(s
ec

/s
te

p)

seq len = 64

zo-full
zo-lora-fa

zo-inner
0.06

0.08

0.1

0.12

0.14

seq len = 128

TinyLlama-1.1B

zo-full
zo-lora-fa

zo-inner
0.05

0.1

0.15

0.2

seq len = 256

zo-full
zo-lora-fa

zo-inner
0

0.2

0.4

0.6

R
un

tim
e

(s
ec

/s
te

p)

seq len = 64

zo-full
zo-lora-fa

zo-inner
0

0.2

0.4

0.6

seq len = 128
Llama2-7B

zo-full
zo-lora-fa

zo-inner
0

0.5

1

seq len = 256

Figure 3: Runtime per training step of TinyLlama-1.1B and Llama2-7B for different sequence lengths
and batch sizes (blue/red/brown represent B = 1/8/16 respectively).

Memory Efficiency. We evaluate the memory overhead of inner-loop parallelization versus sequential
execution for each function query. We measure peak memory usage, subtracting memory for model
weights, which varies with the quantization method. The measured footprint includes CUDA kernels,
activations, gradients, and other implementation-specific details.

As shown in Figure 4, memory usage is significant for the FO optimizer due to the need to store
activations from all intermediate layers, along with a master copy of the model weights in FP32
during mixed-precision training [25]. In contrast, for the ZO optimizer, inner-loop parallelization
roughly doubles memory usage by increasing the size of the largest output tensor during the forward
pass. However, it still requires significantly less memory than the FO optimizer. For example, in
Llama2-7B, when the sequence length is 256 and the batch size is 16, memory usage increases from
0.99GB to 1.97GB, while FO requires over 30GB of memory. The detailed memory usage during
training actual tasks are provided in Appendix A.7.

4.3 On-Device Training Experiments

For on-device training experiments, we begin by performing a sanity check, verifying the loss
values per step on two edge platforms: the NVIDIA Jetson Nano Orin (8GB) GPU and the OnePlus
12 smartphone (12GB) NPU. We ensure that both platforms produce the same values as those
observed on the server side. Detailed edge system specifications are provided in Appendix A.9. After
verification, we measure and report the runtime per step of P-RGE.
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Figure 4: Peak memory usage (excluding model weights) of TinyLlama-1.1B and Llama2-7B for
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Since the Jetson platform runs a Linux system, we utilize the PyTorch library for the model’s forward
pass and the bitsandbytes library [11] for quantization. Table 3 presents the speedup of inner-loop
parallelization under NF4 quantization, achieving up to 1.83× faster performance. The observed
trend is similar to that on the server side, where speedup diminishes as the system becomes more
computationally bound.

Table 3: Runtime (sec/step) and speedup ratio of inner-loop parallelization on Jetson GPU backend
for TinyLlama-1.1B and Llama2-7B with NF4 quantization.

Model Sequence length 64 128

Batch size 1 2 4 8 1 2 4 8

TinyLlama-1.1B
ZO-LoRA-FA 0.69 0.71 0.89 1.28 0.70 0.88 1.27 2.18
ZO-inner 0.43 0.49 0.69 1.15 0.49 0.69 1.13 2.00
Speedup ratio 1.62 1.45 1.29 1.12 1.42 1.29 1.12 1.09

Llama2-7B
ZO-LoRA-FA 3.10 3.37 4.44 6.46 3.37 4.44 6.47 10.83
ZO-inner 1.69 2.22 3.22 5.38 2.22 3.22 5.37 8.60
Speedup ratio 1.83 1.52 1.38 1.20 1.52 1.38 1.21 1.26

On the smartphone platform, which runs Android OS, PyTorch is not supported, so we follow
the ExecuTorch workflow. However, since Executorch currently lacks support for weight-only
quantization, we run TinyLlama-1.1B in FP16 mode. We also observe that Executorch does not
handle batch sizes greater than 1 efficiently, as it is primarily designed for chat LLMs, where a single
user input sequence is processed at a time, as shown in Table 4. Exploring alternative backends on
ARM SoCs, such as Vulkan backend on GPU, is left as future work.

Table 4: Runtime (sec/step) of dual-forwarding implementation on Android NPU backend for
TinyLlama-1.1B without quantization.

Sequence length 64 128

Effective batch size 2 4 8 16 2 4 8 16

Dual-Forwarding 1.04 2.34 4.70 10.43 2.49 4.83 10.36 15.73

5 Conclusion

This work introduces parallelized randomized gradient estimation (P-RGE) to address the computa-
tional and memory challenges of fine-tuning large language models (LLMs) in resource-constrained
environments. P-RGE leverages outer-loop and inner-loop parallelization to enable efficient multi-
query gradient estimation, improving accuracy without adding computational overhead. Our experi-
ments demonstrate that P-RGE significantly enhances wall-clock training time efficiency and reduces
memory usage on both server and edge platforms, enabling real-time on-device fine-tuning. By
integrating P-RGE with inference engines like ExecuTorch, we showcase the practical applicability
of our method across diverse hardware backends, including Android NPUs and Jetson GPUs. Future
work will explore extending P-RGE to other ZO optimization methods and refining quantization
techniques to support broader deployment scenarios.
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A Appendix

A.1 MeZO Algorithm and Its Limitation

We evaluate the runtime efficiency of the MeZO optimizer, restated from the original work in
Algorithm 2. MeZO uses a random seed trick to eliminate the need for storing random noise, trading
off computational efficiency and memory usage.

MeZO operates over four distinct loops within each iteration:

1. The first loop adds positive noise to the trainable parameters.

2. The second loop perturbs the weights in the opposite direction using the same noise.

3. The third loop restores the weights to their original state before the update.

4. The fourth loop applies the computed gradients to update the weights.

This method reduces memory overhead from O(d) to O(1) by avoiding the storage of random noise.
However, the computation cost escalates from O(1) to O(d) because each parameter update requires
individual processing, which cannot be efficiently parallelized. In practical settings, especially with
LLMs, iterating over the full parameter set four times per update can significantly slow down the
training process, thus negating the benefits of eliminating backpropagation.

In contrast, PyTorch’s FO optimizers utilize a foreach implementation by default. This method
aggregates all layer weights into a single tensor during parameter updates, which speeds up the
computation. However, this approach also increases the memory usage by O(d), as it requires
maintaining a copy of the weights for the update process.

Algorithm 2 MeZO with q > 1.

Require: parameters θ ∈ Rd, loss L : Rd → R, step budget T , function query budget q, perturbation
scale ϵ, learning rate η

1: for t = 1, . . . , T do
2: for i = 1, . . . , q do
3: seeds, projected_grads← []
4: Sample batch B ⊂ D and random seed s
5: θ ← PERTURBPARAMETERS(θ, ϵ, s)
6: ℓ+ ← L(θ;B)
7: θ ← PERTURBPARAMETERS(θ,−2ϵ, s)
8: ℓ− ← L(θ;B)
9: θ ← PERTURBPARAMETERS(θ, ϵ, s)

10: projected_grads[i]← (ℓ+ − ℓ−)/(2ϵ)
11: seeds[i]← s
12: end for
13: for i = 1, . . . , q do
14: Reset random number generator with seed seeds[i]
15: for θj ∈ θ do
16: z ∼ N (0, 1)
17: θj ← θj − (ηt/q)× projected_grads[i]× z
18: end for
19: end for
20: end for

21: function PERTURBPARAMETERS(θ, ϵ, s)
22: Reset random number generator with seed s
23: for θj ∈ θ do
24: z ∼ N (0, 1)
25: θj ← θj + ϵz
26: end for
27: return θ
28: end function
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Table 5 compares the runtime of the Llama2-7B model using both FO-SGD and MeZO-SGD
optimizers (q = 1) over the full parameter space across various batch sizes and sequence lengths. The
FO optimizer is run with FP16 mixed-precision training, while MeZO uses pure FP16 to maximize
computational speed. To avoid out-of-memory errors, we utilize two NVIDIA A100 (40GB) GPUs
for the FO optimizer, which incurs additional GPU communication time in a distributed environment.

When both the batch size and sequence length are small, MeZO exhibits significantly higher runtime
due to the overhead of sequential operations required to apply perturbations and gradients. However,
as the batch size and sequence length increase, where forward and backward passes, as well as GPU
communication, dominate the runtime, the MeZO optimizer demonstrates improved performance.
This behavior highlights the importance of applying PEFT methods with MeZO to mitigate the
computation overhead caused by the sequential processing of model parameters.

Table 5: Runtime (sec/step) of Llama2-7B using FO and MeZO optimizers over full parameter space.
Sequence length 64 128 256

Batch size 1 4 8 1 4 8 1 4 8

FO-SGD 0.17 0.21 0.34 0.19 0.33 0.49 0.18 0.49 0.90

MeZO-SGD (q = 1) 0.43 0.48 0.56 0.43 0.56 0.73 0.45 0.73 1.05

A.2 Preliminary Experiment of ZO with Different PEFT Methods

We conducted a preliminary experiment by fine-tuning the OPT-1.3B model [46] for 10,000 iterations
on the SST2 dataset [37] using ZO-SGD optimizer with different PEFT methods. We use hyperparam-
eter grid search with learning rate ∈ {5e−6, 5e−5, 5e−4, 5e−3} and ϵ ∈ {1e−3, 1e−2}. LoRA
[16], LoRA-FA [44], and DoRA [41] are configured with r = 16, and VeRA [19] uses r = 1024.
The results in Table 6 indicate that the LoRA-FA method outperforms other PEFT methods in terms
of accuracy.

Table 6: ZO accuracy of OPT-1.3B on SST2 dataset using different PEFT methods.
PEFT Methods LoRA LoRA-FA DoRA VeRA

Accuracy 90.9 92.0 90.9 91.4

A.3 Experimental Setup

We evaluate the performance of the TinyLlama-1.1B model on six tasks from the GLUE dataset [37]:
sentiment analysis (SST2), paraphrase (MRPC and QQP), and natural language inference (QNLI,
RTE, and WNLI).

For the larger Llama2-7B model, evaluations were performed on two tasks from the GLUE dataset:
SST2 and RTE. Additionally, the model was tested on six tasks from the SuperGLUE dataset [38],
categorized as follows: text classification (BoolQ, WSC, WIC, and MultiRC), multiple-choice
(COPA), and question-and-answering (SQuAD). We include one additional multiple-choice task from
WinoGrande [29] dataset. For question-and-answering tasks, we utilize the F1 score as a metric,
while accuracy metrics are used for the rest.

We achieve text classification, multiple-choice and question-and-answering tasks through next-word
prediction, adopting the same prompt template from MeZO [24] and PromptSource[4], as shown in
Table 7. We compute the loss value of prediction over the entire vocabulary space instead of only the
vocabulary space of the ground true.

For these tests, we also adopt a low-volume data condition, limiting our samples to 1,000 for training,
500 for validation, and 1,000 for testing, as proposed in the original MeZO work [24].

The runtime and memory usage measurements of ZO-SGD optimizer are conducted on a single
NVIDIA A100 (40GB) GPU. The memory usage measurements of FO-SGD optimizer are conducted
on two NVIDIA A100 (40GB) GPUs to avoid out-of-memory error.
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Table 7: The prompt template of the datasets we used in our experiments.
Dataset Type Prompt
SST-2 cls. <text> It was terrible/great

RTE cls. <premise> Does this mean that “<hypothesis>” is true? Yes or No?
Yes/No

MRPC cls. Do the following two sentences mean the same thing? Yes or No?
Sentence 1: <sentence1>
Sentence 2: <sentence2>
Yes/No

QQP cls. Are these two questions asking the same thing? Yes or No?
Question 1: <question1>
Question 2: <question2>
Yes/No

QNLI cls. Does this sentence answer the question? Yes or No?
Sentence 1: <sentence1>
Sentence 2: <sentence2>
Yes/No

WNLI cls. Given the first sentence, is the second sentence true? Yes or No?
Sentence 1: <sentence1>
Sentence 2: <sentence2>
Yes/No

BoolQ cls. <passage> <question> <answer>?
Yes/No

WSC cls. <text> In the previous sentence, does the pronoun “<span2>” refer to <span1>?
Yes/No

WIC cls. Does the word “<word>” have the same meaning in these two sentences?
<sent1> <sent2>
Yes, No?

MultiRC cls. <paragraph> Question: <question>
I found this answer “<answer>”. Is that correct?
Yes or No?

COPA mch. <premise> so/because <candidate>

WinoGrande mch. <context> <subject> <object>

SQuAD QA Title: <title>
Context: <context>
Question: <question>
Answer:
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A.4 Hyperparameters

We report the hyperparameters searching grids in Table 8. For LoRA hyperparameters, we choose
the LoRA rank to be 16 and alpha to be 16. Note that for the multi-query RGE with outer-loop
parallelization, we do not search for the case where E ̸= 16 .

Table 8: Hyperparameters for Llama2-7B and TinyLlama-1.1B experiments. FO experiments use
Adam optimizer and are trained for 1,000 iterations. ZO experiments are trained for 20,000 iterations.
Performance on the test dataset is evaluated every 100 steps for all tasks except SQuAD, which is
evaluated every 500 steps.

Llama2-7B
Experiment Hyperparameters Values

FO-Full Batch size {8}
Learning rate {1e-5, 5e-5, 8e-5} or {1e-7, 5e-7, 8e-7} for SQuAD

FO-LoRA-FA Batch size {8}
Learning rate {1e-4, 3e-4, 5e-4}

ZO-Full Batch size {16}
Learning rate {1e-7, 5e-7, 1e-6}
ϵ 1e-3

ZO-LoRA-FA Effective batch size {16}
q {1, 2, 4, 8, 16}
Learning rate {1e-4, 5e-4, 1e-3, 5e-3} or {1e-5, 5e-5, 1e-4, 5e-4}

for RTE, MultiRC and WinoGrande
ϵ 1e-2

TinyLlama-1.1B
FO-Full Batch size {8}

Learning rate {1e-5, 5e-5, 8e-5}

FO-LoRA-FA Batch size {8}
Learning rate {1e-4, 3e-4, 5e-4}

ZO-Full Batch size {16}
Learning rate {1e-7, 5e-7, 1e-6}
ϵ 1e-3

ZO-LoRA-FA Effective batch size {16}
q {1, 2, 4, 8, 16}
Learning rate {1e-5, 5e-5, 1e-4, 5e-4} or {1e-4, 5e-4, 1e-3, 5e-3} for SST2
ϵ 1e-2
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A.5 Runtime Speedup of Inner-loop Parallelization With Quantization

We report the memory usage for storing model weights under various weight-only quantization
schemes, which is independent of the optimizer used. Therefore, the peak memory usage is the sum
of the values reported in Figure 4 and the memory required to store the model weights, as shown in
Table 9.

Table 9: Weight-only quantization memory usage (GB).
Quantization FP32 FP16 INT8 NF4

TinyLlama-1.1b 4.10 2.05 1.15 0.70
Llama2-7b 25.10 12.56 6.52 3.50

We also evaluate the speedup achieved by inner-loop parallelization under weight-only INT8 and
NF4 quantization. As shown in Figure 5, inner-loop parallelization yields the highest speedup when
combined with NF4 quantization, achieving up to a 1.97× improvement compared to the sequential
execution of the two forward passes. Since NF4 dequantization requires more operations than INT8
during the forward pass, the efficiency of inner-loop parallelization comes from dequantizing the
weights only once per training step. This reduces the overhead from repeated dequantization, making
the process more computation-efficient overall.
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Figure 5: Runtime speedup per training step of TinyLlama-1.1B and Llama2-7B for different
quantization methods, sequence lengths and batch sizes (blue/red/green represent FP16/INT8/NF4
quantization respectively).

A.6 End-to-end Training Runtime Efficiency

The results presented in Tables 10 and 11 provide a detailed comparison of the wall-clock end-to-end
time for fine-tuning the TinyLlama-1.1B and Llama2-7B models across various tasks using different
configurations of the ZO optimizer. Vanilla implementation represents the sequential execution of
two forward pass per function query. For q > 1, we enable outer-loop parallelization.

This further confirms that outer-loop parallelization does not incur extra runtime overhead as long as
E remains constant. ZO-LoRA-FA with both outer-loop and inner-loop parallelization demonstrates
the most significant reduction in runtime, achieving up to a 2× speedup compared to the vanilla ZO-
LoRA-FA (q = 1) when fine-tuning Llama2-7B on RTE task. These results highlight the advantage
of inner-loop and outer-loop parallelization, especially in tasks requiring larger models and longer
training times.

A.7 End-to-end Training Memory Efficiency

The results presented in Tables 12 and 13 compare the peak memory usage for fine-tuning the
TinyLlama-1.1B and Llama2-7B models across different tasks using various configurations of the
ZO optimizer. For both models, the ZO-LoRA-FA method with inner-loop parallelization incurs
higher memory usage compared to vanilla implementations due to the simultaneous computation of
two forward passes. Specifically, for Llama2-7B, tasks like SQuAD and MultiRC see an increase
in memory usage of up to 30% when using inner-loop parallelization due to larger sequence length.
Despite this increase, the memory efficiency remains within acceptable bounds.
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Table 10: Runtime (min/task) of fine-tuning TinyLlama-1.1B for the ZO runs corresponding to the
results reported in Table 1.

Task SST-2 RTE MRPC QQP QNLI WNLI
ZO-Full (q = 1) 38.31 61.51 45.71 40.76 46.30 43.57

ZO-LoRA-FA (q = 1)
Vanilla 34.66 55.53 35.45 35.00 37.44 34.40
Inner-loop 23.55 54.07 35.72 28.76 36.59 33.22

ZO-LoRA-FA (q > 1)
Vanilla 35.57 38.18 37.29 36.19 35.86 36.81
Inner-loop 24.77 31.98 35.41 25.83 27.43 27.39

Table 11: Runtime (min/task) of fine-tuning Llama2-7B for the ZO runs corresponding to the results
reported in Table 2.

Task SST-2 RTE BoolQ WSC WiC MultiRC COPA WinoGrande SQuAD
ZO-Full (q = 1) 159.44 288.1 384.07 209.72 173.01 526.49 146.4 154.74 480.90

ZO-LoRA-FA (q = 1)
Vanilla 43.79 185.73 285.88 99.04 62.21 371.23 30.76 39.40 398.50
Inner-loop 42.40 181.51 281.62 95.95 58.94 368.95 26.42 37.14 388.74

ZO-LoRA-FA (q > 1)
Vanilla 34.25 94.17 217.63 86.15 46.45 426.87 31.40 37.03 326.38
Inner-loop 27.97 90.46 210.80 85.08 45.24 416.91 26.86 34.13 321.20

Table 12: Peak memory usage (GB) of fine-tuning TinyLlama-1.1B for the ZO runs corresponding to
the results reported in Table 1.

Task SST-2 RTE MRPC QQP QNLI WNLI
ZO-Full (q = 1) 2.56 3.38 2.74 2.74 2.74 2.77

ZO-LoRA-FA (q = 1)
Vanilla 2.35 3.27 2.63 2.63 3.06 2.66
Inner-loop 2.63 4.46 3.18 3.18 4.04 3.24

ZO-LoRA-FA (q > 1)
Vanilla 2.44 3.18 2.64 2.65 3.14 2.70
Inner-loop 2.81 4.28 3.19 3.22 4.22 3.33

Table 13: Peak memory usage (GB) of fine-tuning Llama2-7B for the ZO runs corresponding to the
results reported in Table 2.

Task SST-2 RTE BoolQ WSC WiC MultiRC COPA WinoGrande SQuAD
ZO-Full (q = 1) 13.64 16.23 18.39 14.51 13.82 18.39 13.60 13.60 18.39

ZO-LoRA-FA (q = 1)
Vanilla 13.41 16.00 18.16 14.27 13.58 18.22 12.98 13.15 18.16
Inner-loop 14.19 19.37 23.69 15.92 14.53 23.81 13.33 13.67 23.69

ZO-LoRA-FA (q > 1)
Vanilla 13.44 15.54 18.17 14.27 13.64 18.18 12.98 13.16 18.17
Inner-loop 14.24 18.45 23.71 15.92 14.65 23.74 13.33 13.69 23.71
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A.8 Additional Memory Efficiency Analysis

For LLMs with extensive vocabulary sizes, the final output tensor from the classifier, namely the
logits, can be significantly large. For example, the Gemma model [34] has a vocabulary size of
256,000, compared to Llama2’s 32,000. This results in an 8× increase in memory consumption during
the forward pass. To address this issue, a potential solution is to implement a tiling operation, which
computes the loss in smaller chunks. This approach reduces memory usage of output activations by
eliminating the need to calculate the entire logits tensor at once.

Several techniques have been developed to reduce the memory costs associated with intermediate
activations during backpropagation. For example, gradient checkpointing [7] discards selected
activations during the forward pass and recomputes them during backpropagation, trading additional
computation for reduced memory usage. Gradient accumulation proposes accumulating gradients over
multiple smaller batches and updating the model weights once, instead of after each batch, reducing
memory overhead. Mixed-precision training [25] stores activations in FP16 while maintaining a FP32
master copy of the weights and applying gradients in FP32, so the memory savings from activations
can be offset when the model has a large number of parameters. PockEngine [48] introduces an
approach that limits backpropagation to a subset of layers and updates only the weights of those
layers, thereby eliminating the need to store activations for layers closer to the input. This method
can also be interpreted as a form of gradient estimation.

More importantly, these methods depend on training frameworks that support automatic differentiation
and backpropagation, while also being flexible enough to support state-of-the-art LLM architectures
and integrate aforementioned memory-saving techniques. This greatly increases the engineering
complexity of developing training frameworks on the device, particularly when ensuring compatibility
with various hardware backends from different vendors. In contrast, our approach leverages highly
optimized on-device inference engines, which are developed and maintained by the industry or
research community, reducing the need for extensive engineering effort.

A.9 Edge Devices Used in Experiments

Table 14 presents the specifications of the edge computing devices used in the experiments, detailing
the CPU, memory, and accelerator components.

Table 14: Edge devices used in the experiments.
Device CPU Memory Accelerator

NVIDIA Jetson Orin Nano 6× 1.5GHz Cortex-A78AE 8GB LPDDR5 68GB/s 1024-core Ampere GPU 625MHz

OnePlus 12 1× 3.3GHz Cortex-X4 12GB LPDDR5 77GB/s Hexagon NPU
3× 3.2GHz Cortex-A720
2× 3.0GHz Cortex-A720
2× 2.3GHz Cortex-A520
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