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Abstract

Generalization abilities of well-trained large language models (LLMs) are known
to scale predictably as a function of model size. In contrast to the existence
of practical scaling laws governing pre-training, the quality of LLMs after post-
training compression remains highly unpredictable, often requiring case-by-case
validation in practice. In this work, we attempted to close this gap for post-training
weight quantization of LLMs by conducting a systematic empirical study on
multiple LLM families quantized to numerous low-precision tensor data types using
popular weight quantization techniques. We identified key scaling factors pertaining
to characteristics of the local loss landscape, based on which the performance of
quantized LLMs can be reasonably well predicted by a statistical model.

1 Introduction

Large language models (LLMs) based on the transformer architecture [Vaswani et al., 2023] are known
to obey empirical scaling laws. An LLM’s generalization abilities, measured by the negative-log-
likelihood (NLL) loss in next-token prediction, are predictably related to increases in parameter count,
pre-training data volume, and computation cost [Kaplan et al., 2020, Dettmers and Zettlemoyer, 2023,
Henighan et al., 2020, Alabdulmohsin et al., 2022, Su et al., 2024, Song et al., 2024, Muennighoff
et al., 2023, Bordelon et al., 2024, Bahri et al., 2024].

Thanks to the guidance from these scaling laws, pre-training of LLMs, a notoriously expensive
computation in practice, enjoys a certain degree of confidence in return on investment. However,
for these LLMs to run efficiently on a target accelerator for inference, they often need to undergo
post-training compression, such as quantization [Gholami et al., 2021, Frantar et al., 2022, Park et al.,
2024, Kim et al., 2023, 2024, Yao et al., 2022].

Post-training quantization (PTQ) is a process that attempts to preserve a trained LLM’s generalizabil-
ity, while performing its computation with low-precision data types. Because PTQ involves many
additional factors, it introduces significant uncertainty into the quality of the final model, in many
cases completely obscuring the predictability prescribed by the pre-training scaling laws. This makes
PTQ a business of trial-and-error [Huang et al., 2024, Sharify et al., 2024, Yuan et al., 2023, Hu et al.,
2022], lacking the useful practical guidance from scaling laws like those that govern pre-training.
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Figure 1: Left: Scaling of pre-trained NLL loss. NLL losses evaluated on the validation split
of the WikiText-2 dataset are plotted against the total parameter counts in the transformer layers’
weight tensors. Model families are color-coded and the symbol sizes encode the weight parameter
count, a convention shared by following figures. Right: Local radial loss landscape mapping.
Shown here is measurement of the typical loss landscape in the neighborhood of pre-trained weights,
by evaluation of the loss along typical radial perturbations, 3 independent instances illustrated for
opt-1.3b, together with their Taylor series approximations.

Beyond just algorithmic complexity, PTQ also becomes incredibly time and compute intensive when
one attempts to find the optimal quantization format and model parameter count given fixed memory,
compute, and data format constraints. A simple illustration of this trade-off is the comparison between
a larger model quantized to a lower bit format and a smaller model quantized to a higher bit format, a
search space that requires a lot of iterations, and consequently, significant time and compute.

In this work, we attempted to close this gap in knowledge by systematically studying the empirical
scaling of extra factors involved in PTQ in addition to the pre-trained NLL loss. We briefly enumerate
below all factors considered.

1. Loss of pre-trained LLM. A known scaling law governs the relationship between LLM
training parameters and the quality of the resulting model. Intuitively, a better trained model
would also have better performance in a quantized state, so the initial loss of a pre-trained
LLM is highly relevant to profiling the quantized loss landscape. Section 2.1 is dedicated it.

2. Local loss landscape of pre-trained LLM. Because quantization is a specific perturbation to
the trained network, the resulting loss due to the perturbation depends not only on the converged
NLL loss, but also on how steeply the loss changes in the neighborhood of convergence
[Frumkin et al., 2023, Nahshan et al., 2020, Evci et al., 2020]. Section 2.2 is dedicated to
understanding how the local loss landscape changes with scale.

3. Low-precision data type for quantization. Numerous novel tensor data types for efficient
inference have emerged recently [Rouhani et al., 2023, Dettmers et al., 2023, Agrawal et al.,
2024, Guo et al., 2022]. Intuitively, both the tensor data type and its numerical precision would
correlate with the quality of quantization, and Section 2.3 is dedicated to its scaling.

4. PTQ algorithm. After aggressive low-precision quantization, certain PTQ optimization
algorithms are commonly used to recover some model quality [Frantar et al., 2022, Xiao et al.,
2024, Lin et al., 2024, Lee et al., 2024]. These methods typically minimizes local quantization
error as opposed to direct global loss optimization as in quantization-aware fine-tuning (e.g. Li
et al. 2023, Jeon et al. 2024). Section 2.4 is dedicated to profiling how those properties scale.

We show with concrete examples (for procedural details see Section 4), that all the above factors have
underlying empirical scaling laws for certain LLM families. Incorporating these empirical rules, in
Section 3, we build a predictive statistical model that takes the above factors as input and predicts the
outcome of a PTQ procedure on unseen LLMs at a reasonable accuracy.

2 Factors subject to scaling for LLM PTQ

2.1 Loss of pre-trained LLM

First, we recapitulate one of the original scaling laws on well trained LLMs with no data limit [Kaplan
et al., 2020]. We visualize in Figure 1 (left) this scaling law with our experiments (see Section 4
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Figure 2: Left: Local loss landscape of LLMs grouped in families. Shown are the mean (colored
curves) and range (colored shades) of 3 independent measurements for each model. The typical
characteristics are common to all models. Within a family, larger models tend to have flatter local
loss landscape, in a predictable manner. Right: Scaling of local loss landscape as a function of
LLM size. We plot NLL loss against weight parameter count, with typical perturbation SNR as a
gray-scale heat map. Thin white iso-SNR curves are at 2 dB increments. With OPT family as the
only exception, vertical spacing of these iso-SNR curves is shorter in large models than in small ones
of the same family, suggesting flatter local minima at larger model sizes.

for details). The GPT-2, OPT and BLOOM model families roughly follow one power law, whereas
models in the Llama 2/3 family track a different, but qualitatively similar path.

2.2 Characteristics of local loss landscape

Next, we characterize another crucial factor intrinsic to the LLM itself, its local loss landscape.

A quantization of network weight w 3 can be considered as a perturbation w → w +∆w = Q(w),
where Q is a quantizer, and the resulting loss of the quantized network becomes NLL(w + ∆w)
from the pre-trained NLL(w). The resulting loss is a function not only of the pre-trained weight w,
but also of the perturbation ∆w, often approximated by Taylor expansion,

NLL(w +∆w) = NLL(w)

+ g⊤∆w +
1

2
∆w⊤H∆w

+O(∥∆w∥2).

Here g and H are the gradient and Hessian at w, and ∥·∥ is the ℓ2-norm.

3Here we denote by vector w a flattened version of all weight matrices (W1, · · · ,WL) of the network that
are subject to quantization.
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As the absolute magnitude of w scales with dimensionality (see Appendix A), we use signal-to-noise
ratio (SNR), a relative quantity to measure the magnitude of its perturbation ∆w,

SNR(w,∆w) = 20 log10
∥w∥
∥∆w∥

,

in decibel (dB). A higher SNR represents a smaller deviation ∆w from w. When the perturbation is
due to quantization, i.e. ∆w = Q(w)−w, SNR becomes signal-to-quantization-noise ratio (SQNR),

SQNR(w) = 20 log10
∥w∥

∥Q(w)−w∥
.

Intuitively, the flatter the local loss landscape is near w, the less impact a same perturbation ∆w
is to exert on the loss. In Figure 1 (right), we show with an example LLM, the typical local loss
landscape in the neighborhood of pre-trained weights. We randomly sample a unit vector ê ∼ SD

from the D-dimensional unit sphere, D being the dimensionality of w, and measure NLL(w + λê)
while sweeping λ ∈ R+. We see that the typical radial loss is very step-like: it stays relatively low
and flat near w, then rises rapidly (faster than quadratic), and finally plateaus further away from w.
These qualitative characteristics are shared by all LLMs of various sizes and from various families
(Figure 2, left).

We also find that, within the same LLM family, larger models have flatter local loss landscape than
smaller ones, in a systematic way (Figures 2) for each family.

2.3 Low-precision data type for quantization

Now, we identify an extrinsic factor in PTQ process: the low-precision tensor data type for quantiza-
tion. Note that we consider tensorial data types, not simply scalar numerical formats. In addition to
traditional integer quantization that requires calibration, emerging standards such as microscaling
(MX, Rouhani et al. 2023) adopt more effective and efficient tensor data types, which we study in
this work. we also present a comparative study of traditional integer quantization in Appendix C.

We first ask how the magnitude of quantization errors ∆w = Q(w) − w vary across LLMs for
certain data types. Despite the existence of significant scaling of ∥w∥ (see Appendix A for further
details), the SQNRs are relatively invariant across model families and model sizes, and vary across
numerical data types in a highly predictable manner (see details in Appendix B). In contrast, NLL
losses show a much more nonlinear and less predictable pattern, with a rough trend of lower precision
data formats leading to higher losses (see details in Appendix B).

However, with certain choices of weight data type, the perturbation due to quantization is significantly
flatter than the typical flatness of the local loss landscape, which we shall elaborate in the next section.

2.4 PTQ optimization method

Finally, we study another important extrinsic factor that contributes to the quality of quantized LLMs
for inference, the PTQ optimization algorithm.

To each model and for each weight data type, we applied an improved GPTQ procedure (see
Section 4.3 for details) to further optimize the RTN quantized network. Figure 3 (left) shows 3
members of varied sizes from the OPT family. Apparently, the application of GPTQ generally
reduced both the SQNR and NLL loss of the RTN model. The reduction in SQNR is relatively
consistent across model sizes and data formats, whereas the reduction in NLL loss is highly variable
as a function of model size and quantization precision in, however, a rather systematic way. An
aggregation of direct comparisons of SQNRs and NLL losses before and after the GPTQ procedure
for the OPT model family is presented in Figure 4.

With our systematic collection of empirical data pertaining to all the above-mentioned factors, we
are able to uncover patterns in the highly varied, and seemingly haphazard, effect of GPTQ on given
a specific LLM quantized to a specific numerical data type. Here we demonstrate with the model
opt-1.3b subject to quantization to mxint6_128, mxint4_128, mxint3_128 and mxint2_128
(Figure 3, right). The observation is that GPTQ greatly improves mxint3_128 quantization, but
only marginally improves its 6-bit, 4-bit and 2-bit counterparts. The effect of GPTQ seems highly
non-monotonic as a function of quantization precision. Nevertheless, in the light of the underlying

4



Figure 3: Left: Scaling of SQNRs and NLL losses before and after PTQ, relative to the
typical loss landscape. We show data from 3 members of the OPT model family, whose parameter
counts are separated by 1 order of magnitude. RTN (before PTQ, hollow symbols) and GPTQ
(after PTQ, filled symbols) are plotted together with the typical radial loss landscape empirically
mapped. Right: Local loss landscape underlying varied effectiveness of GPTQ acting on the same
model quantized at different weight precision. Shown here are data of opt-1.3b quantized to
mxint6_128, mxint4_128, mxint3_128 and mxint2_128. The colored, hollow or filled diamonds
represent the SQNRs and NLL losses before and after GPTQ, respectively. We further map the
underlying radial loss landscape in the directions of typical random perturbation (thin gray lines), of
RTN quantization (colored dashed lines) and of GPTQ quantization (colored solid lines).

Figure 4: Changes in SQNRs and NLL losses resulting from GPTQ for OPT family. Numerical
precision is color-coded and model size encoded by symbol size. Diagonal line represents identity.

local loss landscape, the phenomenon can be well understood. First, RTN quantization to MX weight
formats often lead to perturbations that are flatter than typical radial loss profiles; the application
of GPTQ, further seeks an even flatter perturbation direction in the loss landscape, as evident in
Figure 3 (right). However, because these radial loss profiles are very step-like, any linear or quadratic
approximations typically fail to characterize them well at SNRs lower than 20 dB. Because of the
difference in the effective radii between the RTN and GPTQ loss profiles that are both step-like, a
narrow window in SNR exists within which the effect of GPTQ is substantial. Note that the location
and size of this window is a function of the model family, the model size, and the numerical data type
for weight quantization, as we described above.
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Figure 5: Left: A predictive model based on random forest regression. Data for 18 models
from the 5 LLM families used for predictive model fitting are shown in light gray; colored symbols
represent held-out test data from mpt-7b and pythia-1b, respectively. Prediction and observation
are plotted against each other for direct comparison, diagonal line marking identity. Right: Prediction
of NLL losses after GPTQ, for unseen LLMs. We tested our predictive model’s performance
on 2 held-out LLMs from unseen model families, mpt-7b and pythia-1b. Convention follows
Figure 3(a), with additional large circular symbols representing model prediction of GPTQ losses.

3 Building a predictive model

To sum up our findings thus far, we first found that the characteristics of local loss landscape, just
like the loss itself, scales with model size in LLM families, an intrinsic model property. We also
determined that choices of the low-precision data type for quantization and the PTQ process, acting
within the local loss landscape, lead to different SQNRs and losses in a predictable way.

Taking these empirical rules into consideration, we now build a predictive model based on random
forest regression. We set the hyperparameters, the number of estimators and maximum depth of the
regressor, to 120 and 8, respectively. The regressor takes a few empirically measured features as
input, and directly predicts the resulting NLL loss of the final, quantized model. Given a specific
LLM and a specific MX data format with quantizer Q, the input features are: (a) weight parameter
count D, (b) pre-trained loss NLL(w), (c) SQNR of RTN quantization SQNR(w), (d) loss of RTN
quantization NLL (Q(w)), (e) radial slope of local loss landscape at RTN weights dNLL

dSQNR

∣∣
Q(w)

, (f)
numerical format’s precision P, number of element exponent bits E, and block size K. The model
outputs a predicted loss after GPTQ, NLL(Q(w∗)).

We fit the model on all feature data collected from models in the 5 LLM families above, and test
its prediction for 2 held-out models from unseen model families, namely EleutherAI/pythia-1b
and mosaicml/mpt-7b. Despite the difference in model architecture, training paradigm, and even
local loss landscape between pythia-1b, mpt-7b, and our existing model families, the prediction is
reasonably accurate (Figure 5), suggesting that the underlying scaling laws are generalizable across
both different model sizes and different LLM families. See Appendix D for detailed interpretation of
the predictive model and salient features.

4 Experimental procedures

4.1 Models and dataset

We experimented with models from 5 LLM families, namely GPT-2 [Radford et al., 2019],
OPT [Zhang et al., 2022], BLOOM [Workshop et al., 2023], Llama 2 [Touvron et al., 2023], and
Llama 3 [Meta, 2024]. The models were served by the Hugging Face Model Hub. We identify the
models by their unique name string identifier throughout this paper, with their organization prefixes
sometimes omitted for brevity.
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To validate the generalizability of our empirical scaling rules extracted from studying the above 5
model families, we tested their predictive power on 2 held-out LLMs, EleutherAI/pythia-1b [Bi-
derman et al., 2023], and mosaicml/mpt-7b [MosaicML, 2023].

The WikiText-2 dataset [Merity et al., 2016] was used in all experiments, with the text tokenized
by corresponding tokenizers at maximum sequence length of each respective model. 128 examples
from the training split were used as calibration dataset for PTQ algorithms. All examples from the
validation split were used for validation.

4.2 Numerical tensor data type and notations

We experimented with microscaling (MX, Rouhani et al. 2023) compliant data formats, where a
block of tensor elements share a same scaling factor in the format of e8m0 (8-bit exponent and 0-bit
mantissa), and each element being of a low-precision float or int number. We experimented with
36 distinct MX data types with precision with block sizes ranging from 16 to 128, and element
precision from 2 to 6.

We denote MX formats by mxfpP_eEmM_K or mxintP_K, following the notation from community
standard [Rouhani et al., 2023], where P is the precision, K the block size, and E, M the numbers of
element exponent and mantissa bits. For example, mxint6_64 represents an MX data type where the
element is in int6 and the block size 64; mxfp4_e2m1_128 refers to an MX format whose element
format is a custom float4 with 1 sign bit, 2-bit exponent, 1-bit mantissa, and a block size of 128.

4.3 GPTQ

We adopted an enhanced version of GPTQ compatible with MX weight formats [Sharify et al.,
2024], with two additional improvements. First, we tuned the dampening factor layerwise as a
hyperparameter. For each layer, we did a grid search over the space

{
10−3, 10−2, · · · , 103, 104

}
and

chose the dampening factor that minimized layerwise output mean squared error (MSE). Second,
in contrast to Frantar et al. [2022] who performed sequential layerwise Hessian accumulation and
optimization to minimize GPU memory usage, we did Hessian accumulation in unquantized network
for all layers before optimization. In consistency with the original work, 128 sequences from the
training data split was used for Hessian accumulation.

4.4 Loss landscape mapping

All NLL losses were evaluated on the entire validation data split at half precision. Second-order loss
landscape features requiring backward passes, namely Hessian-vector products, were computed in
single precision using the PyHessian package [Yao et al., 2020].

5 Conclusion

In this work, we demonstrated that, just like that of pre-training, the outcome of post-training quanti-
zation of well-trained LLMs can also be predictable, thanks to underlying scaling laws governing the
local loss landscape, numerical data formats and effects of PTQ algorithms. In Figure 6, we display
the tradeoff between model quantization and quality across all models and quantization formats in this
study. This graph establishes a Pareto frontier, the optimal tradeoff between larger models quantized
to lower bit precisions and smaller models quantized to higher bit precisions. Moreover, since our
random forest model can accurately predict NLL loss after PTQ across different model sizes and
distinct model families, we argue that identifying the appropriate model size and data format for a
given inference workflow is no longer a business of trial-and-error but rather one of reason guided
by the underlying scaling laws of quantized LLMs. Overall, we believe our findings would provide
practical value to the deployment of LLMs on resource-constrained devices.

6 Limitations

Due to constraint of computational resources, we experimented with models up to 13 billion parame-
ters. The predictive power of our scaling rules on much larger LLMs is pending further validation.
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Figure 6: Tradeoff between quantized model weight size and its generalization. The models
in each subplot from top to bottom are: gpt2, gpt2-medium, gpt2-large, gpt2-xl; opt-125m,
opt-350m, opt-1.3b, opt-2.7b, opt-6.7b, opt-13b; bloom-560m, bloom-1b1, bloom-1b7,
bloom-3b, bloom-7b1; Llama-2-7b-hf, Llama-2-13b-hf, Meta-Llama-3-8B. The marker col-
ors represent different quantized precision. Circles represent models quantized to mxfp formats,
diamonds those quantized to mxint formats, with hollow markers standing for RTN and filled mark-
ers GPTQ. Black filled squares represent the pre-trained float model. Dashed/dotted gray lines
connects the losses of the same model quantized to different data format families. There are 4 such
lines for each model: mxint (RTN): dotted, mxfp (RTN): dotted, mxint (GPTQ): dashed, and mxfp
(GPTQ): dashed. We highlight the difference before and after GPTQ by a vertical colored dashed
line.
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A Scaling of ℓ2-norms of model weights

In Figure 7, we summarize the scaling of the ℓ2-norms of transformer weights, for all models in the 5
LLM families under study. We found that, with the exception of the GPT-2 and OPT families, ∥w∥
scales close to half power laws w.r.t. parameter count D, suggesting a rather constant element-wise
weight magnitude across models of different sizes. We also found that, not surprisingly, the closeness
to half power law scaling of ℓ2-norms is correlated with the constancy of SQNRs for all MX data
types across models.

Figure 7: Scaling of weight ℓ2-norm. Convention same as in Figure 1 Left. Light gray lines in the
background mark square-root power laws, ∥w∥ ∝ D

1
2 .

B SQNR and NLL of MX formats

Figure 8: SQNRs and NLL losses resulting from weight quantization, before PTQ. We show
round-to-nearest (RTN) results for all models in multiple LLM families. Consistent with convention
set in Figure 1 (left), model families are color-coded and model sizes are encoded by symbol sizes.
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Figure 9: SQNRs and NLL losses resulting from weight quantization, after PTQ. Similar to
Figure 8, we show GPTQ results for all models in multiple LLM families.

C Scaling in the case of PTQ to traditional int quantization

We note that, in the case of traditional weight quantization to integer (int) numerical formats, an
extra step of calibration is necessary. Calibration optimizes additional parameters per quantizer,
namely a scale and/or a zero point, depending on the quantization scheme. The affine transformation
prescribed by the scale and zero point can also have varied granularities, from per-tensor, per-group to
per-channel. Furthermore, different optimization objectives could be used to determine scale and zero
point. These extra parameters and procedures likely introduce additional variability into the scaling
of PTQ of LLMs, making traditional int quantization more unpredictable than MX quantization.

With concrete examples, here we show that this is indeed the case. We create and calibrate int
quantizers at varied precisions and granularities, denoted by intP_(chan|gG|tens). For example,
int4_tens represents a 4-bit per-tensor format, and int3_g32 a 3-bit per-group format with group
size 32. We chose symmetric quantization scheme (with scale and no zero point) and calibrate by
minimizing mean squared error (MSE) of quantization. Calibration data are 128 sequences taken
from the training split.

Not surprisingly, we find that SQNRs from int quantization are much more variable than those from
MX quantization, and do not seem to scale monotonically with model size (Figure 10). In addition,
the changes to SQNRs and NLL losses as a consequence of GPTQ are much less predictable in the
cases of int than MX data types (Figure 11).

D Interpretation of the importance of input features to the predictive model

Beyond making accurate predictions of the difference in NLL loss between GPTQ and RTN, inter-
preting our predictive model can grant insight into the specific characteristics that make GPTQ most
effective and the scenarios in which GPTQ should be employed.

The Gini importance, also known as mean decrease in impurity, measures how much each feature
contributes to reducing the Gini impurity in the dataset when making splits Louppe et al. [2013]. As
shown in (Figure 12, left), our random forest regressor pays the most attention to the NLL loss of
RTN, which can intuitively be explained by the understanding that GPTQ improves off of the baseline
RTN quantization. Partial dependence graphs further reveal that the model pays more attention to the
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Figure 10: SQNRs induced by traditional int versus MX quantizers for the smallest 3 models
in the OPT family. For notations of int formats and procedural details of calibration see the main
text. Numerical precision is color-coded and symbol sizes encode model capacity.

Figure 11: Scaling of SQNRs and NLL losses before and after PTQ, for int versus MX data
types. Convention same as in Figure 3(a). Data for opt-1.3b are shown, with int and MX formats
separated in 2 panels.
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Figure 12: Importance and interpretation of features used by our predictive model. Mean and
standard deviation of the importance score (Gini importance) for each input feature, calculated across
all 120 trees in the random forest (left). The predictive model’s feature-specific decision-making
process for quantizing mosaicml/mpt-7b to the mxint3_64 format (right).

NLL loss of RTN at higher loss values, which is reasonable given that a higher starting NLL loss
leaves greater room for GPTQ improvement. The number of parameters, the NLL loss of the original
model, and the local loss slope are also considered by the predictive model because they describe the
initial conditions of each LLM that differentiate their individual loss landscapes.

The quantization format accounts for three input features, namely precision, number of exponent
bits, and block size. Of these features, precision has the largest influence on model prediction, which
agrees with our findings that the largest variation in NLL loss between formats is driven by the
number of bits (Figure 9, right). Note that the information gained from the quantization format is
likely also embedded in the SQNR of RTN due to the strong correlation between SQNR and data
format shown in (Figure 8, left), explaining why SQNR of RTN is also an important model feature.

The waterfall plot in (Figure 12, right), highlights one example of how each input feature contributes
to the random forest’s prediction of the effect of GPTQ in quantizing the mosaicml/mpt-7b model
to the mxint3_64 format.

E Cost of loss landscape feature computation

Figure 13: Computational cost of GPTQ versus loss landscape mapping. We show data measured
from runs of 3 models from the OPT family on a single A100 GPU, where time needed for loss
landscape mapping is measured on 3 random weight perturbations.

Our predictive model does not rely on features requiring second-order information, only empirical
loss evaluation at critical points in the parameter space. Thus, only a few forward passes are needed
to compute the input features to carry out a prediction, making the extraction of predictive features
inexpensive. In Figure 13, we measure wall-clock time of feature extraction and compare it to
conducting GPTQ optimization. We find that the overhead of running GPTQ is significantly more
than measuring the step-wise loss landscape of 3 random weight perturbations, with the difference in
overhead scaling with the model size. In practice, we only need loss landscape information local to
the SNR of RTN, which could further reduce the amount of computation needed. It is much more
economical to use the predictive model based on scaling, than to actually compute GPTQ.
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