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Abstract

Recent advancements in language models have started a new era of superior
information retrieval and content generation, with embedding models playing
an important role in optimizing data representation efficiency and performance.
While benchmarks like the Massive Text Embedding Benchmark (MTEB) have
standardized the evaluation of general domain embedding models, a gap remains
in specialized fields such as chemistry, which require tailored approaches due
to domain-specific challenges. This paper introduces a novel benchmark, the
Chemical Text Embedding Benchmark (ChemTEB), designed specifically for
the chemical sciences. ChemTEB addresses the unique linguistic and semantic
complexities of chemical literature and data, offering a comprehensive suite of tasks
on chemical domain data. Through the evaluation of 34 open-source and proprietary
models using this benchmark, we illuminate the strengths and weaknesses of
current methodologies in processing and understanding chemical information. Our
work aims to equip the research community with a standardized, domain-specific
evaluation framework, promoting the development of more precise and efficient
NLP models for chemistry-related applications. Furthermore, it provides insights
into the performance of generic models in a domain-specific context. ChemTEB
comes with open-source code 1 and data 2, contributing further to its accessibility
and utility.

1 Introduction

Deep learning and natural language processing have improved significantly, highlighting the impor-
tance of learning text representation to understand semantic similarity. This is a key part of text
mining, search, retrieval, and other similar tasks. In the last decade, many promising models have
been developed to meet this need. Earlier models, such as GloVe [1] and Word2vec [2] focused on
word embedding but lacked context awareness. More recent models have adopted transformer archi-

1https://github.com/basf/chemteb
2https://huggingface.co/BASF-AI
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tecture to incorporate context into token embeddings [3]. Each model proposes unique architectural
features, parameter counts, context lengths, and pretraining methods.

BERT was among the first models to employ transformer architecture and self-supervised training for
embedding models [3, 4]. Subsequently, variants of BERT were introduced to enhance performance,
such as ROBERTA [5], or to facilitate domain adaptation for specific areas of interest, such as
SciBERT for the sciences [6]. Initially, a common approach to achieve a single embedding vector for
a text corpus – i.e. pooling – was to average the output layer or use the [CLS] token; however, it has
been found to be less effective in grasping semantically meaningful embeddings. Sentence-BERT [7]
is a promising fine-tuned variant that leverages a Siamese bi-encoder and triplet loss [8] to achieve
competitive performance in semantic representation learning, making it highly suitable for embedding
tasks. Models such as E5 [9] and Nomic embed [10] have integrated contrastive learning into the
pretraining process in an effort to help the models better distinguish between similar and dissimilar
samples, thereby enhancing implementation efficiency. The BGE model family [11] stands out by
integrating an MAE-inspired pre-training approach [12] with contrastive learning, utilizing large
batch sizes to enhance embedding quality. M3-embedding [13] has emphasized multi-functionality,
multi-granularity, and multi-linguality in its embedding model to further improve the performance.
Furthermore, OpenAI, Cohere, and Amazon have introduced their proprietary models for embedding,
continually expanding the list of available models.

The progress in natural language processing (NLP) has influenced a wide range of scientific domains,
including biology, medicine, and physics. These advancements have enabled researchers to extract,
analyze, and interpret vast amounts of textual data with unprecedented accuracy and efficiency.
Embedding models are crucial for solving complex tasks across these domains. These models
transform high-dimensional data into dense vector spaces, capturing semantic relationships essential
for applications such as chemical literature mining and even molecular property prediction. The
rise of Retrieval-Augmented Generation (RAG) architectures [14], which combine language models
with external knowledge retrieval systems, offers new opportunities for these tasks. RAG enhances
embedding-based applications by allowing dynamic access to domain-specific knowledge, making
them highly effective for tasks that require both deep learning and external information sources.
With the increased application of such methods, the requirement of having efficient embedding
models is raised in the industry. While general NLP benchmarks like the Massive Text Embedding
Benchmark (MTEB) have been instrumental in standardizing model evaluations across a variety
of tasks [15], they fall short when applied to chemistry-specific tasks. For example, the linguistic
and semantic nuances inherent in chemical literature are often overlooked by models trained and
evaluated on general datasets. This gap underscores the need for a specialized benchmark tailored to
the domain of chemistry, where precision and context are of paramount importance. Improved NLP
models have the potential to revolutionize various aspects of chemistry, such as automated literature
reviews, chemical synthesis planning, patent analysis and even contribute to further improvement of
Autonomous Agents in Chemistry [16, 17].

To bridge this gap, we introduce a novel benchmark explicitly tailored for the chemical sciences,
named Chemical Text Embedding Benchmark (ChemTEB). This benchmark offers a comprehensive
suite of tasks, ranging from chemical text classification to bitext mining of natural language and
SMILES representation of chemical compounds. Our benchmark aims to provide a robust, domain-
specific evaluation framework, promoting the development of more precise and efficient NLP models
for applications related to chemistry. Accompanied by an open-source package and data, ChemTEB
enables straightforward evaluation of any model and facilitates the effortless incorporation of new
tasks and datasets.

2 Related Work

To the best of our knowledge, there is no previous benchmark on chemical embedding models.
The closest previous benchmarks were either generic NLP benchmarks on information retrieval or
semantic similarity; or chemical benchmarks on generative large language models, machine learning
methods on molecular data or Graph Neural Networks (GNNs). In the following, more details on
these benchmarks are provided.
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2.1 NLP Benchmarks

The evaluation of sentence embeddings and general language understanding has seen significant
advancements, driven by various benchmarks and toolkits designed to assess models across a diverse
set of tasks. One prominent toolkit is SentEval [18], widely used for evaluating sentence embeddings
on tasks such as semantic textual similarity, paraphrase detection, and sentiment analysis. SentEval is
complemented by the GLUE Benchmark [19], which assesses models on a broader range of natural
language processing (NLP) tasks, including sentence embeddings, to measure language understanding.
Building on this success, SuperGLUE [20] takes evaluation a step further, introducing more complex
tasks that challenge models to push beyond existing performance levels. For more targeted evaluation,
the STS Benchmark [21] focuses on measuring semantic similarity between sentence pairs, which is
critical for determining the quality of sentence embeddings. In the context of information retrieval,
BEIR [22] provides a heterogeneous benchmark, incorporating datasets that evaluate models on tasks
like retrieval, ranking, and embedding quality.

Cross-lingual performance is another essential dimension in embedding evaluation, tackled by
benchmarks like XTREME [23], which tests models on classification, retrieval, and sentence similarity
tasks across multiple languages. XGLUE [24], a multilingual extension of the GLUE framework,
offers further evaluation on a wide range of NLP tasks across different languages. Meanwhile,
the TREC benchmarks [25] have been a long-standing standard for testing information retrieval
systems, particularly for embedding models in retrieval scenarios. MTEB [15] broadens the scope by
evaluating embeddings across a variety of language understanding tasks and domains, focusing on
scalability and adaptability. Additionally, specialized NLP tasks like natural language inference and
paraphrase recognition are tackled by datasets such as MultiNLI [26] and PAWS [27], which offer
challenging benchmarks for testing the depth of understanding in sentence embeddings. For Chinese
NLP tasks, CLUE [28] serves as a counterpart to GLUE, addressing the unique challenges of the
Chinese language. Despite the breadth of these benchmarks, one notable gap remains; the absence of
a comparable evaluation framework for chemistry-related language models.

2.2 Chemistry Benchmarks

While there have been attempts to apply NLP in chemistry, such as ChemDataExtractor [29] and
natural language processing techniques to extract information on the properties and functionalities
of energetic materials from large text corpora [30], these efforts are often limited by the lack of a
standardized evaluation framework. Existing resources like the ChEMBL database [31] offer valuable
data but do not provide the comprehensive, task-oriented benchmarking necessary to drive significant
advances in chemical NLP. The ChemNLP [32] library advances the application of NLP in chemistry
by providing curated datasets from arXiv and PubChem, along with tools for visualization, analysis,
and task execution tailored to materials chemistry. However, there is no proper task or code for the
evaluation of developed models.

After the rise of large generative models, some benchmark datasets and evaluation frameworks have
been developed to assess the capabilities of large language models (LLMs) and machine learning
techniques in the fields of materials science and chemistry. MaterialBENCH [33], ChemBench [34],
and ChemLLMBench [35] are some of these studies. However, none of them provided tasks and data
on embedding models evaluation.

3 ChemTEB

In this work, we leverage a diverse set of datasets collected to evaluate embedding models across
diverse tasks, including Classification, Pair Classification, Clustering, Retrieval, and Bitext Mining.
The data sources used are PubChem [36], English Wikipedia, BeIR [37], CoconutDB [38], and Safety
Data Sheets [39] each offering unique and complementary information critical for evaluating the
performance of NLP models in chemistry. All tasks and datasets are either designed or validated by
domain experts, i.e. chemists.

3.1 Tasks

We present a variety of benchmarks designed to evaluate different aspects of natural language and
chemical data processing. Each benchmark focuses on a specific task, and in this section, we provide
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an overview of the task, the data sources used for its collection, and the evaluation process. These
benchmarks provide a comprehensive set of evaluation tasks using diverse datasets tailored to different
modeling approaches. Table 1 provides a summary of datasets and statistics associated with them.

Table 1: Datasets summary. This table provides an overview of the datasets used across different
tasks, including the dataset names from Hugging Face, the original data sources, and the distribution
of sample sizes. The distribution is represented through key statistical measures: 5th percentile,
median, and 95th percentile of the number of tokens

Sequence Lengths (tokens 3)
Task HuggingFace Name Data Source #Samples 5th Percentile Median 95th Percentile

1 WikipediaEasy10Classification Wikipedia 2105 42 178 612.4
2 WikipediaEasy5Classification Wikipedia 1164 43 171.5 547.85
3 WikipediaMedium5Classification Wikipedia 617 39 137 563.6
4 WikipediaMedium2CrystallographyVsChromatographyTitrationpHClassification Wikipedia 1451 41.5 175 658.5
5 WikipediaMedium2BioluminescenceVsNeurochemistryClassification Wikipedia 486 42 158 574.25
6 WikipediaEZ2Classification Wikipedia 58921 41 164 590
7 WikipediaHard2BioluminescenceVsLuminescenceClassification Wikipedia 410 41 148.5 579.3
8 WikipediaEasy2GeneExpressionVsMetallurgyClassification Wikipedia 5741 42 175 630
9 WikipediaEasy2GreenhouseVsEnantiopureClassification Wikipedia 1136 34 139.5 513
10 WikipediaEZ10Classification Wikipedia 43146 41 165 582
11 WikipediaHard2SaltsVsSemiconductorMaterialsClassification Wikipedia 491 38.5 141 447.5
12 WikipediaEasy2SolidStateVsColloidalClassification Wikipedia 2216 42 151 532
13 WikipediaMedium2ComputationalVsSpectroscopistsClassification Wikipedia 1101 38 155 639
14 WikipediaHard2IsotopesVsFissionProductsNuclearFissionClassification Wikipedia 417 43.8 209 706.4

Classification

15 WikipediaEasy2SpecialClassification Wikipedia 1312 35.55 133 465
16 SDSGlovesClassification Safety Data Sheets 8000 498 1071 1871
17 SDSEyeProtectionClassification Safety Data Sheets 8000 492 1060 1876

18 CoconutSMILES2FormulaBM CoconutDB 8000 6 11 150
19 PubChemSMILESISoTitleBM PubChem 14140 4 22 93
20 PubChemSMILESISoDescBM PubChem 14140 12 45 134
21 PubChemSMILESCanonTitleBM PubChem 30914 3 12 43

BitextMining

22 PubChemSMILESCanonDescBM PubChem 30914 8 24 109

23 ChemHotpotQARetrieval HotpotQA 10275 19 71 183Retrieval 24 ChemNQRetrieval Natural Questions 22960 13 81 231

25 WikipediaMedium5Clustering Wikipedia 617 39 137 563.6Clustering 26 WikipediaEasy10Clustering Wikipedia 2105 42 178 612.4

27 WikipediaAIParagraphsParaphrasePC Wikipedia 5408 28 104 354
28 CoconutSMILES2FormulaPC CoconutDB 8000 6 11 108
29 PubChemAISentenceParaphrasePC PubChem 4096 9 20 59
30 PubChemSMILESCanonTitlePC PubChem 4096 4 16 30
31 PubChemSynonymPC PubChem 4096 3 8 38
32 PubChemSMILESCanonDescPC PubChem 4096 12 23 105
33 PubChemSMILESIsoDescPC PubChem 4096 12 48 125
34 PubChemSMILESIsoTitlePC PubChem 4096 4 35 70

PairClassification

35 PubChemWikiParagraphsPC PubChem 4096 8 66 235

Classification: Each task consists of a dataset with a textual field and associated labels. A logistic
regression classifier is used on top of an embedding model, which is first trained on the training split
of the dataset. The performance is then evaluated on the test dataset using the F1 score. We have used
two main sources to construct the datasets in this category: first, chemistry-related English Wikipedia
articles classified into various chemistry subfields, and second, Safety Data Sheets (SDS) [39], which
are detailed documents providing essential information on the properties and hazards of chemicals,
ensuring user safety and compliance with regulatory standards.

Clustering tasks involve grouping related text pieces into meaningful clusters based on their em-
beddings. Similar to the classification tasks, clustering datasets are also constructed from chemistry-
related English Wikipedia articles, where section texts are clustered into various chemistry subfields.
A mini-batch k-means model with a batch size of 32 is trained on the text pieces. We have used
V-measure [40] to assess and report the performance.

Pair classification tasks involve determining whether two textual samples are related and assigning
a binary label to them. In the chemistry domain, this relationship could be whether two texts refer
to the same chemical entity, or matching compound titles or their descriptions with their SMILES
strings (Simplified Molecular Input Line Entry System). In this task, a pair of text is embedded
using an embedding model, their distance is calculated (using metrics such as cosine similarity,
Euclidean distance, Manhattan distance and dot product), and the best binary threshold for each
metric is determined. The F1 score is then calculated across all metrics, with the maximum F1 score
reported as the main score. The datasets for these tasks are constructed from databases containing
chemical product information, such as PubChem [36] and COCONUT [38].

Bitext Mining focuses on matching pairs of text that are translations or semantic equivalents of each
other, by performing a semantic similarity search between a list of query embeddings and a list of
corpus embeddings. We have used data sources such as PubChem [36] and COCONUT [38] and

3All tokenizations are done with OpenAI’s cl100k_base tokenizer via tiktoken python package.
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matched the SMILES of chemical entities with their titles, descriptions and chemical formulas. We
have employed f1 score to evaluate the performance of the models.

In Retrieval tasks, the model’s ability to retrieve relevant records based on a query is evaluated. Each
dataset in this category consists of a list of queries and documents, along with the mapping between
relevant queries and documents. A model is used to embed all the texts, and the relevant documents
are retrieved based on the cosine similarity between embeddings. We have used a chemistry-related
subset of the Natural Questions [41] and HotpotQA [42] datasets and employed nDCG@10 as the
main evaluation metric.

3.2 Embedding Models

In this study, a total of 34 embedding models have been evaluated in the ChemTEB benchmark. This
includes 27 open-source models and 7 proprietary models. More detailed information about the
evaluated models can be found in section S2 of supplementary materials, with Table S1 comparing
these models based on their characteristics.

3.3 Ranking Process for Model Performance

The models are ranked based on their performance across datasets in each category of tasks. In the
first step, the arithmetic mean of the performance metrics is computed for each task to summarize the
performance over tasks. In the next step, an overall score was calculated using the Reciprocal Rank
Fusion (RRF) method [43]:

RRFscore(m) =
∑

d∈Datasets

1

k + rd(m)

where rd(m) is the rank of model m for dataset d, and k = 10 ensures all models retain weight.
Summing RRF scores across datasets gives an aggregate score for each model. Higher RRF scores
reflect a better overall ranking of the model.

4 Results

4.1 Models Performance

Table 2 summarizes the average performance of each model in each category of tasks and the overall
performance, which is presented with RRFscore (see section 3.3 for more details). From model
perspective, there is no single model which outperforms others in all tasks, but in general proprietary
models provide a better performance compared to open-source models. OpenAI-text embedding
3-large provided the best results in 3 out of 5 task categories, ranked first among evaluated models.
Among open-source models, Nomic Embedding v1.5 showed the best overall performance, ranking
second after OpenAI large embedding model (see the detailed ranking of all models on each sub-task
in Supplementary Table S3).

From Task category perspective, models generally performed better in classification tasks, and the
worst performance has been observed in bitext mining. As explained earlier in section 3.1 bitext
mining was designed on translation between SMILES representation of chemical compounds and
either their title or description. The poor performance of the models in this task can be attributed to
the fact that none of the general-purpose models are trained on a modality such as SMILES code. As
a result, they fail to grasp the semantic relationships between different SMILES strings, leading to
suboptimal performance in this specific task. Retrieval, clustering, and pair classification, were in
2nd to 4th rank respectively, in terms of difficulty level and overall performance of models.

The models evaluated in this benchmark share many features, such as architecture and training
methods. For better evaluation of the impact of models’ characteristics in their performance in
each category of tasks, we grouped these models based on their similarities into eight families: (i)
BERT Family, (ii) Nomic embedding family, (iii) SBERT family, (ix) E5 family, (x) BGE family, (xi)
OpenAI family, (xii) Amazon family, and (xiii) Cohere family. Figure 1 illustrates the distribution of
each model family performance over all datasets in each category of tasks using the Kernel Density
Estimation (KDE - see supplementary section S4.1 for more details).
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Table 2: Summary of models performance. This table provides a comprehensive comparison of
models across several key tasks: text classification (macro F1-score), bitext mining (F1-score), text
retrieval (nDCG@10), text clustering (F1-score), pair classification (maximum F1-score), and an
overall score (Reciprocal Rank Fusion). The models are grouped into two categories—open-source
and proprietary—for easier distinction. In each category, the best-performing model is underscored,
while the overall best-performing model across all categories is highlighted in bold.

Classification Bitext Mining Retrieval Clustering Pair Classification Final Score
(Macro F1) (F1) (nDCG@10) (V-measure) (Max F1) (RRF)

BERT 0.72±0.04 0.0±0.0 0.28±0.02 0.2±0.03 0.41±0.05 0.122
SciBERT 0.71±0.04 0.0002±0.0 0.2±0.03 0.18±0.02 0.43±0.05 0.122
MatSciBERT 0.7±0.04 0.0003±0.0001 0.11±0.02 0.21±0.03 0.41±0.05 0.122
Chemical BERT 0.68±0.04 0.0003±0.0 0.17±0.01 0.13±0.02 0.42±0.05 0.120
Nomic BERT 0.67±0.04 0.0001±0.0 0.05±0.0 0.22±0.03 0.38±0.04 0.118
Nomic Embedding v1 0.77±0.04 0.0023±0.0002 0.72±0.02 0.46±0.03 0.55±0.06 0.285
Nomic Embedding v1.5 0.78±0.04 0.0026±0.0002 0.75±0.02 0.5±0.04 0.55±0.06 0.339
SBERT - all Mini LM L6.v2 0.78±0.03 0.0015±0.0002 0.61±0.01 0.36±0.02 0.54±0.06 0.232
SBERT - all Mini LM L12.v2 0.77±0.04 0.0013±0.0001 0.58±0.0 0.34±0.01 0.54±0.06 0.201
SBERT - all MPNET-base.v2 0.78±0.04 0.001±0.0001 0.56±0.0 0.5±0.03 0.54±0.06 0.239
SBERT - multi-qa-mpnet-base.v1 0.74±0.04 0.0009±0.0001 0.56±0.01 0.42±0.04 0.54±0.06 0.185
E5 - small 0.75±0.03 0.0015±0.0001 0.69±0.02 0.12±0.02 0.48±0.05 0.166
E5 - base 0.76±0.04 0.0019±0.0001 0.68±0.01 0.34±0.05 0.49±0.05 0.192
E5 - large 0.77±0.04 0.0029±0.0002 0.7±0.01 0.51±0.04 0.5±0.05 0.290
E5 - small v2 0.76±0.03 0.0012±0.0001 0.69±0.01 0.19±0.03 0.46±0.05 0.165
E5 - base v2 0.76±0.04 0.0016±0.0001 0.68±0.01 0.38±0.05 0.47±0.05 0.178
E5 - large v2 0.76±0.04 0.0022±0.0002 0.73±0.01 0.33±0.05 0.48±0.05 0.214
E5 - Multilingual small 0.74±0.04 0.0018±0.0001 0.76±0.01 0.17±0.01 0.47±0.05 0.207
E5 - Multilingual base 0.75±0.04 0.0022±0.0001 0.68±0.0 0.48±0.03 0.47±0.05 0.196
E5 - Multilingual large 0.74±0.04 0.0026±0.0002 0.67±0.0 0.3±0.05 0.48±0.05 0.187
BGE - small en 0.78±0.04 0.0012±0.0001 0.52±0.04 0.27±0.03 0.48±0.05 0.160
BGE - base en 0.77±0.04 0.0019±0.0001 0.59±0.03 0.44±0.05 0.48±0.05 0.186
BGE - large en 0.78±0.04 0.0016±0.0001 0.44±0.06 0.45±0.05 0.49±0.05 0.191
BGE - small en v1.5 0.78±0.03 0.0013±0.0001 0.63±0.03 0.25±0.04 0.48±0.05 0.180
BGE - base en v1.5 0.77±0.04 0.0018±0.0001 0.69±0.02 0.47±0.05 0.49±0.05 0.219
BGE - large en v1.5 0.78±0.04 0.0019±0.0001 0.67±0.02 0.39±0.06 0.5±0.05 0.224
BGE - Multilingual - M3 0.76±0.03 0.0012±0.0002 0.68±0.02 0.45±0.05 0.47±0.06 0.176

OpenAI - Text embedding 3 - small 0.78±0.04 0.0027±0.0003 0.65±0.01 0.49±0.05 0.5±0.05 0.273
OpenAI - Text embedding 3 - large 0.8±0.04 0.0062±0.0006 0.71±0.01 0.6±0.03 0.53±0.05 0.384
OpenAI - Text embedding - Ada - 02 0.78±0.04 0.0035±0.0002 0.66±0.02 0.52±0.04 0.49±0.05 0.279
Amazon - Titan Text Embedding v2 0.77±0.03 0.0024±0.0002 0.62±0.0 0.49±0.04 0.49±0.05 0.224
Amazon - Titan Embedding G1 Text 0.81±0.03 0.0032±0.0003 0.6±0.02 0.45±0.06 0.49±0.05 0.285
Cohere - Embed English V3 0.81±0.03 0.0012±0.0 0.49±0.04 0.55±0.02 0.53±0.06 0.278
Cohere - Embed Multilingual V3 0.8±0.03 0.0024±0.0001 0.49±0.04 0.53±0.03 0.53±0.06 0.281

Model Family

A) Classification B) Bitext Mining

D) Clustering E) Pair Classification

C) Retrieval

Figure 1: Distribution plots for five categories of tasks. The KDE plots show the probability density
functions, where the x-axis represents the range of predicted values (performance distribution over
tasks of each category and models of each family) and the y-axis represents the estimated density.
Each colored line corresponds to a unique model family, enabling a clear visual comparison of their
value distributions.
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4.2 Models Efficiency

The evaluated models in this benchmark vary in terms of architecture, data size, model size, speed,
and performance, among other factors. Depending on specific requirements, one model may be
more suitable than another, but making an informed decision requires comparing models across
multiple features simultaneously. To facilitate this, in Figure 2, we visualized the speed (in the pair
classification task), model size, embedding size, and RRF score for each model. For proprietary
models, size information was not available.

The visualization highlights the diverse performance of the models, each with its own advantages and
disadvantages. A noticeable trend is that slower models tend to be larger, with bigger embedding
sizes, and generally offer higher performance. On one end of the spectrum, OpenAI - Text Embedding
3 - Large achieved the highest RRF score but exhibited very low speed. In contrast, SBERT - All Mini
LM L6.v2 was both the smallest and fastest model, though with lower performance. Interestingly,
BERT-based models had the lowest RRF scores and relatively slower speeds, clearly distinguishing
them from other models. Notably, the open-source Nomic Embedding v1.5 demonstrated a good
balance between high speed and strong performance.

768

1024

1536

3072

384

Figure 2: Summary of evaluated models in terms of efficiency. All evaluated models are depicted
in the form of (i) circles (with circle size being proportional to the number of parameters) for open-
source models, and (ii) stars for proprietary models. The color of the depicted models reflects their
embedding dimension. The x-axis denotes the averaged inference speed (embedded samples/sec)
calculated over seven pair classification tasks (tasks 29 - 35 in table 1) conducted on a V100 GPU
machine.

4.3 Domain Adaptation

To the best of our knowledge, the only existing embedding models specifically adapted to the chemical
domain are MatSciBERT [44], and ChemicalBERT (from Recobo4). SciBERT [6], pre-trained on
scientific data, is also more relevant to the chemistry domain compared to generic models. Within
the BERT family, these domain-adapted models outperformed BERT-base in the bitext mining task,
the most challenging in-domain task requiring partial knowledge of SMILES codes. However, we
did not observe a consistent significant improvement in other tasks, except for SciBERT’s superior
performance in pair classification.

4recobo/chemical-bert-uncased
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Contrarily, outside the BERT family, these domain-adapted models performed considerably worse in
most task categories, as evidenced by their joint lowest RRF-score for ranking (refer to the Table S3
in supplementary materials for their detailed ranking per task category). This could be attributed
to their belonging to the BERT Family with only Masked Language Modeling (MLM) pretraining.
Based on the evaluations and observations, it appears that the contrastive objective and architectural
improvements introduced post-BERT for enhanced semantic representation contribute more to the
performance in specific domains than domain adaptation of weaker architectures. This finding
encourages the research community to move away from relying on older domain-adapted models and
instead continue developing domain-specific models with newer more efficient architectures.

Figure 3: Comparison of model performance on ChemTEB and MTEB benchmarks across different
tasks. Each point represents a model from the intersection of those tested and those on the MTEB
leaderboard as of the date. The figure highlights variations in task difficulty and domain specificity.

Figure 3 illustrates the performance of various models on both ChemTEB and MTEB benchmarks,
organized by task categories. Similar metrics to MTEB leader board, has been used here to have
comparable results. In pair classification tasks, specifically curated for chemistry, a significant
decline in average precision of models in ChemTEB tasks compared to MTEB, highlights the
lack of domain expertise in evaluated models. Clustering tasks reveal that ChemTEB has more
discriminating datasets, as evidenced by the variability in scores. For retrieval tasks, we observed a
similar trend in terms more variability, potentially contributed by the specialized chemical context,
but the performance of each model is mostly better in ChemTEB compared to MTEB. In classification
tasks, ChemTEB reflects better performance of models with less variability in results, suggesting
that these tasks may be easier compared to those in MTEB. This difference is likely due to the
general nature of the Wikipedia documents used in ChemTEB classification problems. (Refer to
supplementary figure S1 for details of each model performance in these two benchmarks.) These
observations emphasize the influence of domain adaptation on model performance and underscore
the necessity for tailored approaches in specialized fields like chemistry.

5 Conclusion

In conclusion, we have addressed a significant gap in the field of text embeddings evaluation by
developing ChemTEB, a unique, open-source benchmark specifically designed for the challenges
of chemical language and data. This novel tool allows for a comprehensive evaluation of both
open-source and proprietary models, offering a standardized measure of performance in the chemistry
domain. ChemTEB provides an invaluable opportunity to assess different models, identify their syn-
ergies, and pinpoint areas where innovative solutions can lead to more efficient and high-performing
tools. Its model-agnostic nature ensures that it can easily evaluate any model or incorporate new data,
making it a versatile addition to the open-source benchmark repertoire.

The results of our study highlight the critical importance of developing stronger, domain-adapted
models for improved representation of domain-specific data in the field of chemistry. Therefore, our
work not only contributes a valuable tool to the research community but also emphasizes the need for
continued innovation in the development of domain-specific models.
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Supplementary Material

S1 Data Sources

PubChem [45] is a free, publicly accessible database of chemical molecules and their information
including names, detailed descriptions, chemical formulas and properties, SMILES strings and 3D
structures. We have employed PubChem to create pair classification and bitext mining datasets. One
of our usages is to match SMILES strings (Isomeric or Canonical) with their corresponding entity
titles and descriptions. The other usage is to match entity descriptions from different sources or their
AI paraphrases to form pair classification datasets.

Wikipedia, with its vast array of articles, offers a comprehensive source of general and scientific
knowledge, including chemistry-related content. For our specific use case, we extracted a chemistry-
related subset of articles from the English Wikipedia and focused on tasks tailored to classification
and clustering. Our contribution lies in creating different datasets with varying levels of difficulty and
different numbers of classes, which were labeled by domain experts (chemists).

BeIR (Benchmarking Information Retrieval) [37] includes datasets like HotpotQA [42] and Natural
Questions (NQ) [41] that focus on complex question-answering tasks, ideal for evaluating retrieval-
based models. For our purposes, a chemistry-filtered subset of HotpotQA and NQ are leveraged
for information retrieval tasks where the goal is to retrieve relevant text passages or documents in
response to a query.

CoconutDB [38] is a database of natural products, which provides comprehensive information on
molecular structures and properties. This database is particularly valuable for tasks involving the
analysis of natural compounds. In our approach, we focused on bitext mining and pair classification
between compound formulas and their corresponding SMILES representations.

Safety Data Sheets utilized in this study was sourced from Kaggle [46], which compiled over
200,000 Safety Data Sheets (SDS) through web scraping. Following the collection phase, a portion
of the data was thoroughly cleansed and annotated to enhance quality and relevance. Our contri-
bution lies in the creation of two specific label sets from the SDS data: Gloves_Required and
Eyes_Protection_Required. Notably, the majority of SDS documents indicate whether protective
gloves or eye protection are necessary. To convert this unstructured text into a structured format,
where the requirement for gloves or eye protection is represented as a Boolean variable (required/not
required), we developed an approach that combines large language models (LLMs) with regular
expression techniques. This method enabled the efficient and accurate extraction of the relevant
information from the raw text.

S2 Text Embedding Models

In this study, we evaluated several models on our chemical text embedding benchmark. These
models are categorized into open-source and proprietary models based on their availability. Table S1
summarizes details about all the models that have been evaluated in this work.

S2.1 Open-source Models

BERT [4] introduced a groundbreaking approach to NLP by using the "masked language model"
(MLM), which allows deep bidirectional context understanding by predicting masked tokens based
on surrounding context. Additionally, BERT’s "next sentence prediction" task enhances its ability to
pre-train text-pair representations, enabling more accurate and versatile language models.

RoBERTa [5] is a replication and improvement of BERT, addressing several limitations in BERT’s
pretraining. RoBERTa introduces key modifications, including training for longer periods with
larger batches, removing the next sentence prediction objective, training on longer sequences, and
dynamically changing the masking pattern during training. Additionally, RoBERTa is trained on a
significantly larger dataset, including the newly collected CC-NEWS corpus, which enhances its
performance. These improvements allow RoBERTa to fully utilize the data, resulting in state-of-the-
art performance on several GLUE tasks and matching top results on SQuAD and RACE.
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SciBERT [6] builds upon the architecture of BERT, leveraging the same multilayer bidirectional
Transformer model but tailored for scientific text. While BERT uses WordPiece tokenization [47] on
general domain corpora, SciBERT constructs a specialized vocabulary (SCIVOCAB) from scientific
papers using SentencePiece [48], resulting in a significant 42% difference in token overlap with
BERT’s BASEVOCAB. SciBERT is trained on 1.14 million papers from Semantic Scholar, covering
computer science and biomedical domains. The resulting model excels in scientific NLP tasks,
benefiting from the specialized corpus and vocabulary.

E5 [9], short for EmbEddings from bidirEctional Encoder rEpresentations, is a general-purpose text
embedding model designed to generate high-quality, single-vector representations for a wide range of
tasks in both zero-shot and fine-tuned settings. Unlike models that rely on limited labeled data or
low-quality synthetic text pairs, E5 is contrastively trained on CCPairs, a curated web-scale dataset
that incorporates diverse data sources such as CommunityQA, Common Crawl, and Scientific papers.
To maintain high data quality, CCPairs undergoes rigorous filtering using consistency-based methods.
E5 uses a two-stage contrastive learning approach, the first stage is done with unlabelled data and
in-batch negatives with a large batch size, followed by a second stage of contrastive finetuning on a
smaller labeled dataset and hard negative mining.

Nomic AI [10] proposed open-source embedding models with focus on increased sequence length,
efficiency and accuracy for text embedding tasks (nomic-embed-text v1 and v1.5). It started the
initial training on an improved version of BERT, called Nomic-BERT with substituting absolute
positional embeddings for rotary positional embeddings [49], using SwiGLU activation instead of
GeLU [50], and using FlashAttention [51]. They trained the base model with a maximum sequence
length of 2048 and took advantage of Dynamic NTK interpolation to scale the sequence length to
8192 for inference. Subsequently, in addition to MLM, similar to E5, Nomic employed unsupervised
contrastive pre-training and supervised contrastive fine-tuning to further boost its performance in
embedding tasks.

BGE [11] leverages the RetroMAE [52, 53] framework for an efficient and effective pre-training
phase, which involves recovering clean text from polluted text embeddings using a lightweight
decoder. Following this, BGE undergoes a two-stage training process: contrastive learning with
large batch sizes and in-batch negative sampling, followed by task-specific fine-tuning. The final
phase incorporates instruction-based fine-tuning, where verbal prompts guide the model to better
accommodate a variety of tasks. This multi-stage training pipeline ensures that BGE not only excels
in general-purpose text embedding but also in specialized applications.

The M3-embedding [13] introduces several novel techniques to further enhance text embedding
performance. One of the key innovations is self-knowledge distillation, which combines multiple
outputs from different retrieval modes as a reward signal to boost the performance of single modes,
particularly for sparse retrieval and multi-vector (ColBERT) retrieval. Additionally, M3-embedding
improves efficiency when fine-tuning on long text through an efficient batching strategy. This small-
batch approach is both simple and effective, and it can be applied to fine-tune large embedding
models. Furthermore, the MCLS (Multiple CLS) method offers a straightforward way to improve
performance on long texts without the need for fine-tuning, making it particularly useful for scenarios
where resources for fine-tuning are limited.

S2.2 Proprietary Models

The following proprietary models were used in our benchmarks: OpenAI’s text-embedding-ada-
002, text-embedding-3-large, and text-embedding-3-small; Amazon’s amazon.titan-embed-text-
v1 and amazon.titan-embed-text-v2:0; and Cohere’s cohere.embed-english-v3 and cohere.embed-
multilingual-v3, accessed through Amazon Bedrock.

S3 More Details on Chemistry Benchmarks

MaterialBENCH [33] provided a dataset of problem-answer pairs for materials science and analyzing
LLMs like ChatGPT and Bard on both free-response and multiple-choice questions for evaluating
generative LLMs. ChemBench [34] introduced a framework to evaluate LLMs’ chemical knowledge
and reasoning abilities across diverse subfields, finding that while the best models often outperform
human chemists, they struggle with some reasoning tasks and exhibit overconfidence in their pre-
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Table S1: This table summarizes the embedding models, highlighting each model’s name, Hugging-
Face model or proprietary ID, model size on disk, number of parameters, the maximum context length,
and the default embedding dimension. Models are categorized into open-source and proprietary
sections for easier distinction.

Model Name HuggingFace Model / Model ID (Proprietary) Model Size # Parameters Context length Embedding size
Open-Source Models

1 BERT google-bert/bert-base-uncased 440 MB 109.4 M 512 768
2 SciBERT allenai/scibert_scivocab_uncased 442 MB 109.9 M 512 768
3 MatSciBERT m3rg-iitd/matscibert 440 MB 109.9 M 512 768
4 Chemical BERT recobo/chemical-bert-uncased 440 MB 109.9 M 512 768
5 Nomic BERT nomic-ai/nomic-bert-2048 549 MB 136.7 M 2048 768
6 Nomic Embedding v1 nomic-ai/nomic-embed-text-v1 547 MB 136.7 M 8192 768
7 Nomic Embedding v1.5 nomic-ai/nomic-embed-text-v1.5 547 MB 136.7 M 8192 768
8 SBERT - all Mini LM L6.v2 sentence-transformers/all-MiniLM-L6-v2 90.9 MB 22.7 M 512 384
9 SBERT - all Mini LM L12.v2 sentence-transformers/all-MiniLM-L12-v2 133 MB 33.3 M 512 384
10 SBERT - all MPNET-base.v2 sentence-transformers/all-mpnet-base-v2 438 MB 109.4 M 514 768
11 SBERT - multi-qa-mpnet-base.v1 sentence-transformers/multi-qa-mpnet-base-dot-v1 438 MB 109.4 M 512 768
12 E5 - small intfloat/e5-small 133 MB 33.3 M 512 384
13 E5 - base intfloat/e5-base 438 MB 109.4 M 512 768
14 E5 - large intfloat/e5-large 1.34 GB 335.1 M 512 1024
15 E5 - small v2 intfloat/e5-small-v2 133 MB 33.6 M 512 384
16 E5 - base v2 intfloat/e5-base-v2 438 MB 109.4 M 512 768
17 E5 - large v2 intfloat/e5-large-v2 1.34 GB 335.1 M 512 1024
18 E5 - Multilingual small intfloat/multilingual-e5-small 471 MB 117.6 M 512 384
19 E5 - Multilingual base intfloat/multilingual-e5-base 1.11 GB 278 M 514 768
20 E5 - Multilingual large intfloat/multilingual-e5-large 2.24 GB 559.8 M 514 1024
21 BGE - small en BAAI/bge-small-en 133 MB 33.3 M 512 384
22 BGE - base en BAAI/bge-base-en 438 MB 109.4 M 512 768
23 BGE - large en BAAI/bge-large-en 1.34 GB 335.1 M 512 1024
24 BGE - small en v1.5 BAAI/bge-small-en-v1.5 133 MB 33.3 M 512 384
25 BGE - base en v1.5 BAAI/bge-base-en-v1.5 438 MB 109.4 M 512 768
26 BGE - large en v1.5 BAAI/bge-large-en-v1.5 1.34 GB 335.1 M 512 1024
27 BGE - Multilingual - M3 BAAI/bge-m3 2.27 GB 576.7 M 8192 1024

Proprietary Models

28 OpenAI - Text embedding 3 - small text-embedding-3-small N/A N/A 8191 1536
29 OpenAI - Text embedding 3 - large text-embedding-3-large N/A N/A 8191 3072
30 OpenAI - Text embedding - Ada - 02 text-embedding-ada-002 N/A N/A 8191 1536
31 Amazon - Titan Text Embedding v2 amazon.titan-embed-text-v2:0 N/A N/A 8191 1536
32 Amazon - Titan Embedding G1 Text amazon.titan-embed-text-v1 N/A N/A 8191 1536
33 Cohere - Embed English V3 cohere.embed-english-v3 N/A N/A 512 1024
34 Cohere - Embed Multilingual V3 cohere.embed-multilingual-v3 N/A N/A 512 1024

dictions. ChemLLMBench [35] evaluated LLMs across eight chemistry-related tasks, revealing
that GPT-4 performs best but highlights various limitations and the impact of in-context learning.
MatDeepLearn [54] benchmarks GNNs for materials chemistry applications, identifying strengths in
handling compositionally diverse datasets but also noting the high data requirements and limitations.
Additionally, benchmarks such as those involving simulation of hyperparameter combinations in
Materials Science Optimization Benchmark [55] aim to provide efficient and accurate models for op-
timization tasks, emphasizing the importance of surrogate models to reduce computational overhead
while maintaining realistic task complexity. Hence, a benchmark with capability of revealing the
quality of embedding models in representation of domain specific chemical materials were missing in
the field; helping researchers to find venues for further improvement of models; and industrial users
to pick the most capable models to be used in their relevant tasks.

S4 Supplementary Methods

S4.1 Kernel Density Estimation

Kernel Density Estimation (KDE) is a non-parametric method used to estimate the probability
density function of a random variable. Unlike parametric methods, KDE does not assume an
underlying distribution for the data. Instead, it smooths the data points by placing a kernel, typically
a Gaussian, at each data point. The sum of these kernels provides an estimate of the overall
distribution. The KDE is controlled by a bandwidth parameter, which determines the width of
the kernels and influences the smoothness of the resulting density estimate. A smaller bandwidth
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produces a more sensitive estimate that captures more detail in the data, while a larger bandwidth
results in a smoother, more generalized estimate. KDE is widely used in data visualization, such
as for plotting smoothed histograms, and is applicable in fields like finance, biology, and machine
learning, where understanding data distributions is critical.

S5 Supplementary Results

S5.1 Processing Time

Table S2 provides the details of processing time for all tasks on a V100 GPU machine.

Table S2: Average time (seconds) to run a benchmark for each task in each category on an Nvidia
V100 32GB GPU instance.

Classification Bitext Mining Retrieval Clustering Pair Classification

BERT 13.78±3.47 23.24±1.92 56.6±0.69 5.92±0.57 6.94±0.84
SciBERT 11.37±2.57 22.42±1.8 54.19±0.63 5.83±0.54 4.76±0.39
MatSciBERT 11.05±2.56 22.29±1.74 54.37±0.61 5.81±0.54 4.92±0.42
Chemical BERT 11.47±2.59 22.25±1.75 54.73±0.57 5.85±0.54 4.92±0.42
Nomic BERT 15.14±3.62 29.26±2.24 76.75±0.91 8.16±0.78 6.97±0.64
Nomic Embedding v1 23.13±5.03 31.05±2.4 79.45±0.88 12.01±1.24 5.91±0.41
Nomic Embedding v1.5 22.82±4.93 28.39±2.12 79.66±0.91 12.09±1.24 5.23±0.35
SBERT - all Mini LM L6.v2 2.36±0.52 9.01±0.89 12.83±0.3 1.13±0.11 1.73±0.14
SBERT - all Mini LM L12.v2 2.82±0.57 11.73±1.08 16.26±0.39 1.17±0.1 1.99±0.09
SBERT - all MPNET-base.v2 11.36±2.73 24.49±1.87 61.51±0.76 6.26±0.6 4.43±0.29
SBERT - multi-qa-mpnet-base.v1 13.29±3.09 24.06±1.92 62.06±0.67 7.13±0.69 4.42±0.3
E5 - small 4.98±1.06 12.55±1.11 21.79±0.29 2.36±0.22 2.54±0.2
E5 - base 11.24±2.67 23.93±1.97 58.84±0.75 6.28±0.6 5.28±0.46
E5 - large 37.37±9.5 62.4±4.78 191.41±2.06 20.46±1.99 14.83±1.43
E5 - small v2 5.34±1.08 12.63±1.12 22.15±0.25 2.45±0.23 2.39±0.21
E5 - base v2 11.21±2.66 24.27±2.02 59.45±0.73 6.34±0.6 4.83±0.49
E5 - large v2 36.87±9.28 64.27±4.96 193.9±2.14 20.54±1.97 14.49±1.47
E5 - Multilingual small 5.2±1.11 11.96±1.06 21.68±0.28 2.37±0.23 2.29±0.2
E5 - Multilingual base 12.51±2.99 23.96±1.97 62.13±0.65 6.82±0.67 4.74±0.48
E5 - Multilingual large 40.26±10.31 60.97±4.51 209.69±0.52 22.01±2.18 13.8±1.43
BGE - small en 5.23±1.05 12.46±1.1 21.64±0.29 2.32±0.22 2.82±0.19
BGE - base en 11.14±2.64 23.99±1.98 58.64±0.72 6.29±0.6 5.32±0.48
BGE - large en 37.04±9.33 62.27±4.79 191.56±2.06 20.44±1.97 14.89±1.44
BGE - small en v1.5 5.28±1.05 12.37±1.07 21.83±0.25 2.39±0.23 2.68±0.19
BGE - base en v1.5 11.14±2.63 23.82±1.99 59.08±0.8 6.27±0.59 5.27±0.46
BGE - large en v1.5 36.57±9.12 62.24±4.8 191.63±2.14 20.41±1.97 14.85±1.43
BGE - Multilingual - M3 1139.9±251.82 707.86±48.87 3031.81±22.43 640.67±75.54 31.82±8.61
OpenAI - Text embedding 3 - small 37.17±6.89 372.97±36.14 518.72±12.57 27.74±2.46 63.49±2.91
OpenAI - Text embedding 3 - large 62.18±11.8 730.16±70.34 1006.01±27.68 49.39±4.65 123.33±5.89
OpenAI - Text embedding - Ada - 02 35.57±6.77 372.55±36.18 518.73±12.83 30.77±1.88 64.41±2.94
Amazon - Titan Text Embedding v2 128.01±35.05 1178.06±99.02 1595.24±34.49 84.65±7.8 244.12±3.41
Amazon - Titan Embedding G1 Text 142.23±37.78 1174.83±97.29 1627.31±40.39 89.03±8.38 243.45±3.53
Cohere - Embed English V3 21.21±5.64 83.08±5.98 134.29±2.48 13.27±1.25 16.65±0.89
Cohere - Embed Multilingual V3 22.32±6.07 80.27±5.86 138.74±2.51 14.08±1.3 18.07±1.29
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S5.2 Ranking of models

Detailed ranking of models on each category of tasks is provided in Table S3. The ranking is
calculated based on average performance over all tasks in each category defined on them.

Table S3: Summary of models rank
Classification Bitext Mining Retrieval Clustering Pair Classification RRF_Score(k=10)

Nomic BERT 34 33 34 27 34 0.118
Chemical BERT 33 30 32 33 31 0.120
MatSciBERT 32 31 33 28 32 0.122
BERT 30 34 30 29 33 0.122
SciBERT 31 32 31 31 30 0.122
BGE - small en 12 27 26 25 22 0.160
E5 - small v2 23 25 8 30 29 0.165
E5 - small 25 21 9 34 24 0.166
BGE - Multilingual - M3 21 26 10 15 28 0.176
E5 - base v2 22 18 11 19 25 0.178
BGE - small en v1.5 9 23 18 26 20 0.180
SBERT - multi-qa-mpnet-base.v1 28 29 24 17 5 0.185
BGE - base en 16 13 22 16 19 0.186
E5 - Multilingual large 27 7 14 24 23 0.187
BGE - large en 10 19 29 13 17 0.191
E5 - base 20 14 12 22 15 0.192
E5 - Multilingual base 26 11 13 10 27 0.196
SBERT - all Mini LM L12.v2 18 22 23 21 4 0.201
E5 - Multilingual small 29 16 1 32 26 0.207
E5 - large v2 24 12 3 23 21 0.214
BGE - base en v1.5 15 17 7 11 18 0.219
BGE - large en v1.5 6 15 15 18 12 0.224
Amazon - Titan Text Embedding v2 17 8 19 8 14 0.224
SBERT - all Mini LM L6.v2 8 20 20 20 3 0.232
SBERT - all MPNET-base.v2 7 28 25 6 6 0.239
OpenAI - Text embedding 3 - small 5 5 17 9 10 0.273
Cohere - Embed English V3 2 24 28 2 8 0.278
OpenAI - Text embedding - Ada - 02 11 2 16 4 16 0.279
Cohere - Embed Multilingual V3 4 9 27 3 9 0.281
Nomic Embedding v1 19 10 4 12 2 0.285
Amazon - Titan Embedding G1 Text 1 3 21 14 13 0.285
E5 - large 14 4 6 5 11 0.290
Nomic Embedding v1.5 13 6 2 7 1 0.339
OpenAI - Text embedding 3 - large 3 1 5 1 7 0.384
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S5.3 Comparison of MTEB and ChemTEB

Figure S1 reflects the performance of each model in each cateogries of tasks on both benchmarks.
In three out of four categories of tasks BERT model provided the weakest performance in both
benchmarks.
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Figure S1: Comparison of model performance on ChemTEB and MTEB benchmarks across different
tasks. Each point represents a model from the intersection of those tested and those on the MTEB
leaderboard as of the date. The figure highlights variations in task difficulty and domain specificity.
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S5.4 Correlation between models performances and tasks

Figures S2 and S3 illustrate the correlation matrix for the datasets and models, respectively, with
colors representing the strength of the correlations. In figure S2, We can observe that in tasks such as
classification, bitext mining, and retrieval, the datasets in a task are correlated except for the SDS
datasets in the classification. In the clustering, and pair classification task, however, this trend is not
very obvious. Especially, in the pair classification task, some of the datasets have negative correlation.
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Figure S2: Correlation Matrix over datasets. Each row/column represent a seperate dataset tested in
ChemTEB benchmark. The values and associated color reflects the correlation between performance
of different models on each pair of these datasets.

On the other hand, in figure S3, we can see models categorized in two groups. Group one, the
bert-based models, and group two, the other models. The biggest difference in these two groups
is the contrastive learning being done after the pre-training, which, putting that aside the fact that
BERT-based models have almost the worst performance in every single category of tasks, shows the
importance of contrastive learning. Within the second group, some model families have stronger
correlation between their performance, which may reflect closer architecture and/or pre-training tasks.
For example Nomic embedding family has the highest correlation with SBERT family. Cohere is also
reflecting closer correlation to SBERT family first, and then Amazon models family in the second
place.
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Figure S3: Correlation Matrix over Models. Each row/column represent a separate Model tested in
ChemTEB benchmark. The values and associated color reflects the correlation between performance
of each pair of models over all tested datasets.
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