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Abstract

Audio classification tasks like keyword spotting and acoustic event detection often
require large labeled datasets, which are computationally expensive and impractical
for resource-constrained devices. While active learning techniques attempt to
reduce labeling efforts by selecting the most informative samples, they struggle
with scalability in real-world scenarios involving thousands of audio segments.
In this paper, we introduce an approach that leverages dataset distillation as an
alternative strategy to active learning to address the challenge of data efficiency
in real-world audio classification tasks. Our approach synthesizes compact, high-
fidelity coresets that encapsulate the most critical information from the original
dataset, significantly reducing the labeling requirements while offering competitive
performance. Through experiments on three benchmark datasets – Google Speech
Commands, UrbanSound8K, and ESC-50, our approach achieves up to a ∼3,000x
reduction in data points, and requires only a negligible fraction of the original
training data while matching the performance of popular active learning baselines.

1 Introduction

Deep learning has advanced audio classification tasks like keyword spotting (KWS) [19] and
acoustic event detection and is widely used in voice assistants for detecting keywords and identifying
environmental sounds [12]. These tasks often require large labeled datasets and substantial
computational resources. With the rise of resource-constrained devices, such as smartphones, there
is a growing need for data-efficient methods that reduce computational and labeling costs while
maintaining high performance.

Traditional and modern active learning (AL) techniques often attempt to mitigate such labeling
burdens by selecting the most informative subset of training samples for user annotation [14, 2].
While these methods exhibit efficacy, their practicality diminishes in such real-world applications,
where datasets typically comprise thousands of windowed audio segments.

To this end, we propose leveraging dataset distillation [17] to generate compact, high-fidelity data
summaries as a complementary strategy to active learning. We illustrate this key difference in Figure
1. Dataset distillation synthesizes representative data points effectively encapsulating the most critical
information from the original dataset. These distilled data points, representing the most informative
samples, can then be sent to the oracle (user/expert) for annotation, substantially reducing the amount
of labeled data required. Notably, the proposed approach necessitates only 0.01-0.15% of the total
training data while achieving comparable performance to existing active learning methods, enhancing
its practicality and deployability for audio classification tasks.

Our scientific contributions are as follows: (1) Introducing dataset distillation as an effective al-
ternative strategy to active learning and defining the key differences between data subset selection
and data subset generation via dataset distillation. (2) Proposing a dataset distillation approach that
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Figure 1: This figure illustrates the distinction between traditional active learning and our proposed
dataset distillation approach, highlighting how dataset distillation can be leveraged as an alternative
data-efficient strategy to active learning.

synthesizes compact, high-fidelity data summaries to significantly reduce labeled data requirements
for audio classification tasks in resource-constrained environments, balancing data efficiency and
model performance. (3) Conducting extensive evaluations across three diverse datasets – Google
Speech Commands, UrbanSound8K, and ESC-50, demonstrating up to a ∼3,000x reduction in data
points with minimal accuracy trade-offs, achieving competitive performance against traditional and
modern active learning methods.

2 Related Work

Conventional active learning seeks to optimize labeling efficiency by selecting the most informative
samples for annotation. Traditional methods such as uncertainty sampling and query-by-committee
[14] have established the foundation for more sophisticated techniques in the deep learning era.
Recently, strategies incorporating deep neural networks, such as Bayesian Active Learning by
Disagreement [6] and core-set active learning [13] have demonstrated substantial improvements
in performance. These methods prioritize samples that maximize learning efficiency, significantly
reducing the annotation burden while offering competitive accuracy.

Dataset distillation is a technique designed to reduce dataset size while preserving their essential
informational content [17]. With the growing need to manage large datasets efficiently, methods such
as dataset condensation and core-set selection have gained prominence in recent years. Techniques
like gradient matching [22], distribution matching [21], and differentiable Siamese augmentation
(DSA) [20] demonstrate the effectiveness of synthesizing compact data representations that preserve
the essential characteristics of the original datasets. Alternate approaches such as Kernel Inducing
Points (KIP) [8] leverage kernel methods to enhance dataset distillation. The closest approach to
our paper – Efficient Dataset Distillation using Random Feature Approximation (RFAD) [7] employs
random feature approximation to achieve faster dataset distillation with reduced computational
complexity, while maintaining the quality of distilled datasets. RFAD also strikes an optimal balance
between data efficiency and performance, making it particularly suited for applications where
computational speed is critical.

In the field of audio classification, the application of dataset distillation and active learning is
particularly pertinent. Audio datasets, such as those used for keyword spotting and acoustic event
detection, often consist of extensive, high-dimensional audio segments. Implementing dataset
distillation in this context allows for the synthesis of concise, high-fidelity audio representations,
significantly lowering the volume of data requiring annotation. While dataset distillation has been
underexplored in audio classification, to the best of our knowledge, this is the first work to position
it both as a substitute and an enhancement to active learning, with the goal of drastically reducing
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labeled data requirements and improving data efficiency. This makes it a highly viable solution for
real-world, high-dimensional audio classification tasks. Leveraging dataset distillation as an efficient
replacement for active learning offers a promising direction for developing scalable and efficient
audio classification systems.

3 Our Approach

In this section, we discuss the problem formulation of utilizing dataset distillation – a data subset
generation paradigm, as a highly data-efficient strategy in place of active learning. Figure 1 illustrates
this distinction effectively, and the technical details of our proposed dataset distillation approach
are outlined in detail in Algorithm 1.

In active learning, we typically select the most informative subset for training. In contrast, dataset
distillation generates a compact, synthetic dataset that captures the knowledge of a much larger dataset.
Leveraging dataset distillation as an alternative technique to active learning can be powerful for
generating highly informative and efficient data subsets for training. To mathematically define these,

Data Subset Selection. This is the traditional approach in active learning where the goal is to select
the most informative data subset S from the original dataset D for training. This can be described
as, S = argmaxS⊆D,|S|=k U(S; θ), where D is the entire dataset, S is the selected subset with size
|S| = k, U(S; θ) is a function to evaluate informativeness of S given model parameters θ.

Data Subset Generation via Dataset Distillation. In dataset distillation for active learning, the goal
is to synthesize a distilled subset G that minimizes a loss function to represent the knowledge of
the larger dataset D. This can be formulated as, G = argminG∈G L(f(G; θ), D), where G is the
distilled subset, G is the space of all possible generated data subsets, L(f(G; θ), D) how well the
model f(G; θ) trained on G generalizes to the entire dataset D.

The core of our approach involves synthesizing a high-fidelity dataset that captures the essential
features of the original data, providing a data-efficient method in place of active learning. One
way to achieve this is inspired by advancements in dataset distillation and neural network Gaussian
processes (NNGP), which leverage the principles of random feature approximation to generate a
computationally efficient and informative distilled dataset using the RFAD method [7], as discussed
in Section 2. Our proposed approach generates representative samples that encapsulate critical
information required for audio classification, significantly reducing the annotation burden. The key
steps of our approach are detailed below.

Initialization. Start with the original training dataset D = {(xi, yi)}Ni=1 and initialize a smaller
coreset C = {(x′

i, y
′
i)}Mi=1, where M ≪ N .

Random Feature Generation. Generate random features for both the training set and coreset using
multiple randomly initialized neural networks M . For a given input x, the random features are
computed as,

Φ(x) =
1√
NM

fθ1(x)
...

fθN (x)

 ∈ RNM

where fθi denotes the output of the i-th neural network, N denotes output dimension of M .

Kernel Matrix Computation. Construct the kernel matrices Φ(D) and Φ(C) for the training set and
the coreset respectively. The kernel matrices are computed as,

KDC = Φ(D)⊤Φ(C)

KCC = Φ(C)⊤Φ(C)

Coreset Update. Using kernel ridge regression, update the coreset to minimize the loss function
L defined as the difference between the true and predicted labels from the distilled dataset. The loss
function and update rule are given by,

L = ∥yD −KDC(KCC + λI)−1yC∥2

C ← C − η∇CL
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where η is the learning rate, λ is a regularization parameter.

Iteration. Repeat the random feature generation, kernel matrix computation, and coreset update steps
until convergence or a predefined stopping criterion is met.

Algorithm 1 Our Proposed Approach

Input. Training set D = {(xi, yi)}Ni=1, Initial coreset C = {(x′
i, y

′
i)}Mi=1, Number of random

networks N , Output dimension of random networks M , Regularization parameter λ, Learning rate
η
while not converged do

Sample a batch B ⊂ D
Initialize N random neural networks {fθi}Ni=1
for each x ∈ B do

Compute random features Φ(x)
end for
for each x′ ∈ C do

Compute random features Φ(x′)
end for
Compute kernel matrices KBC and KCC
Calculate predicted labels for the batch: ŷB = KBC(KCC + λI)−1yC
Compute loss: L = ∥yB − ŷB∥2
Update coreset using gradient descent: C ← C − η∇CL

end while
Ensure: Distilled coreset C

Our method is particularly well-suited for high-dimensional audio classification tasks like keyword
spotting and acoustic event detection. By distilling the original dataset into a compact and representa-
tive coreset, we significantly reduce labeling requirements, making active learning more scalable. In
addition, by focusing on generating rather than selecting data, our approach offers greater flexibility
and potentially better generalization by retaining the essential features of the original dataset ensuring
strong performance while drastically minimizing computational and storage demands.

4 Experiments and Results

We evaluate our proposed dataset distillation approach using three popular audio classification datasets:
Google Speech Commands (GSC) [18], UrbanSound8K (US8K) [12], and ESC-50 [10]. For GSC, we
select 10 keywords: Yes, No, Up, Down, Left, Right, On, Off, Stop, Go as performed in [18, 19, 3] and
extract Mel-frequency Cepstral Coefficients (MFCC) at 16 kHz, dividing the data into windows of 50
ms each. US8K comprises 10 environmental sound classes: air conditioner, car horn, children playing,
dog bark, drilling, engine idling, gunshot, jackhammer, siren, street music, with preprocessing similar
to that of GSC, and is evaluated using five-fold cross-validation. ESC-50 includes 2,000 five-second
audio clips across 50 environmental sound classes, ranging from chirping birds to car horns, sampled
at 44.1 kHz and downsampled to 16 kHz. The dataset is evaluated using five-fold cross-validation, and
similar preprocessing steps are applied. These datasets offer diverse and challenging keyword spotting
and acoustic event detection tasks for effective evaluation of our proposed distillation approach.

We evaluate the performance of our dataset distillation approach using two models: ResNet-18 and
a 4-layer convolutional neural network (CNN). ResNet-18 is widely used due to its effectiveness
in extracting hierarchical features from complex data, particularly in image and audio classification
tasks [5, 16]. The 4-layer CNN is designed to capture local patterns in audio signals and has been
successfully applied in small-footprint keyword spotting models [11, 9]. Our implementation utilizes
the PyTorch framework, with a learning rate of 2e−4 and an Adam optimizer. Both models are
trained using 7 random networks (M ) for random feature approximation and significantly distilled
coresets, achieving competitive accuracy with drastically reduced data requirements.

4.1 Baselines for Active Learning

For a given classification model M , data D, and input x, we evaluate the following acquisition
functions popularly used in literature [2, 4].
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Table 1: Comparison of test classification accuracy vs % of training samples for baseline methods
and our proposed approach across all three datasets using a ResNet-18 model.

Google Speech Commands UrbanSound8K ESC-50
Method % Samples Accuracy % Samples Accuracy % Samples Accuracy

Total Training Data 100% 89.92 100% 79.27 100% 69.36

Max Entropy

60% 72.2 60% 62.15 60% 50.2
40% 69.6 40% 57.45 40% 45.12
30% 65.1 30% 53.36 30% 41.25
20% 57.25 20% 45.18 20% 36.75

0.029% 9.15 0.063% 7.56 0.15% 5.12

Variation Ratios

60% 73.36 60% 63.02 60% 51.25
40% 70.85 40% 58.75 40% 45.36
30% 65.3 30% 54.12 30% 41.58
20% 58.72 20% 46.78 20% 36.24

0.029% 9.24 0.063% 7.15 0.15% 5.84

BALD

60% 73.15 60% 63.12 60% 50.95
40% 70.5 40% 58.95 40% 44.78
30% 65.1 30% 54.08 30% 40.75
20% 58.55 20% 46.42 20% 35.16

0.029% 9.38 0.063% 7.39 0.15% 5.5

Random

60% 73.15 60% 62.87 60% 50.67
40% 70.25 40% 59.08 40% 44.95
30% 65.36 30% 54.45 30% 39.25
20% 58.48 20% 46.92 20% 33.18

0.029% 9.27 0.063% 7.72 0.15% 4.95

Proposed Method
0.029% 72.24 0.063% 61.67 0.15% 49.65
0.017% 61.13 0.038% 50.24 0.09% 31.25
0.012% 51.68 0.025% 37.85 0.0625% 17.96

Max Entropy: Pool points are selected to maximize predictive entropy [15].

H[y|x,D] := −
∑
c

p(y = c|x,D) log p(y = c|x,D)

Variation Ratios (VR): The LC (Least Confident) method for uncertainty-based pool sampling is
performed here [1].

variation− ratio[x] := 1−max
y

p(y|x,D)

Bayesian Active Learning by Disagreement (BALD): Pool points are selected to maximize mutual
information between predictions and model posterior [6]. These points reflect the model’s average
uncertainty, where parameter disagreement on the outcome is the highest.

I[y, ω|x,D] = H[y|x,D]− Ep(ω|D)

[
H[y|x, ω]

]
where H[y|x, ω] is the entropy of y, given model weights ω.

Random Sampling: Data points are selected uniformly at random from the given pool.

4.2 Discussion on Results

We evaluate our proposed dataset distillation approach by showcasing the percentage of training
samples used and corresponding accuracy on three audio classification datasets, using both ResNet-18
model (Table 1) and a 4-layer CNN (Table 2). The number of audio samples per class (AS/C)
generated by our approach is also provided in Table 3.

Our proposed approach, using the ResNet-18 model, achieves a test classification accuracy of 72.24%
on GSC with only 0.029% of the training data (50 samples per class), closely matching Variation
Ratios (73.36%), which requires 60% of the data, resulting in a more than 2,000x reduction in labeled
data. On US8K, our approach reaches 61.67% accuracy with only 0.063% of the data, compared
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Table 2: Comparison of test classification accuracy vs % of training samples for baseline methods
and our proposed approach across all three datasets using a 4-layer CNN model.

Google Speech Commands UrbanSound8K ESC-50
Method % Samples Accuracy % Samples Accuracy % Samples Accuracy

Total Training Data 100% 87.45 100% 77.24 100% 67.62

Max Entropy

60% 69.92 60% 59.36 60% 48.56
40% 66.25 40% 53.15 40% 44.78
30% 63.55 30% 50.65 30% 39.05
20% 56.18 20% 43.55 20% 34.56

0.029% 8.27 0.063% 6.25 0.15% 4.85

Variation Ratios

60% 70.48 60% 59.75 60% 48.21
40% 66.95 40% 53.5 40% 44.35
30% 63.15 30% 49.87 30% 38.67
20% 55.86 20% 43.78 20% 34.95

0.029% 8.75 0.063% 5.92 0.15% 4.72

BALD

60% 70.27 60% 59.25 60% 47.75
40% 66.18 40% 53.15 40% 43.85
30% 62.67 30% 49.33 30% 38.75
20% 56.25 20% 42.95 20% 33.48

0.029% 8.35 0.063% 6.04 0.15% 4.3

Random

60% 70.67 60% 59.27 60% 48.05
40% 67.05 40% 52.92 40% 44.72
30% 62.18 30% 49.45 30% 38.02
20% 56.67 20% 43.15 20% 35.05

0.029% 8.96 0.063% 6.36 0.15% 4.67

Proposed Method
0.029% 69.18 0.063% 58.52 0.15% 46.92
0.017% 57.45 0.038% 48.15 0.09% 28.05
0.012% 45.67 0.025% 35.75 0.0625% 15.67

Table 3: Number of Audio Samples per Class (AS/C) across all three datasets for our proposed
method.

Google Speech Commands UrbanSound8K ESC-50
% Samples AS/C % Samples AS/C % Samples AS/C

0.029% 50 0.063% 50 0.15% 5
0.017% 30 0.038% 30 0.09% 3
0.012% 20 0.025% 20 0.0625% 2

to BALD’s 63.12% with 60% of the data, representing a nearly 1,000x reduction in labeled data.
Similarly, on ESC-50, our method achieves 49.65% accuracy with only 0.15% of the data, closely
aligning the performance of Variation Ratios (51.25%) which requires 60% of the training data. In
addition, it is also evident that all baseline active learning methods exhibit poor performance across
all three datasets when using a negligible number of training samples, comparable to the sample
size in dataset distillation.

We observe similar trends with the 4-layer CNN model. Our approach achieves 69.18% accuracy
on GSC using 0.029% of the training data, slightly below Random, which achieves 70.67%. On
US8K, our method reaches 58.52% accuracy with 0.063% of the data, compared to Variation Ratios
at 59.75% using 60% of the training data. For ESC-50, our method achieves 46.92% accuracy with
0.15% of the data, closely aligning with Max Entropy at 48.56%.

Additionally, as shown in Tables 1, 2, and 3, increasing the number of audio samples per class (AS/C)
leads to noticeable improvements in accuracy. The trade-off between accuracy and data efficiency
is evident with varying AS/C, and we hypothesize that further increases in AS/C would yield even
better accuracy. Moreover, AS/C is not necessarily applicable to baseline active learning methods,
as data points are typically not chosen based on class-wise selection.

Overall, our approach achieves up to a ∼3,000x reduction in labeled data while maintaining
performance comparable to other active learning techniques. This balance demonstrates the potential

6



of dataset distillation to significantly lower annotation costs with minimal impact on performance,
making it a promising and efficient solution for resource-constrained audio classification tasks in
real-world applications.

5 Conclusion and Future Work

In this work, we introduce dataset distillation as an efficient strategy to largely reduce the labeling
burden for large-scale audio classification tasks, offering a complementary approach to active
learning. By distilling high-dimensional audio data into compact, representative coresets, our
approach preserves strong classification performance while significantly reducing the amount of
audio data required for training. Experiments on three widely used public datasets show that our
method achieves competitive results with traditional and modern active learning techniques, using
up to ∼3,000x fewer data points. Leveraging dataset distillation as an alternative active learning
technique not only enhances data efficiency but also ensures scalability, making it a promising
solution for on-device training and resource-constrained environments. In future work, we aim
to extend this approach to more complex architectures and tasks, incorporating human-in-the-loop
studies, and exploring real-world deployment with human interaction.
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