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Abstract

Language models for biological and chemical sequences enable crucial applications
such as drug discovery, protein engineering, and precision medicine. Currently,
these language models are predominantly based on Transformer architectures.
While Transformers have yielded impressive results, their quadratic runtime de-
pendency on sequence length complicates their use for long genomic sequences
and in-context learning on proteins and chemical sequences. Recently, the re-
current xLSTM architecture has been shown to perform favorably compared to
Transformers and modern state-space models (SSMs) in the natural language do-
main. Similar to SSMs, xLSTMs have linear runtime dependency and allow for
constant-memory decoding at inference time, which makes them prime candidates
for modeling long-range dependencies in biological and chemical sequences. In
this work, we tailor xLSTM towards these domains and we propose a suite of
language models called Bio-xLSTM. Extensive experiments in three large domains,
genomics, proteins, and chemistry, were performed to assess xLSTM’s ability to
model biological and chemical sequences. The results show that Bio-xLSTM is
a highly proficient generative model for DNA, protein, and chemical sequences,
learns rich representations, and can perform in-context learning for proteins and
small molecules.

1 Introduction

Accurate computational models for biological sequences are essential for translating data into
actionable insights in modern biology. Biological sequences like DNA, RNA, and proteins are
central to molecular biology, genomics, and drug discovery. Major projects like the Human Genome
Project (Lander et al., 2001) and the 1000 Genomes Project (1000 Genomes Project Consortium,
2010) have driven large- scale data collection efforts. Modeling these sequences is key to advancing
life sciences (Benegas et al., 2023; Karollus et al., 2024), interacting with biological systems (Hopf
et al., 2017; Riesselman et al., 2018; Yang et al., 2019) or predicting phenotypes from genetic variants
(Ashley, 2016; Brandes et al., 2023; Acosta et al., 2022). Similar efforts exist for protein sequences
(The UniProt Consortium, 2023) and small molecules (Kim et al., 2023; Zdrazil et al., 2023), used
for tasks like protein engineering (Arnold, 2018; Yang et al., 2019), predicting 3D structures (Jumper
et al., 2021), and drug discovery (Zhavoronkov et al., 2019). Large language models (LLMs) (Brown
et al., 2020; Bubeck et al., 2023) have emerged as prime candidates for modeling biological sequences
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Figure 1: Overview of Bio-xLSTM. Top left: xLSTM for natural language processing tasks.
Top right: Additional modeling approaches for biological sequences: masked language modeling,
equivariance to reverse complementary sequence, and in-context learning. Bottom left: DNA-xLSTM
models are trained on genomic DNA sequences and then used for fine-tuning on downstream tasks.
Bottom center: Prot-xLSTM models are trained in a causal modeling setting with a fill-in-the-middle
objective and use homologous proteins for in-context learning. Bottom right: Chem-xLSTM models
are trained to generate small molecules. For an in-context learning setting, Chem-xLSTM uses
molecules with known properties.

and serving as foundation models for molecular biology and chemistry (Ji et al., 2021; Schiff et al.,
2024; Nguyen et al., 2023; Rives et al., 2021; Lin et al., 2023).

Large language models for biological sequences must handle long sequences and incorporate
context. The rise of LLMs (Radford et al., 2018; Brown et al., 2020; Bubeck et al., 2023) has
revolutionized numerous fields, including life sciences. Most LLMs are based on the Transformer
architecture (Vaswani et al., 2017), which excels at predicting the next or missing token using
self-attention. However, this mechanism scales quadratically with sequence length, making long-
sequence processing computationally expensive. Biological sequences, with their important long-
range interactions due to 3D folding, require long context windows for accurate modeling, which is
essential for gene regulation in DNA (Bouwman & de Laat, 2015) and protein function (Anfinsen,
1973). Long contexts also benefit models to exploit homologous proteins (Truong Jr & Bepler, 2023;
Sgarbossa et al., 2024) and molecular context for small molecules (Papadatos et al., 2010; Schimunek
et al., 2023). The human genome spans around three billion base-pairs (bps), far exceeding the
context limits of Transformer-based models. As a result, most biological sequence models use short
contexts (Rives et al., 2021; Ji et al., 2021; Dalla-Torre et al., 2023). The emergence of state-space
models (SSMs), like S4 (Gu et al., 2022), Hyena (Poli et al., 2023), and Mamba (Gu & Dao, 2023),
enables handling longer contexts in biological domains (Nguyen et al., 2023; Schiff et al., 2024;
Sgarbossa et al., 2024). However, the recently proposed xLSTM (Beck et al., 2024), a recurrent
neural network, has outperformed these architectures in natural language processing (Beck et al.,
2024). For further related work, see Appx. A.

The recently proposed xLSTM is a powerful architecture for sequence modeling and a promising
candidate for biological and chemical sequences. The xLSTM architecture (Beck et al., 2024)
introduces enhanced memory structures and exponential gates that boost its performance, particularly
in natural language modeling. Despite these enhancements, xLSTM retains the efficiency of a
recurrent neural network and can handle varying sequence lengths effectively (Beck et al., 2024). It
introduces two new layers: a) sLSTM, with exponential gates that improve state tracking (Merrill
et al., 2024), and b) mLSTM, which allows switching between parallel training and recurrent
inference modes, enabling scalability to larger contexts (Katharopoulos et al., 2020; Choromanski
et al., 2021). These features make xLSTM ideal for modeling: i) DNA sequences, which are
inherently long and contain long-range interactions, ii) protein sequences, where modeling strongly
benefits from contextual information of evolutionary-related proteins (Rives et al., 2021), and iii)
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small molecules represented as chemical sequences, such as Simplified Molecular Input Line Entry
System (SMILES) (Weininger, 1988), for which in-context learning (ICL) abilities are required to
generate new molecules with desired properties or from a particular molecular domain (Segler et al.,
2018; Schimunek et al., 2023). However, how to best tailor xLSTM for biological and chemical
sequences remains unclear, or how it compares to other domain-specific LLMs.

Contributions. We introduce: a) DNA-xLSTM, a model tailored for DNA sequences with reverse-
complement equivariant blocks, and evaluate its performance on long-context generative modeling,
representation learning, and downstream tasks. b) Prot-xLSTM, a homology-aware protein language
model with in-context learning, which we benchmark on generative modeling and conditioned protein
design tasks. c) Chem-xLSTM, a sequence model for SMILES representations of small molecules
for which we demonstrate ICL capabilities. An overview of Bio-xLSTM is shown in Fig. 1.

2 xLSTM: Background and Notation

sLSTM and mLSTM layers. xLSTM (Beck et al., 2024) make use of two types of layers: sLSTM
(see Appendix Section B.1) and mLSTM (see Appendix Section B.2) which are the main components
within residual block structures (see Appendix Section B.3) of its multi-layer architectures. We
consider a series of input vectors xt ∈ RD given at a certain time step t ∈ {1, . . . , T}. X = X1:T =
(x1,x2, . . . ,xT ) ∈ RD×T denotes the matrix of stacked input vectors from all time steps. Both
sLSTM and mLSTM are recurrent neural networks, which either map a state (ht−1, ct−1,nt−1)
to a successor state (ht, ct,nt) given an input xt−1 (sLSTM) or a state (ht−1,Ct−1,nt−1) to a
successor state (ht,Ct,nt) given an input xt−1 (mLSTM). Here, ht ∈ Rd denotes a hidden state,
ct ∈ Rd and Ct ∈ Rd×d denote cell states responsible for long-term memory and, nt ∈ Rd denotes
a normalizer state. sLSTM and mLSTM utilize several adjustable weight matrices and bias vectors
and employ input-, output-, and forget-gates, activated by exponential (exp) or the sigmoid functions
(σ). For cell inputs in sLSTM, the hyperbolic tangent function (tanh, abbreviated as φ) is used as an
activation function.

The xLSTM architecture (detailed in Appendix Section B.3), including all layers, normalization,
blocks, and other components, defines a mapping from an input sequence of length t to an output
sequence. This mapping is denoted as xLSTM : RD×t 7→ RD×t, where xLSTM transforms the
stacked inputs up to time step t, i.e., X1:t := (x1,x2, . . . ,xt) ∈ RD×t, to the corresponding stacked
outputs of sequence length t, i.e., Y1:t := (y1,y2, . . . ,yt) ∈ RD×t 1. The i-th sequence element
is denoted with the subscript i, e.g. the i-th element from X1:t would be (X1:t)i. Similarly to
the mapping xLSTM, we also define mappings for the sequence-wise input-/output behaviour of
layers themselves for an sLSTM layer (sLSTM : RD×t 7→ RD×t) or an mLSTM layer (mLSTM :
RD×t 7→ RD×t). If the specific parameters used for the mapping are unclear, we will denote this by
including a second argument in the function, separated by a semicolon.

2.1 Modes of Operation: Parallel, Chunkwise, and Recurrent

The recurrent forms of sLSTM and mLSTM, detailed in Appendix Sections B.1 and B.2, provide
efficient, constant-memory decoding during inference. This eliminates the need for expensive key-
value caching, which represents a major challenge for Transformer models in long-range settings.
Like Transformers, mLSTM allows for parallelization across the sequence length which significantly
speeds up training. Additionally, similar to linear attention variants (Katharopoulos et al., 2020;
Yang et al., 2024), mLSTM supports chunkwise parallel processing, blending recurrent and parallel
modes. This approach is especially advantageous for long-sequence training and prompt encoding.
For further details, refer to Appendix B.4.

3 Bio-xLSTM: Longe-Range Modeling of Biological and Chemical Sequences

Bio-xLSTM introduces three xLSTM-based variants tailored specifically to DNA (Section 3.3),
proteins (Section 3.4) and small molecules (Section 3.5). For these application domains, we extend
xLSTM from causal language modeling (CLM) to new modeling approaches such as fill-in the middle

1Here xi and yi represent the inputs to and outputs from a particular model from an instance of an xLSTM
architecture, rather than the inputs and outputs of a specific sLSTM or mLSTM layer
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(FIM) (Section 3.1), in-context learning (ICL) (Section 3.1), and masked language modeling (MLM)
(Section 3.2).

3.1 Causal Language Modeling and Next-Token Prediction

Causal language modeling (CLM) uses the

CLM loss: LCLM = EX∼pX
Et∼[[1,T−1]] CE (xt+1, xLSTM(X1:t)t) , (1)

where CE is the cross-entropy loss (with logits), pX is the data distribution, and [[1, T − 1]] is the
discrete uniform distribution from 1 to T − 1. The objective measures how well a particular sequence
token xt+1 can be predicted based on the previous tokens X1:t by the model xLSTM : RD×t 7→
RD×t. Therefore, this type of modeling is sometimes also called next token prediction (NTP),
uni-directional modeling or autoregressive (AR) modeling and the loss is also called NTP loss.

Fill-in the middle (FIM) (Bavarian et al., 2022) is a training paradigm that integrates aspects of
both CLM and MLM. In this approach, parts of the sequence are replaced with mask tokens, which
are then appended to the end of the sequence. This allows the model to utilize the entire context to
predict the masked tokens while maintaining an AR training framework. This strategy, allows the
model to perform both a) generative modeling and b) inpainting with CLM.

In-context learning (ICL) is a paradigm that describes that the predictions of the
model Y = xLSTM(X) improve when a suitable context Z ∈ RD×S is provided:
Y ′ = xLSTM([Z,X])(S+1):(S+T ), where [Z,X] indicates concatenation, the subscript
(S + 1) : (S + T ) denotes that the last output tokens (those corresponding to the X tokens) are
selected, and Y ′ is the output of the model with context Z as input. For natural language processing
tasks, Z often contains the solution to a similar problem, or some exemplary solutions, that inform
the input and the model. For biological and chemical sequences, Z could be similar genetic regions,
homologous proteins, or molecules with desired properties.

3.2 Masked Language Modeling (MLM)

Bio-xLSTM extends xLSTM to masked modeling of biological sequences, for which the typical
de-masking or de-noising objective (Vincent et al., 2010; Devlin et al., 2019) is used, concretely the

MLM loss: LMLM = EX∼pX
Et∼[[1,T ]] EM∼pM

CE (xt, xLSTM(X ⊙M)t) , (2)

where M ∈ {0, 1}D×T is a random matrix with binary entries which are usually drawn from a
Bernoulli distribution pM , and ⊙ is element-wise multiplication. The objective measures how
well the original sequence X can be reconstructed from a noisy version X ⊙ M by the model
xLSTM : RD×T 7→ RD×T . This modeling paradigm has also been called bidirectional modeling. It
has been highly successful in learning representations of proteins at evolutionary scale (Rives et al.,
2021), which has powered many subsequent applications such as protein engineering and machine-
learning guided directed evolution (Yang et al., 2019). For details on how xLSTM is extended to the
MLM setting, we refer to Appendix Section B.5.

Reverse complement (RC) equivariance. We develop an xLSTM block that is equivariant to the
RC of an input sequence, a property particularly relevant to DNA-based applications. In double-helix
DNA structures, both strands are semantically equivalent, with one strand being the RC of the
other. The RC strand is oriented in the opposite direction of the forward strand, with base pairs
converted from A to T and C to G. Shrikumar et al. (2017) show that a data-driven approach to learn
the equivalence between RC sequences can fail. Therefore, Schiff et al. (2024) propose to enforce
RC-equivariance by design, making use of two different inductive biases, post-hoc conjoining (PH)
(Zhou et al., 2022) and parameter sharing (PS), in the model architecture. In PH models, the backbone
is trained to handle both DNA sequences and their RCs by applying RC augmentations during pre-
training. For downstream tasks, PH models are applied to both the original sequence and its RC, and
their outputs are summed to reach overall RC invariance. In contrast, PS models, as introduced in
Schiff et al. (2024), integrate RC-equivariant xLSTM blocks with equivariant word embeddings and
language model heads. For additional details, see Appendix Section C.4.
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3.3 DNA-xLSTM

For the DNA domain, we propose the DNA-xLSTM architecture to enhance sequence modeling
capabilities, particularly for varying context lengths. We introduce three versions of the DNA-xLSTM
architecture: two sLSTM-based models trained with a context window of 1,024 tokens (DNA-
xLSTM-500k and DNA-xLSTM-2M), and a mLSTM-based model trained with a context window of
32,768 tokens (DNA-xLSTM-4M). The short-context model, DNA-xLSTM-500k, has an embedding
dimension of 128, 5 sLSTM blocks, an up-projection ratio of 1.25:1 to match the baseline model
parameter count, and a total parameter count of 500k, while DNA-xLSTM-2M has an embedding
dimension of 256, 6 sLSTM blocks, a 1:1 up-projection ratio, and 2M parameters, The long-context
model, DNA-xLSTM-4M, has an embedding dimension of 256, 9 mLSTM blocks, a 2:1 up-projection
ratio, and is augmented with Rotary Position Encodings (RoPE) (Su et al., 2024a) to handle long-
range dependencies effectively, with a total of 4M parameters. All three model architectures are
trained with both CLM and MLM. Furthermore, we introduce RC-equivariant versions, xLSTM-PH
and xLSTM-PS, which use the original sequence and its reverse complement. We benchmarked these
models against state-of-the-art DNA models, such as Transformers, DNA-Mamba (Caduceus) (Schiff
et al., 2024), and HyenaDNA (Nguyen et al., 2023), showing competitive or better performance on
pre-training and downstream classification tasks (see Section 4.1).

3.4 Prot-xLSTM

For the protein domain, we propose Prot-xLSTM to address the complexities of protein sequence
data, particularly in capturing long-range dependencies to enable homology-conditioned modeling.
We introduce two versions of Prot-xLSTM: Prot-xLSTM-26M and Prot-xLSTM-102M, with 26M
and 102M parameters, respectively. Both architectures are trained with variable context sizes
ranging from 2,048 to 131,072 tokens. Both models consist of 16 mLSTM blocks, with embedding
dimensions of 512 for Prot-xLSTM-26M and 1,024 for Prot-xLSTM-102M and maintaining a
consistent 2:1 projection ratio across both models. To effectively manage the wide range of protein
sequence lengths and context sizes, RoPEs (Su et al., 2024a) are implemented for Prot-xLSTM. These
models are trained with CLM using a FIM strategy on non-aligned homologous sequences from the
OpenProteinSet dataset (Ahdritz et al., 2023), enabling them to perform ICL at inference time in
two modes: (a) generative and (b) inpainting. Both approaches can be used for protein design, with
the latter also suited for residue-based predictions, such as mutant fitness estimation. Prot-xLSTM
shows better performance than similarly conceived Mamba-and Transformer-based models and shows
promising results for homology-conditioned sequence generation (see Section 4.2).

3.5 Chem-xLSTM

For the chemical sequence modeling domain, Chem-xLSTM is developed to enhance the generative
modeling capabilities for SMILES strings (Weininger, 1988), a sequence representation of small
molecules. The Chem-xLSTM-15M model for unconditional molecule generation consists of 15M pa-
rameters and 9 mLSTM blocks, each with an embedding dimension of 512 and a 1.3:1 projection
ratio. The model is trained with CLM with a context length of 100 tokens for consistency with
previous work (Özçelik et al., 2024). Additionally, we introduce a conditional Chem-xLSTM model,
which shares the same architecture but is trained on concatenated SMILES sequences with a context
length of 4,096 tokens to enable ICL tasks. This model can generate molecules within a specific
domain without fine-tuning, a highly sought-after capability in drug discovery, and also demonstrates
few-shot activity prediction abilities. The models have been benchmarked against other generative
models for SMILES and at their ICL capabilities (see Section 4.3).

4 Experiments and Results

4.1 DNA Sequences

For the DNA-xLSTM experiments, we followed the experimental protocol outlined in Schiff et al.
(2024) and Nguyen et al. (2023) for both pre-training and downstream adaptation.

Pre-training. The training data for both the CLM and MLM tasks was sourced from the human
reference genome (Church et al., 2011), with context lengths set to 1,024 and 32k tokens. Our
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Figure 2: Pre-training of 2M-parameter DNA models on the human reference genome (GRCh38).
Models are trained at single-nucleotide resolution with a context length of 1024 bases. Left: causal
language modeling. Learning curves display NTP loss (↓) on a test set, plotted against the number
of tokens processed. Right: masked language modeling. Learning curves showing MLM loss (↓)
on a test set across the number of tokens seen for various models. In both tasks, the xLSTM-based
models consistently achieve the lowest loss values across all update steps.

baseline models included HyenaDNA (Nguyen et al., 2023) and Caduceus, which is based on the
Mamba architecture (Schiff et al., 2024). Additionally, we trained Transformer++ baselines, building
on the Llama architecture (Touvron et al., 2023). Similar to Caduceus, we experimented with
both PH- and PS-equivariant xLSTM configurations, benchmarking them against the corresponding
Mamba baselines. All models that did not use PS-equivariance were trained with RC augmentation.
Hyperparameters were selected using a separate validation set. Figure 2 presents the test losses for
2M parameter CLM and MLM models trained with RC augmentation, i.e. non-PS models, and a
context size of 1,024 tokens. In the CLM setting, DNA-xLSTM-2M achieved the best performance,
surpassing Transformer++, Mamba, and HyenaDNA. The performance gap became even more
pronounced on the MLM task, where DNA-xLSTM-2M outperformed both Transformer-based
models and Mamba. Additionally, we extended DNA-xLSTM-2M to the PS equivariant setting
and trained smaller RC-equivariant DNA-xLSTM-500k models. The resulting PH and PS models
were subsequently used for downstream fine-tuning. In Appendix Section C, we present additional
pre-training results including comparisons for large-context and PS equivariant models. We found
that xLSTM-DNA matches or outperforms strong baselines in all pre-training settings.

Downstream fine-tuning. To evaluate the learned representations, we fine-tuned the pre-trained DNA-
xLSTM-2M and DNA-xLSTM-500K (both PH and PS) on two genomic classification benchmarks:
the Genomic benchmark (Grešová et al., 2023) and the Nucleotide Transformers Tasks (Dalla-
Torre et al., 2023), which span 18 datasets from five studies. DNA-xLSTM-2M-PH and DNA-
xLSTM-2M-PS models pre-trained with context size 1,024 were compared against HyenaDNA and
Mamba-PS and Mamba-PH. DNA-xLSTM performed best (see Table 1), outperforming baseline
models in the under 2M parameter range on 12 out of 18 tasks, and was comparable to the much
larger Nucleotide Transformer (500M parameters), winning 8 tasks. The comparisons with larger
Transformer models and xLSTM-DNA-500k performance on the Genomics benchmark are presented
in Appendix Section C.

4.2 Protein Sequences

We followed the experimental protocols from Sgarbossa et al. (2024) for protein sequences.

Homology-aware training. Training data was sourced from the filtered OpenProteinSet (Ahdritz
et al., 2023), consisting of 270k UniClust30 clusters (508M sequences, 110B residues). Using
the ProtMamba pipeline, we constructed homology-aware, alignment-free inputs by concatenating
unaligned homologous sequences and mask patches for training with the FIM strategy. We trained two
xLSTM-based models: Prot-xLSTM-26M and Prot-xLSTM-102M. For comparison, we also trained a
smaller ProtMamba (ProtMamba-28M) and Transformer-based (Prot-Transformer++-26M) (Touvron
et al., 2023) model and used the ProtMamba Long Foundation (ProtMamba-107M) provided by
Sgarbossa et al. (2024). Training followed a context length scheduling strategy, with models gradually
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Table 1: Downstream adaption of DNA models. The performance of 2M parameter models fine-tuned
on Nucleotide Transformer classification tasks on the test set is shown. PS or PH indicate models
trained to be RC equivariant. Performance is averaged over 10 random seeds and error bars indicate
the difference between maximum and minimum values across the 10 runs. The best values are
highlighted in green. DNA-xLSTM outperforms both Mamba and Hyena on 12 out of 18 tasks.
Scores for Mamba- and Hyena-based models were obtained from Schiff et al. (2024).

Task Metric HyenaDNA Mamba-PSa Mamba-PHa xLSTM-PS xLSTM-PH

Histone Markers
H3 MCC ↑ 0.779±0.037 0.799±0.029 0.815±0.048 0.796±0.014 0.824±0.010

H3K14AC MCC ↑ 0.612±0.065 0.541±0.212 0.631±0.026 0.570±0.008 0.598±0.017

H3K36ME3 MCC ↑ 0.613±0.041 0.609±0.109 0.601±0.129 0.588±0.019 0.625±0.010

H3K4ME1 MCC ↑ 0.512±0.024 0.488±0.102 0.523±0.039 0.490±0.012 0.526±0.001

H3K4ME2 MCC ↑ 0.455±0.095 0.388±0.101 0.487±0.170 0.489±0.024 0.504±0.012

H3K4ME3 MCC ↑ 0.549±0.056 0.440±0.202 0.544±0.045 0.520±0.019 0.537±0.012

H3K79ME3 MCC ↑ 0.672±0.048 0.676±0.026 0.697±0.077 0.662±0.011 0.697±0.007

H3K9AC MCC ↑ 0.581±0.061 0.604±0.048 0.622±0.030 0.622±0.013 0.627±0.008

H4 MCC ↑ 0.763±0.044 0.789±0.020 0.811±0.022 0.793±0.011 0.813±0.008

H4AC MCC ↑ 0.564±0.038 0.525±0.240 0.621±0.054 0.558±0.018 0.583±0.014

Regulatory Annotation
Enhancer MCC ↑ 0.517±0.117 0.491±0.066 0.546±0.073 0.375±0.030 0.545±0.024

Enhancer Types MCC ↑ 0.386±0.185 0.416±0.095 0.439±0.054 0.444±0.046 0.466±0.011

Promoter: All F1 ↑ 0.960±0.005 0.967±0.004 0.970±0.004 0.962±0.002 0.967±0.001

NonTATA F1 ↑ 0.959±0.011 0.968±0.006 0.968±0.010 0.963±0.002 0.970±0.001

TATA F1 ↑ 0.944±0.040 0.957±0.015 0.953±0.016 0.948±0.006 0.952±0.005

Splice Site Annotation
All Accuracy ↑ 0.956±0.011 0.927±0.021 0.940±0.027 0.965±0.006 0.974±0.004

Acceptor F1 ↑ 0.958±0.010 0.936±0.077 0.937±0.033 0.970±0.005 0.953±0.008

Donor F1 ↑ 0.949±0.024 0.874±0.289 0.948±0.025 0.962±0.004 0.951±0.005

a this method is also called Caduceus (Schiff et al., 2024).

increasing context from 211 to 217 tokens. We evaluated models using negative log-likelihood and
perplexity, calculated for different parts of the concatenated-FIM sequences. As shown in Fig. 3
and Tab. 2, Prot-xLSTM outperformed the other architectures. Its advantage becomes even more
pronounced with longer contexts, which Prot-Transformer++ cannot handle, and where Prot-xLSTM
significantly outperforms ProtMamba. Furthermore, Prot-xLSTM-102M outperforms ProtMamba-
107M, despite being trained on less than a third of the total training tokens used for ProtMamba-107M.
Further details are provided in Appendix Section D.1.

Table 2: Performance comparison of protein language models at homology-conditioned generation.
Test set perplexity (↓) of different models with a context size of 217 is shown across different token
subsets. The average and 95% confidence interval values are computed across the test set clusters.
Prot-xLSTM outperforms ProtMamba, especially when using a long context.

Prot-xLSTM-26M ProtMamba-28M Prot-xLSTM-102M ProtMamba-107M

All tokens 8.73±0.31 10.15±0.32 6.83±0.25 7.47±0.26

First seq tokens 15.40±0.26 15.28±0.26 13.36±0.35 13.04±0.36

Last seq tokens 9.19±0.30 11.08±0.27 7.32±0.29 8.37±0.29

FIM tokens 6.77±0.25 7.96±0.27 5.52±0.20 6.47±0.23

Homology-conditioned protein generation. We generate 2,500 protein sequences each for 19
clusters using different parameters and score them using multiple metrics. Hamming distance,
HMMER score, and structural scores correlate well with sequence perplexity, with an average
absolute Pearson correlation of 0.57 across clusters for the large Prot-xLSTM model (Table A10).
Table 3 shows Kolmogorov-Smirnov test statistics, which quantifies how well the score distributions
of the generated proteins match those of the real proteins. For each cluster, we compared scores
between 100 random real proteins and the 100 generated proteins with the lowest perplexity. For
further details see Appx. D.2.
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Figure 3: Generative pre-training of protein language models. The learning curves show the validation
loss of homology-aware protein language models during training. Left: Smaller (∼25M parameters)
models trained for 20B tokens with a context size of 211 and fine-tuned for 10B with a context of
217 tokens. Transformer++ can only be run for a small context size. Right: Prot-xLSTM-102M
model trained with increasing context sizes from 211 to 217. The orange dashed line corresponds to
the validation loss of ProtMamba-107M trained up to a context size of 217 for a total of 195B tokens.
Vertical gray dashed lines mark the points where context size was increased. Prot-xLSTM consistently
outperforms other models and sets a new state-of-the-art at homology-aware generation.

Table 3: Homology-conditioned protein generation. Average Kolmogorov-Smirnov statistic
(↓) between scores of natural and generated sequences with 95% confidence intervals across
19 homology clusters. For three of five metrics, score distributions of Prot-xLSTM-generated
sequences are closest to natural sequences.

Prot-xLSTM-26M ProtMamba-28M Prot-xLSTM-102M ProtMamba-107M

Sequence Length 0.41±0.09 0.52±0.09 0.40±0.08 0.36±0.08

Min. Hamming 0.43±0.08 0.60±0.11 0.47±0.09 0.42±0.07

HMMER 0.57±0.10 0.54±0.11 0.44±0.09 0.49±0.10

pLDDT 0.40±0.09 0.68±0.12 0.27±0.05 0.30±0.07

pTM 0.38±0.08 0.72±0.10 0.26±0.05 0.28±0.05

4.3 Chemical Sequences

Unconditional molecule generation aims to produce valid small organic molecules without imposing
specific constraints, such as being from a particular molecular domain. Following the setup from
Özçelik et al. (2024), we trained models to generate SMILES strings using a CLM approach on a
dataset derived from ChEMBL with a context length of 100 tokens. We compared our Chem-xLSTM
model with several architectures, including LSTM, GPT, S4, and Mamba, with all models containing
approximately 15 million parameters. The evaluation focused on two primary metrics: perplexity
and Fréchet ChemNet Distance (FCD) (Preuer et al., 2018). Chem-xLSTM achieved the lowest
FCD of 0.13 and a competitive perplexity score of 1.68, indicating its strong ability to generate
realistic chemical structures (see Table 4). All models produced valid, unique, and novel molecules,
showcasing their effectiveness in this task. Further details and results are provided in Appx. E.1.

Table 4: Unconditional generation of molecules with 15M parameter models. 102,400 SMILES
sequences have been generated and evaluated. Error bars represent standard deviations across training
re-runs. Green cells highlight the best values per column. Chem-xLSTM yields the best FCD and
SMILES-GPT the best perplexity.

SMILES-LSTMa SMILES-GPTb SMILES-S4c Chem-Mambad Chem-xLSTM

FCD ↓ 0.46±<0.01 0.15±<0.01 0.28±<0.01 0.21±<0.01 0.13±<0.01

Perplexity ↓ 1.88±3.8 1.65±0.6 1.73±2.4 1.74±0.5 1.68±1.0

a Segler et al. (2018) b Adilov (2021) c Özçelik et al. (2024) d Adapted to SMILES in this work.
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Figure 4: Conditional generation of molecules via ICL and 15M parameter models. Left: Visu-
alization of different molecular domains contained in the molecular domains dataset. A t-SNE
down-projection of molecules from different domains is shown. Clusters on the exterior represent
highly specific molecular domains. The validation and test set contain highly specific, unseen molec-
ular domains. Right: Generative training of chemistry language models on the molecular domains
dataset. Learning curves showing mean CLM loss (↓) on a validation set across the training epochs.
Shaded areas represent the standard-deviation over runs. The Chem-xLSTM achieved the lowest loss
at conditional generation of molecules using ICL.

For conditional molecule generation, the objective is to generate molecules belonging to a specific
molecular domain or possessing desired properties. Here, we focus on generating molecules from a
particular domain using the in-context learning abilities of LLMs. To achieve this, we assembled a
dataset, referred to as the molecular domains dataset, that comprises a diverse range of molecular
domains: natural products, click-chemistry, proteolysis-targeting chimera (PROTACs), DNA-encoded
chemical libraries, approved and failed drugs, and bioactive compounds from various bioassays.
Molecules from the same domain, are concatenated as a long sequence, and augmented through
permutation during training. We split the dataset into training, validation, and test domains, following
an 8:1:1 ratio (Figure 4, left). The validation and test sets contained molecules from unseen domains,
enabling us to evaluate the models’ conditional generation capabilities through in-context learning.
We trained Chem-xLSTM, Mamba, Transformer++, and S4-based models with the CLM approach on
the molecular domains with an increased context length of 4,096 tokens. The context length for S4
models was restricted to 2,048 due to memory constraints. We evaluated the models based on NTP
loss across unseen domains. The trained model Chem-xLSTM-15M-icl shows promising results in
this conditional setting, outperforming the other benchmarked model-classes (Figure 4, right). This
demonstrates Chem-xLSTM’s capability to generate molecules from an unseen chemical domain
when provided with only a few exemplary molecules without fine-tuning. Further details and results
are provided in Appx. E.2.

5 Limitations and Conclusions

Limitations. Manual hyperparameter selection may not yield optimal configurations of the models,
and the reliance on character-level tokenization for DNA could restrict performance with larger
context sizes. Additionally, the generalizability of our models across different organisms and chemical
domains is uncertain due to biases in the training datasets. Metrics like perplexity, commonly used as
performance proxies, may not fully capture the true capacity of the models (Appendix F).

Conclusion. Despite these limitations, Bio-xLSTM demonstrated effectiveness in DNA sequence
modeling, performing best in masked and causal language tasks across context sizes. In protein mod-
eling, Bio-xLSTM excelled at long-range modeling, becoming a promising approach for generating
homologous proteins. For small molecules, Bio-xLSTM achieved the best FCD in unconditional
generation and showed ICL capabilities. We have clarified how to tailor xLSTM for biological
and chemical sequences and demonstrated how it competes with other domain-specific models (see
Appendix G). Our findings underpin that Bio-xLSTM is a prime candidate for foundation models in
molecular biology.
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A Related Work

In all three areas, genomics, proteomics, and chemistry, we observe a similar trend that until
around 2018 the language models were based on LSTMs (Hochreiter & Schmidhuber, 1997), then a
large amount of models were based on Transformers (Vaswani et al., 2017), with different training
paradigms and styles, and from 2023 onwards the first state-space models appeared.

Language models for genomic sequence data. DNABERT (Ji et al., 2021) and its successor
DNABERT-2 (Zhou et al., 2024) are Transformer-based models that leverage bidirectional encoder
representations and masked language modeling to capture nucleotide context, achieving high per-
formance in tasks like promoter and splice site prediction. LOGO (Yang et al., 2022), another
Transformer-based model, applies self-supervised learning to the human genome for sequence la-
beling and variant prioritization, while VIBE (Gwak & Rho, 2022) employs a hierarchical BERT
model to enhance the detection of eukaryotic viruses in metagenomic data. Models like Looking-
Glass (Hoarfrost et al., 2022), based on recurrent neural network (RNN), and GPN (Benegas et al.,
2023), which uses convolutional neural networks (CNNs), are examples of non-Transformer-based
approaches, with LookingGlass focusing on microbial genomes and GPN on plant genomes. More
recent developments include the nucleotide transformer (NT) (Dalla-Torre et al., 2023), a Transformer
model trained on the human genome and data from the 1000 Genomes Project, and SpeciesLM
(Karollus et al., 2024), which trains Transformer-based models on 1500 fungal genomes. The latest
advances, represented by Caduceus (Schiff et al., 2024) based on Mamba (Gu & Dao, 2023) and
HyenaDNA (Nguyen et al., 2023), introduce SSMs that allow generative modeling and representation
learning for long DNA sequences.

Language models for protein sequence data. Until around 2019, the field was dominated by RNNs
and LSTM-based models trained with CLM. Notable examples include UniRep (Alley et al., 2019),
which employed multiplicative-LSTM to capture rich protein representations, and SSA (Bepler &
Berger, 2019), which used bidirectional RNNs for structural similarity prediction. Since then the field
has shifted towards Transformer-based models and MLM, driven by their success in natural language
processing. Early adopters of this shift included the TAPE benchmark for protein downstream tasks
(Rao et al., 2019), which evaluated both an LSTM and a Transformer architecture trained with
CLM and MLM, respectively. Elnaggar et al. (2021) further expanded the use of Transformers with
large-scale MLM, setting new benchmarks in protein sequence analysis with Prot-T5. ESM (Rives
et al., 2021) applied MLM to a Transformer on a massive scale, capturing evolutionary patterns across
diverse protein sequences. Other significant Transformer-based models include MSA-Transformer
(Rao et al., 2021), which applied MLM to multiple-sequence alignments (MSA), and ProGen
(Madani et al., 2023), which used CLM and Transformers for controlled protein sequence generation.
Additionally, models like ProtGPT2 (Ferruz et al., 2022) and ProteinBERT (Brandes et al., 2022)
utilized the power of Transformer architectures in generating novel protein sequences and functional
predictions. Furthermore, (Su et al., 2024b) introduced a "structure-aware vocabulary" which they
use as input for Transformer-based models. The recently proposed PoET (Truong Jr & Bepler, 2023)
is an autoregressive Transformer model trained on non-aligned homologous sequences, providing a
novel approach for conditional protein design and protein fitness prediction. Building on the concept
of non-aligned homologous sequences, ProtMamba (Sgarbossa et al., 2024) leverages emerging
SSMs to manage long-context conditioning on proteins, effectively utilizing autoregressive and FIM
strategies. For a more comprehensive review of these advancements, including their applications in
functional protein design, see Notin et al. (2024) and Hu et al. (2022).

Language models for chemical sequence data. The first language model for chemical sequences
was an LSTM-based, autoregressive method developed by Segler et al. (2018), which demonstrated
that the SMILES syntax (Weininger, 1988) and generation of realistic organic molecules can be
learned. Honda et al. (2019) introduced a Transformer model for this task, showing that this leads
to informative representations of molecules. The Molecular Transformer (Schwaller et al., 2019)
consists of a Transformer-based encoder and decoder, trained on chemical reaction data to translate
between reactants and products. More recently, SSMs have been used for generative modeling of
SMILES strings (Özçelik et al., 2024). Subsequent models such as MolGPT (Bagal et al., 2021)
and cMolGPT (Wang et al., 2023) utilized the GPT architecture to generate SMILES strings, with
MolGPT conditioning on chemical properties and scaffolds, and cMolGPT focusing on biomolecular
targets. Transformer-based approaches have also been employed to optimize the properties of small
molecules in a reinforcement-learning setting (Mazuz et al., 2023). Encoder-style language models
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for chemistry, such as SmilesLSTM (Mayr et al., 2018), ChemNet (Preuer et al., 2018), and CNN-
based models (Jastrzębski et al., 2016), initially used activity and property prediction as pre-training
or training objectives. Later, these encoder-style language models were trained with the masking
language modeling objective, as seen in ChemBERTA (Chithrananda et al., 2020), Chemberta-2
(Ahmad et al., 2022), SMILES-BERT (Wang et al., 2019b), MolFormer (Ross et al., 2022) and
rxnfp-BERT (Schwaller et al., 2021). Some models have also adopted contrastive objectives (Seidl
et al., 2023). Large language models for molecules have also been shown to learn complex molecular
distributions (Flam-Shepherd et al., 2022). For a more thorough and comprehensive overview, we
refer to the surveys by Bran & Schwaller (2023) and Zhang et al. (2024)
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B xLSTM Architecture Details

B.1 sLSTM

The forward pass of the sLSTM forward in the vectorized version is:

ct = ft ⊙ ct−1 + it ⊙ zt cell state (3)
nt = ft ⊙ nt−1 + it normalizer state (4)

ht = ot ⊙ h̃t , h̃t = ct ⊙ n−1
t hidden state (5)

zt = φ (z̃t) , z̃t = Wz xt + Rz ht−1 + bz cell input (6)

it = exp
(̃
it

)
, ĩt = Wi xt + Ri ht−1 + bi input gate (7)

ft = exp
(
f̃t

)
OR σ

(
f̃t

)
, f̃t = Wf xt + Rf ht−1 + bf forget gate (8)

ot = σ (õt) , õt = Wo xt + Ro ht−1 + bo output gate, (9)

where it,ot, ft ∈ Rd are the input, output and forget gate, respectively, Wz,Wi,Wf ,Wo ∈ Rd×D,
Rz,Ri,Rf ,Ro ∈ Rd×d, and bz, bi, bf , bo ∈ Rd are trainable weight matrices and biases.

B.2 mLSTM

The forward pass of the mLSTM is defined as follows:

Ct = ft Ct−1 + it vt k
⊤
t cell state (10)

nt = ft nt−1 + it kt normalizer state (11)

ht = ot ⊙ h̃t , h̃t = Ctqt / max
{∣∣n⊤

t qt
∣∣, 1} hidden state (12)

qt = Wq xt + bq query input (13)

kt =
1√
d
Wk xt + bk key input (14)

vt = Wv xt + bv value input (15)

it = exp
(̃
it
)
, ĩt = w⊤

i xt + bi input gate (16)

ft = σ
(
f̃t

)
OR exp

(
f̃t

)
, f̃t = w⊤

f xt + bf forget gate (17)

ot = σ (õt) , õt = Wo xt + bo output gate (18)

where it, ot, ft ∈ R are the input, output and forget gate, respectively, qt,kt,vt ∈ Rd are query, key
and value inputs with trainable weight matrices Wq,Wk,Wv ∈ Rd×D, wi,wf ∈ RD are input and
forget gate weights and the respective bi, bf ∈ R biases. All other quantities are identical to sLSTM.

B.3 xLSTM and Bio-xLSTM Blocks

Beck et al. (2024) suggested xLSTM blocks, which are residual (Srivastava et al., 2015; He et al.,
2016) block modules, into which the sLSTM and mLSTM layers can be integrated. The two basic
blocks can in principle be characterized by either applying post-sLSTM/mLSTM up- and down-
projections (similar to Vaswani et al. (2017)) or by applying pre-sLSTM/mLSTM up-projections
and post-sLSTM/mLSTM down-projections (similar to Dao (2024)). An sLSTM block integrates
the sLSTM layer into the up- and down-projection block, while the mLSTM block integrates the
mLSTM layer into the pre-up-projection and post-down-projection block. The two basic xLSTM
blocks also make use of neural network modules like layer normalization (Ba et al., 2016), short
causal convolutions, and, group normalization (Wu & He, 2020). For the exact architecture of the
blocks, we refer to Beck et al. (2024, Sec.2.4). An xLSTM architecture is constructed by residually
stacking the suggested xLSTM blocks. For that, the most commonly used pre-LayerNorm residual
backbone is used.

For Bio-xLSTM we keep the basic xLSTM building blocks and the basic xLSTM architecture
template, but adjust them to the respective domains. Figure A1 depicts sLSTM and mLSTM blocks,
as well as, a bidirectional mLSTM configuration with weight-tied layers.
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Figure A1: xLSTM and Bio-xLSTM blocks. Left: mLSTM block. LN (Layer Normalization) and
GN (Group Normalization) refer to normalization modules, while L Skip represents learnable skip
connections and Conv denotes causal 1D convolutions. The mLSTM block utilizes a gated pre-up-
projection structure, akin to modern state-space models, with gates activated by the Swish function.
Middle: sLSTM block. The sLSTM block features a GELU-gated post-up-projection structure,
similar to Transformer architectures. Right: Bidirectional mLSTM block. For bidirectional
processing, the xLSTM applies each block to the input sequence twice before combining the outputs:
once left-to-right and once right-to-left.

B.4 Modes of Operation: Parallel, Chunkwise or Recurrent

Similar to linear attention variants (Katharopoulos et al., 2020; Yang et al., 2024), the mLSTM has
three possible forms: parallel, recurrent or chunkwise. The presentation in section B.2 (and Beck
et al., 2024) focuses on the recurrent form:

Ct = σ(f̃t)Ct−1 + exp(̃it)⊙ vtk
T
t

nt = σ(f̃t)nt−1 + exp(̃it)kt

ht = σ(õt)⊙
Ctqt

max
(
|ntqt|, 1

) .
This form is especially useful for inference when samples arrive one time-step at a time.

The omission of the recurrent connections in mLSTM allows for a parallel implementation (Beck
et al., 2024, Appendix):

F̃ =


0 0 0 . . . 0

lnσ(f̃2) 0 0 . . . 0

lnσ(f̃2) + lnσ(f̃3) lnσ(f̃3) 0 . . . 0
...

...
...

. . .
...∑T

t=2 lnσ(f̃t)
∑T

t=3 lnσ(f̃t)
∑T

t=4 lnσ(f̃t) . . . 0


D = exp

(
F̃ + 1⊗ ĩ

)
⊙M

H = σ(Õ)⊙ D ⊙QKT

max
(
|(D ⊙QKT) · 1|,1

)V ,

where Q,K,V , Õ ∈ RT×d, ĩ ∈ RT and M ∈ {0, 1}T×T is a causal (i.e. lower-triangular) masking
matrix. The ⊗ refers to an outer product, while ⊙ is a Hadamard (i.e. element-wise) product. The
fraction, max and other non-linear functions are also applied element-wise. This parallel form enables
an efficient training regime, similar to Transformers.
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The chunkwise implementation is a hybrid of the recurrent and parallel forms:

F̃ =


0 0 0 . . . 0

lnσ(f̃t−C+2) 0 0 . . . 0

lnσ(f̃t−C+2) + lnσ(f̃t−C+3) lnσ(f̃t−C+3) 0 . . . 0
...

...
...

. . .
...∑C

τ=2 lnσ(f̃t−C+τ )
∑C

τ=3 lnσ(f̃t−C+τ )
∑C

τ=4 lnσ(f̃t−C+τ ) . . . 0


D = exp

(
F̃ + 1⊗ ĩ

)
⊙M

f =

(
σ(f̃t−C+1), σ(f̃t−C+1)σ(f̃t−C+2), . . . ,

C∏
τ=1

σ(f̃t−C+τ )

)

H = σ(Õ)⊙
(D ⊙QKT)V + diag(f)QCT

t−C

max
(
|(D ⊙QKT) · 1+ diag(f)Qnt−C |,1

)
Ct =

( C∏
τ=1

σ(f̃t−C+τ )

)
Ct−C + V T diag(dC)K

nt =

( C∏
τ=1

σ(f̃t−C+τ )

)
nt−C +KTdC ,

with Q,K,V , Õ ∈ RC×d and ĩ ∈ RC the pre-activations from t − C + 1 to t. Furthermore,
M ∈ {0, 1}C×C , is a local causal (i.e. lower-triangular) masking matrix, dC denotes the last row of
D, diag transforms a vector into a diagonal matrix, and C is the chunk size. For C = 1, we recover
the recurrent form, whereas for C = T , we obtain the parallel form.

B.5 Efficient Bidirectional Modeling for Weight-Tied Layers of Bio-xLSTM

Bidirectional modeling is often required to learn representations of biological and chemical sequences,
for example with the MLM paradigm. The default approach for bidirectional modeling would be to
use an mLSTM layer on the usual sequence X1:T = (x1,x2, . . . ,xT ) and then applying a weight-
tied layer on the reversed sequence XT :1 = (xT ,xT−1, . . . ,x1) and subsequently summing those
outputs:

H+ = mLSTM(X1:T ;w) (19)

H− = mLSTM(XT :1;w) (20)

H = H+ +H−
T :1, (21)

where H−
T :1 indicates that the sequence is reversed again, and w are the parameters of the LSTM-

layer mLSTM(X1:T ;w) which are assumed to be the same for both directions, i.e. weight-tied.
This approach is schematically depicted in Figure A1 (Right). However, this approach is inefficient
with respect to memory and operations because it has to calculate and store all internal quantities,
such as the cell states, twice for the backward pass. A variant of this approach is to perform the
forward direction in one block (Eq. 19) and the reverse direction in a consecutive block (Eq. 20) of
the architecture (Alkin et al., 2024).

We propose an efficient bidirectional modeling approach. Because of the parallelism of mLSTM
and its gates depending only on the current time step, the weighted cumulative sum required for the
cell state (Eq. 10), can be done backwards to obtain the representations for the reversed sequence

C+
t = ftC

+
t−1 + itvt k

⊤
t C−

t = ftC
−
t+1 + itvt k

⊤
t (22)

n+
t = ftn

+
t−1 + itkt n−

t = ftn
−
t+1 + itkt. (23)

The resulting ht = h+
t + h−

t is a bidirectional representation of the input sequence, whereby this
variant is more efficient with respect to memory usage because of shared quantities. Note that the
two variants, the default approach, and the efficient approach, are mathematically equivalent.
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C DNA-xLSTM: Details and Additional Results

In this section, we provide further details regarding the architecture, training setup, and evaluation
metrics for the DNA-xLSTM models.

C.1 Pre-Training

Experimental setup. We followed the experimental protocol established in Schiff et al. (2024) and
Nguyen et al. (2023). The human reference genome (Church et al., 2011) was used as the training
dataset for two main tasks: a) causal language modeling (CLM) and b) masked language modeling
(MLM). We employed context lengths of 1,024 and 32,000 tokens for these tasks.

To ensure a fair comparison with previous methods, such as Schiff et al. (2024), we used character-
or base pair-level tokenization, training models with parameter sizes ranging from 500k to 4M. This
experimental setup enabled us to evaluate model performance for both a) generative modeling of
DNA sequences and b) learning rich DNA sequence representations—core tasks in this domain.

Methods and hyperparameters. In our pre-training experiments, we compared several architectures:
a Transformer variant based on the Llama architecture, referred to as Transformer++ (Touvron
et al., 2023), DNA-xLSTM, HyenaDNA (Nguyen et al., 2023), and DNA-Mamba (also known as
Caduceus) (Schiff et al., 2024). Each architecture was trained under both CLM and MLM settings.
Additionally, we assessed two types of reverse-complement (RC) equivariant models when applicable:
DNA-Mamba-PH and DNA-Mamba-PS, as well as DNA-xLSTM-PH and DNA-xLSTM-PS. For
non-equivariant models, reverse-complement augmentation was applied, following the approach
described in Schiff et al. (2024). Further details on RC-equivariant modeling can be found in Section
C.4. The hyperparameters for DNA-xLSTM and Transformer++ were optimized using a validation
set, with the final configurations reported in Appendix Tables A4 and A3.

Metrics. We report cross-entropy loss on a held-out test set for both CLM and MLM pre-training
experiments.

Results. Our experiments show that the sLSTM-based DNA-xLSTM-2M model, trained with a
context size of 1,024 and reverse-complement augmentation, outperforms DNA-Mamba (Schiff et al.,
2024), HyenaDNA (Nguyen et al., 2023), and Transformer++ across both CLM and MLM tasks.
Notably, the performance gap between DNA-xLSTM and the baseline models increases in the MLM
setting. See Figure 2.

We further enhanced DNA-xLSTM-500k and DNA-xLSTM-2M models by incorporating reverse-
complement equivariance via parameter sharing. For smaller models, we achieved MLM losses
comparable to DNA-Mamba-PS, with a significant improvement over DNA-Mamba-PS as model size
scaled to 2M parameters (Figure A3). Additionally, we pre-trained a long-range DNA-xLSTM model
based on mLSTM, with a context size of 32k, using both CLM and MLM objectives. This model
achieved the lowest cross-entropy loss in both tasks, outperforming Transformers and HyenaDNA,
while performing comparably to Mamba (Figure A2).

C.2 Downstream Tasks

Experimental setup. Two sets of downstream tasks were used for evaluating the learned repre-
sentations: the Genomic benchmark (Grešová et al., 2023) and the Nucleotide Transformers Tasks
(Dalla-Torre et al., 2023), which is a collection of 18 datasets derived from five peer-reviewed studies
(Phaml et al., 2005; Oubounyt et al., 2019; Wang et al., 2019a; Scalzitti et al., 2021; Geng et al., 2022).
These classification tasks were selected to determine how rich the learned representations of the
architectures are. To extract representations from the pre-trained xLSTM-DNA models, we perform
average pooling on the activations from the final xLSTM block. For each downstream dataset, these
representations served as inputs to a task-specific classification head that were jointly fine-tuned with
the pre-trained model parameters.

Methods and hyperparameters. For Nucleaotide Transformer tasks, we compared HyenaDNA,
DNA-Mamba, and xLSTM-based models pre-trained with 2M parameters. For Genomic benchmark
tasks, we compare the smaller xLSTM-500k against Mamba. In both settings, models were pre-trained
with a context size of 1,024.
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Figure A2: Pre-training of 4M-parameter DNA models on the human reference genome (GRCh38).
The models are trained on the human reference genome at single-nucleotide resolution with a context
length of 32k bases. Left: causal language modeling. Learning curves display CLM loss (↓) on a
held-out test set, plotted against the number of tokens processed. Right: masked language modeling.
Learning curves for bidirectional models trained with the MLM objective (↓). The DNA-xLSTM-4M
model outperforms both Transformer++ and Hyena-DNA models of similar size, and matches the
performance of Caduceus-4M.

Table A1: Downstream adaption of DNA models (extended version). The test set performance of
DNA models with 2M parameters and models with over 100M parameters, fine-tuned on Nucleotide
Transformer classification tasks, is shown. Models marked with PS or PH are trained to be RC
equivariant. The used metric is provided in the Metric column and best values are highlighted
in green Results are averaged over 10 random seeds, with error bars representing the difference
between the maximum and minimum values across the runs. The best scores are highlighted in
green. xLSTM-DNA-PH with 2M parameters outperforms similarly sized Hyena- and Mamba-based
models, while achieving comparable results to the much larger Nucleotide Transformer. Scores for
all models except xLSTM were obtained from Schiff et al. (2024).

Task Metric > 100M Param. Models 2M Param. Models
Enformer (252M) DNABERT-2 (117M) NT-v2 (500M) HyenaDNA Mamba-PS Mamba-PH xLSTM-PS xLSTM-PH

Histone Markers
H3 MCC ↑ 0.719±0.048 0.785±0.033 0.784±0.047 0.779±0.037 0.799±0.029 0.815±0.048 0.796±0.014 0.824±0.010

H3K14AC MCC ↑ 0.288±0.077 0.516±0.028 0.551±0.021 0.612±0.065 0.541±0.212 0.631±0.026 0.570±0.008 0.598±0.017

H3K36ME3 MCC ↑ 0.344±0.055 0.591±0.020 0.625±0.030 0.613±0.041 0.609±0.109 0.601±0.129 0.588±0.019 0.625±0.010

H3K4ME1 MCC ↑ 0.291±0.061 0.511±0.028 0.550±0.021 0.512±0.024 0.488±0.102 0.523±0.039 0.490±0.012 0.526±0.001

H3K4ME2 MCC ↑ 0.211±0.069 0.336±0.040 0.319±0.045 0.455±0.095 0.388±0.101 0.487±0.170 0.489±0.024 0.504±0.012

H3K4ME3 MCC ↑ 0.158±0.072 0.352±0.077 0.410±0.033 0.549±0.056 0.440±0.202 0.544±0.045 0.520±0.019 0.537±0.012

H3K79ME3 MCC ↑ 0.496±0.042 0.613±0.030 0.626±0.046 0.672±0.048 0.676±0.026 0.697±0.077 0.662±0.011 0.697±0.007

H3K9AC MCC ↑ 0.420±0.063 0.542±0.029 0.562±0.040 0.581±0.061 0.604±0.048 0.622±0.030 0.622±0.013 0.627±0.008

H4 MCC ↑ 0.732±0.076 0.796±0.027 0.799±0.025 0.763±0.044 0.789±0.020 0.811±0.022 0.793±0.011 0.813±0.008

H4AC MCC ↑ 0.273±0.063 0.463±0.041 0.495±0.032 0.564±0.038 0.525±0.240 0.621±0.054 0.558±0.018 0.583±0.014

Regulatory Annotation
Enhancer MCC ↑ 0.451±0.108 0.516±0.098 0.548±0.144 0.517±0.117 0.491±0.066 0.546±0.073 0.375±0.030 0.545±0.024

Enhancer Types MCC ↑ 0.309±0.134 0.423±0.051 0.424±0.132 0.386±0.185 0.416±0.095 0.439±0.054 0.444±0.046 0.466±0.011

Promoter: All F1 ↑ 0.954±0.006 0.971±0.006 0.976±0.006 0.960±0.005 0.967±0.004 0.970±0.004 0.962±0.002 0.967±0.001

NonTATA F1 ↑ 0.955±0.010 0.972±0.005 0.976±0.006 0.959±0.011 0.968±0.006 0.968±0.010 0.963±0.002 0.970±0.001

TATA F1 ↑ 0.960±0.023 0.955±0.021 0.966±0.013 0.944±0.040 0.957±0.015 0.953±0.016 0.948±0.006 0.952±0.005

Splice Site Annotation
All Accuracy ↑ 0.848±0.019 0.939±0.009 0.983±0.008 0.956±0.011 0.927±0.021 0.940±0.027 0.965±0.006 0.974±0.004

Acceptor F1 ↑ 0.914±0.028 0.975±0.006 0.981±0.011 0.958±0.010 0.936±0.077 0.937±0.033 0.970±0.005 0.953±0.008

Donor F1 ↑ 0.906±0.027 0.963±0.006 0.985±0.022 0.949±0.024 0.948±0.025 0.874±0.289 0.962±0.004 0.951±0.005

Metrics. For the Nucleotide Transformer downstream tasks different metrics are used depending on
the type of task: MCC was used for histone markers and enhancer annotation, F1-score was used for
promoter annotation and splice site acceptor/donor, and accuracy was used for the splice site. The
downstream performance on the Genomic benchmark was evaluated using the Top-1 accuracy.

Results. On the extensive set of downstream tasks, DNA-xLSTM is the best model with fewer than
2M parameters outperforming other small models on 12 of 18 tasks. In a comparison with much
larger models, DNA-xLSTM and is on par with the 500M parameter model Nucleotide Transformer
(NT-v2) winning 8 of 18 tasks (see Table A1). On the Genomic benchmark, DNA-xLSTM is overall
on par with Mamba-DNA and shows especially strong results with posthoc conjoining, winning 5 of
8 tasks compared to Mamba-DNA-PH. Results are reported in Table A2.
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Table A2: Downstream adaption of DNA language models on the Genomics Benchmarks. The Top-1
accuracy (↑) for RC-equivariant PS and PH xLSTM and Mamba-based Caduceus models, both
with 500k parameters, are shown. Error bars represent the range of scores across five random seeds.
xLSTM achieves comparable overall performance to Mamba and demonstrates superior accuracy
when both models employ post-hoc conjoining. Scores for all models except xLSTM were obtained
from Schiff et al. (2024).

Mamba-PH-500k xLSTM-PH-500k Mamba-PS-500k xLSTM-PS-500k

Mouse Enhancers 0.754±0.074 0.780±0.018 0.793±0.058 0.778±0.007

Coding. vs. Intergenomic 0.915±0.003 0.931±0.001 0.910±0.003 0.934±0.002

Human vs. Worm 0.973±0.001 0.965±0.001 0.968±0.002 0.956±0.001

Human Enhancers Cohn 0.747±0.004 0.742±0.005 0.745±0.007 0.734±0.005

Human Enhancers Ensemble 0.893±0.008 0.920±0.001 0.900±0.006 0.902±0.004

Human Regulatory 0.872±0.011 0.872±0.002 0.873±0.007 0.869±0.005

Human OCR Ensembl 0.828±0.006 0.826±0.002 0.818±0.006 0.800±0.002

Human NonTATA Promoters 0.946±0.007 0.951±0.004 0.945±0.010 0.949±0.001

Table A3: Pre-training hyperparameters for DNA-Transformer++ models with 2M and 4M parameters.
Comma-separated values represent hyperparameter sweeps, with the chosen values indicated in bold.

Hyperparameters DNA-Transformer++-2M DNA-Transformer++-4M

Embedding Dimension 256 256
Number of Blocks 4 6
Number of Heads 8 8
Up-Projection Ratio 1.25:1 2:1
Norm Bias and Linear Bias false false
Context Length 1,024 32,768
Position Embeddings RoPE RoPE
Learning Rate 6e-3, 8e-3, 1e-2 6e-3, 8e-3, 1e-2

C.3 Architecture and Hyperparameters

The hyperparameters and composition of the DNA-xLSTM and DNA-Transformer++ models for
pre-training with context size 1k and 32k are reported in Tables A4 and A3. The hyperparameters
were selected on a separate validation set using manual hyperparameter selection due to limited
computational resources.

C.4 Reverse-Complement Invariance

We develop an xLSTM version that is invariant to the RC of an input sequence which is relevant
for DNA applications following Schiff et al. (2024). In double-helix DNA structures, both strands
are semantically equivalent, as one strand is the RC of the other. Given a strand, □, its RC, □, is
oriented in the opposite direction with a base conversion from A to T and C to G (Schiff et al., 2024).
Shrikumar et al. (2017) show that a data-driven approach to learning the equivalence between reverse-
complement sequences can fail, which is why Schiff et al. (2024) propose to enforce RC-equivariance
by design, making use of two different inductive biases in the model architecture: PH (Zhou et al.,
2022) and PS. For PH models, sequence-to-sequence models — in our case realized by the xLSTM —
learn to handle both DNA sequences and their RC during pre-training by applying RC augmentation
to the inputs. RC augmentation refers to the process of randomly replacing input sequences by their
RCs. For downstream tasks PH models are applied once to the original sequence and once to the RC
and eventually outputs are summed:

Y = xLSTM(X) + xLSTM(X). (24)

For PS models — we assume models are realized by xLSTM architectures and therefore a block
refers to a single mLSTM or sLSTM block — both the DNA sequence and its RC are provided
simultaneously to each block in the architecture (for both pre-training and downstream task fine-
tuning). Precisely, a joint representation, originating from combining a sequence representation and
its RC representation, is split into X ∈ RD×t and X ∈ RD×t and fed into the mLSTM or sLSTM
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Figure A3: Pre-training of RC-equivariant xLSTM-DNA-PS and Caduceus-PS models with 500k and
2M parameters trained on the human reference genome. Models were trained on 1k context windows
using the MLM objective. Left: MLM losses (↓) for models with 500k parameters. Right: MLM
losses (↓) for models in the 2M parameter range. DNA-xLSTM-PS outperforms Caduceus-PS in both
settings, with the performance gap widening at larger scales.

block: [
H,H

]
=

[
block(X),RC(block(RC(X)))

]
. (25)

Notably, for each block the reverse-complement input is built by the RC-function which flips both
dimensions of X and [·, ·] indicates concatenation along the first dimension. Eventually, logits for
the input sequence and its reverse complement are combined. For more details, we refer to Schiff
et al. (2024).

C.5 Implementation Details

For both CLM and MLM pre-training we perform 10,000 update steps holding the number of tokens
per step constant at 220. CLM models are trained using autoregressive next-token prediction. For
MLM pre-training, we follow the methodology presented by Devlin et al. (2019), where 15% of the
input tokens are masked and the model is tasked to predict the corrupted tokens. Concretely, 80%
of the masked tokens are replaced by a special [MASK] token, 10% are replaced by random tokens
sampled from the vocabulary and 10% remain unchanged. For MLM settings, we use weight-tied
bidirectionality as a default (see Section B.5). For long-context bidirectional modeling, we use
unidirectional xLSTM cells and alternate the modeling direction at each block.

To fine-tune pre-trained models on downstream tasks, we follow the framework from Schiff et al.
(2024). Pre-trained models are augmented with a task-specific classification head, which is trained
on average-pooled activations from a model’s final block. During fine-tuning, all model parameters
are unfrozen. For the Genomic benchmark, we perform five randomly seeded train-validation splits,
fine-tune models for 10 epochs, and use early-stopping on validation performance. Final test results
are reported as the mean performance ± max/min over the 5 seeds on a held-out test set. For the
Nucleotide Transformer tasks, we use 20 epochs and 10 seeds. For both the Genomic benchmarks
and the Nucleotide Transformer tasks, we performed a hyperparameter search for both PH and PS
models over batch sizes {64, 128, 256, 512}, and learning rates {4e-4, 6e-4, 8e-4, 1e-3, 2e-3}. The
best results for each Nucleotide Transformer task can be found in Table A5.
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Table A4: Pre-training hyperparameters of DNA-xLSTM Models from 500k to 4M parameters.
Comma-separated values represent hyperparameter sweeps, with the chosen values indicated in bold.

Hyperparameters DNA-xLSTM-500k DNA-xLSTM-2M DNA-xLSTM-4M

Embedding Dimension 128 256 256
Number of Blocks 5 6 9
Conv 1D Kernel Size 4 4 4
Number of Heads 4 4 4
Up-Projection Ratio 1.25:1 1:1 2:1
Bidirectionality alternating, blockwise alternating, blockwise alternating, native, blockwise
Norm Bias and Linear Bias true, false true, false true
QKV Projection Blocksize - - 4
m/sLSTM ratio [0:1], [1:0] [0:1], [1:0] [0:1], [1:0]
Context Length 1,024 1,024 32,768
Position Embeddings None None RoPE
Optimizer AdamW β = (0.9, 0.95) AdamW β = (0.9, 0.95) AdamW β = (0.9, 0.95)
Learning Rate 6e-3, 8e-3, 1e-2 6e-3, 8e-3, 1e-2 6e-3, 8e-3, 1e-2
Learning Rate Schedule Cosine Decay Cosine Decay Cosine Decay
Learning Rate Warmup Steps 1,000 1,000 1,000
Weight Decay 0.1 0.1 0.1
Dropout 0 0 0
Batch Size 1,024 1,024 32
Update Steps 10,000 10,000 10,000

Table A5: Hyperparameter selection for DNA-xLSTM-PS and DNA-xLSTM-Ph on Nucleotide
Transformer tasks. Fine-tuning hyperparameters were chosen based on best scores averaged over ten
train-validation splits.

DNA-xLSTM-Ph DNA-xLSTM-PS
Learning Rate Batch Size Learning Rate Batch Size

Histone Markers
H3 8e-4 128 4e-4 64
H3K14AC 6e-4 128 4e-4 64
H3K36ME3 6e-4 64 4e-4 64
H3K4ME1 8e-4 128 1e-3 128
H3K4ME2 6e-4 64 2e-3 512
H3K4ME3 8e-4 128 1e-3 512
H3K79ME3 1e-3 128 4e-4 64
H3K9AC 4e-4 64 1e-3 128
H4 8e-4 64 6e-4 64
H4AC 4e-4 64 1e-3 128

Regulatory Annotation
Enhancers 2e-3 512 2e-3 512
Enhancers Types 2e-3 512 2e-3 512
Promoter All 4e-4 64 1e-3 128
Promoter No TATA 1e-3 128 1e-3 128
Promoter TATA 3e-3 128 1e-3 128

Splice Site Annotation
Splice Sites All 8e-4 64 2e-3 128
Splice Sites Acceptor 2e-3 128 2e-3 128
Splice Sites Donors 3e-3 128 2e-3 128

27



D Prot-xLSTM: Details and Additional Results

In this section, we provide further details regarding the architecture, training setup, and evaluation
metrics for the Prot-xLSTM models. Additionally, we present supplementary results that complement
the main findings discussed in Section 4.2.

To evaluate the performance of our Prot-xLSTM models, we adopted the experimental protocols
outlined in Sgarbossa et al. (2024). We conducted three key experiments to assess the models’
capabilities: a) protein language modeling (Section D.1), b) homology-conditioned protein design
(Section D.2), and c) protein variant fitness prediction (Section D.3).

D.1 Homology-Aware Training

For protein sequences, we followed the experimental protocols from Sgarbossa et al. (2024).

Data. The protein language model training data was derived from the filtered OpenProteinSet (Ahdritz
et al., 2023), comprising 270k UniClust30 MSA clusters that included a total of 508M sequences and
110B residues. We used the ProtMamba pipeline to construct the training data, which is illustrated
in Fig. 1 of Sgarbossa et al. (2024), and involved two key steps: (i) creating homology-aware but
alignment-free training inputs by concatenating unaligned homologous sequences, and (ii) masking
patches of tokens in each sequence and concatenating the unmasked patches at the end of each
sequence to train the model autoregressively with the FIM strategy. We also use the train, validation
(192 clusters), and test (500 clusters) split provided by ProtMamba.

Methods and hyperparameters. We trained two versions of the model: Prot-xLSTM-26M and
Prot-xLSTM-102M. The larger model was designed to match the architecture and size of the original
ProtMamba model (ProtMamba-107M), and we optimized the xLSTM architecture on the smaller
model. For comparison, we also trained a smaller ProtMamba model (ProtMamba-28M with a reduced
embedding dimension of 512) and implemented an LLama-based model (Prot-Transformer++-26M)
(Touvron et al., 2023). The composition of the Prot-xLSTM and Prot-Transformer++ models are
reported in Tables A6 and A7, respectively.

Table A6: Hyperparameter space considered for the Prot-xLSTM at different sizes. The
selected values are marked in bold.

Hyperparameter Prot-xLSTM-26M Prot-xLSTM-102M

Embedding dimension 512 1024
Context lengtha 211,217 211-17

Number of blocks 16 16
m/sLSTM ratio [0:1], [1:0], [1:7]b [1:0]
Conv 1D kernel size 4 4
QKV projection blocksize 4 4
Number of heads 4 4
Up projection dimension 1024 2048
Norm bias and linear bias False False
Position embeddings AbPE, AbPE2D, RoPE, RoPE2D RoPE
a Context length was increased during training.
b sLSTM blocks at position 1 and 15.

Training details. We trained our models using the ProtMamba pipeline with CLM with the FIM
strategy. The pipeline efficiently handles long, concatenated sequences by extending the context
length up to T = 217, supported by a context-length scheduling strategy. For the Prot-xLSTM-102M
model, we adhered to the ProtMamba protocol, gradually increasing the context length from 211 to
217, doubling T at each stage when the loss plateaued. In contrast, for the smaller models (Prot-
xLSTM-26M and ProtMamba-28M), as recommended in previous work (Devlin et al., 2019; Press
et al., 2021), we initially trained with T = 211 for 20B tokens, then switched to T = 217 for an
additional 10B tokens. Due to the quadratic scaling of Transformer architectures, Prot-Transformer++-
26M was only trained with T = 211, as it could not handle the computational demands of T = 217.
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Table A7: Hyperparameters of Prot-Transformer++ model
Hyperparameter Prot-Transformer++-26M

Embedding Dimension 512
Context Length 211

Number of Blocks 6
Up Projection Dimension 2176
Norm Bias and Linear Bias False
Position Embeddings RoPE

Table A8: Hyperparameters for training protein sequence models.

Effective batch sizea,b 64-1
Optimizer AdamW β = (0.9, 0.95)
Learning rateb,c 6e-4
Learning rate scheduler constant
Learning rate warmup steps 500
Weight decay 0.1
Dropout 0
a Decreased with context size to maintain a fixed total number of tokens per batch.
For the larger model, the rule was relaxed for T = 216 and 217 to enable multi-
GPU training, with the batch size set to the number of GPUs.
b Prot-Transformer++ was trained on 6 GPUs with an effective batch size of 96
and a learning rate of 9e-4.
c Due to unstable training of the larger model at T = 217 and 218 the learning rate
was reduced to 1e-4.

Given the substantial computational resources required, we did not fine-tune the training parameters.
Instead, we used the default settings established by ProtMamba, which are reported in Table A8.

Metrics. During training, we evaluated the next-token prediction capabilities of the models using
negative log-likelihood and token perplexity. The perplexity was calculated for different segments of
the concatenated-FIM sequence: the first sequence (first_seq), the second sequence (second_seq),
and the last protein sequence (last_seq). We also evaluated performance specifically on the FIM
tokens (fim) and the entire concatenated sequence. Once the models were trained we evaluated their
performance on the independent test set with T = 217.

D.2 ICL: Homology-Conditioned Protein Generation

Experimental setup. To evaluate the capacity of Prot-xLSTM to autoregressively generate novel
protein sequences given a context of known homologs, we follow the protocol outlined in Section
3.4 of Sgarbossa et al. (2024). For a subset of 19 homology clusters from the test set, we generate
sequences with contexts consisting of 10, 100, 500, 1000 and N (total number of sequences in the
cluster) sequences. For each context length, we generate 100 sequences each with the following
parameter combinations of generation temperature (τ ), top-k, which restricts the output selection
to the k most probable tokens, and top-p, which limits the output to tokens reaching a cumulative
probability p: (τ, top-k, top-p) ∈ {(0.8, 10, 0.9), (0.9, 10, 0.95), (1, 10, 0.95), (1, 10, 1), (1, 15, 1)}
(Ferruz et al., 2022). This results in a total of 2,500 sequences per cluster.

Methods compared and hyperparameter selection. We compare both Prot-xLSTM models to
ProtMamba models with a similar number of parameters. Note that the large Prot-xLSTM model was
evaluated after training for ∼45B tokens with context length up to 216.

Metrics. We evaluate the novelty of generated sequences by calculating the Hamming distance to the
closest natural sequence in the cluster using pairwise Smith-Waterman alignment. Additionally, we
measure sequence similarity to homologs with the HMMER score from a Hidden Markov Model
(HMM) trained on the cluster’s MSA. The generated sequences are also folded using ESMFold (Lin
et al., 2023) and assessed by pTM and average pLDDT confidence scores. To compare these scores
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with natural sequences, we compute Kolmogorov-Smirnov test statistics between the scores of 100
natural sequences and the 100 generated sequences with the lowest perplexity.

Results. Figure A4 displays the distribution of scores for 100 randomly sampled natural sequences
from each cluster as well as the 100 sequences with the lowest perplexity generated by Prot-xLSTM
and ProtMamba models for 10 randomly selected clusters. Table A9 shows the average across all 19
evaluated test clusters. Sequences generated by Prot-xLSTM-102M were on average longer, more
similar to other proteins in the cluster (measured by Hamming distance), and got a higher HMMER
score and higher folding confidence scores compared to ProtMamba-generated sequences. Notably,
these observations mostly also hold when compared to natural sequences.

Table A9: Score comparison of natural and generated proteins. Average scores (sequence length,
Hamming distance to the closest natural neighbor, HMMER score, pLDDT and pTM) across
19 test clusters for sequences generated with Prot-xLSTM and ProtMamba models. Error bars
indicate 95% confidence intervals across clusters.

Natural Seqences Prot-xLSTM ProtMamba Prot-xLSTMa ProtMamba
-26M -28M -102M -107M

Sequence length 211±28 290±36 326±43 286±38 276±40

Min. Hamming ↓ 0.51±0.04 0.55±0.05 0.64±0.04 0.44±0.07 0.56±0.03

HMMER ↑ 96±25 182±56 122±50 165±45 163±45

pLDDT ↑ 0.81±0.03 0.79±0.04 0.67±0.07 0.80±0.03 0.80±0.03

pTM ↑ 0.77±0.06 0.74±0.06 0.54±0.10 0.75±0.06 0.74±0.06

a Trained for ∼45B tokens with context length up to 216.

Table A10 demonstrates that Hamming distance, HMMER score, pTM and pLDDT correlate well
with sequence perplexity for both, Prot-xLSTM and ProtMamba, with an average Pearson correlation
coefficient of 0.57 for both large models.

Table A10: Score distribution comparison of natural and generated proteins. Average Pearson correlation
between model perplexity and sequence scores (sequence length, Hamming distance to the closest
natural neighbor, HMMER score, pLDDT and pTM) for sequences generated with Prot-xLSTM and
ProtMamba models. Error bars indicate 95% confidence intervals across 19 test clusters.

Prot-xLSTM-26M ProtMamba-28M Prot-xLSTM-102M a ProtMamba-107M

Pearson rppl/score (↑)
Min. Hamming 0.53±0.10 0.41±0.10 0.59±0.08 0.57±0.11

HMMER Score 0.59±0.06 0.54±0.07 0.54±0.07 0.57±0.09

pLDDT 0.66±0.05 0.53±0.07 0.60±0.08 0.62±0.08

pTM 0.59±0.06 0.44±0.08 0.55±0.07 0.57±0.07

a Trained for ∼45B tokens with context length up to 216.

D.3 Protein Variant Fitness Prediction

Experimental setup. We evaluate Prot-xLSTM’s ability to predict mutational effects by leveraging
its inpainting capabilities from the FIM training objective. This assessment follows the protocol
described in Section 3.2 of Sgarbossa et al. (2024) for the ProteinGym DMS substitution benchmark
(Notin et al., 2023), which consists of 217 datasets of single and multiple substitutions in protein
sequences, allowing comparison with state-of-the-art methods for protein variant fitness prediction.
Briefly, for each wild-type sequence, three sets of 200 homologs were obtained by subsampling
MSAs following the ColabFold protocol (Mirdita et al., 2022) to be used as context. The context
sequences are ordered from the least similar to the most similar one. The wild-type sequence is
then concatenated with the context, the mutated residue is masked, and this residue is predicted
using the FIM method. Fitness is evaluated as the difference in likelihood between the concatenated
sequence with the wild-type and the mutated amino acid and averaged over the triplicate. For multiple
mutations, fitness is approximated as the sum of the likelihoods of single mutations.

Methods compared and hyperparameter selection. We compare both Prot-xLSTM models to the
ProtMamba models, as well as to PoET (Truong Jr & Bepler, 2023), a transformer that introduced
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the concept of non-aligned homologous sequences for protein language modeling, and SaProt (Su
et al., 2024b), a transformer with a structure-aware vocabulary that currently leads the ProteinGym
leaderboard.

Metrics. ProteinGym’s main metric is the average Spearman correlation between the fitness predic-
tions and the experimental DMS results.

Results. Table A11 summarizes the results on the ProteinGym benchmark.

Table A11: ProteinGym zero-shot DMS substitution benchmark. The average Spearman correlation
(↑) between predicted fitness scores and experimental measures over 217 DMS assays is shown.
While even small Prot-xLSTM models already yield high scores, the large SaProt model, which uses
additional structure tokens, performs best.

Prot-xLSTM ProtMamba SaProt Prot-xLSTM ProtMamba PoET SaProt
-26M -28M -35M -102Ma -107M -201M -650M

0.411 0.360 0.406b 0.415 0.416 0.484c 0.457a,d

a Trained for 60B tokens.
b Values from proteingym.org.
c Value from Truong Jr & Bepler (2023), not verified by ProteinGym leaderboard.
d Leader of ProteinGym leaderboard on 27/09/2024.

31

https://proteingym.org/benchmarks


0

250

500

750

A0
A1

94
V4

24

Sequence Length

0.0

0.5

Min. Hamming

0

250

500

750
HMMER score

0.25

0.50

0.75

1.00
pTM

0.25

0.50

0.75

1.00
pLDDT

0

250

500

750

A0
A2

41
VG

M
5

0.0

0.5

0

250

500

750

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0

250

500

750

A0
A2

X4
BA

Y2

0.0

0.5

0

250

500

750

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0

250

500

750

A0
A1

C5
UJ

41

0.0

0.5

0

250

500

750

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0

250

500

750

D8
SD

16

0.0

0.5

0

250

500

750

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0

250

500

750

S7
UZ

45

0.0

0.5

0

250

500

750

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0

250

500

750

G4
ZH

78

0.0

0.5

0

250

500

750

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0

250

500

750

F2
CV

06

0.0

0.5

0

250

500

750

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0

250

500

750

A0
A1

C6
Q5

J2

0.0

0.5

0

250

500

750

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0

250

500

750

A0
A0

91
TD

H7

0.0

0.5

0

250

500

750

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

Models
Natural Sequences Prot-xLSTM-102M ProtMamba-107M

Figure A4: Scores of natural and generated proteins. Boxplots of score distributions (sequence
length, Hamming distance to the closest natural neighbor, HMMER score, pLDDT, and pTM) for 10
randomly selected clusters evaluated for 100 randomly chosen natural sequences and 100 generated
sequences with lowest perplexity values for large Prot-xLSTM and ProtMamba models.
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E Chem-xLSTM: Details and Additional Results

For chemical sequences, we perform two sets of experiments: a) unconditional molecule generation
where we follow the experimental protocol of Özçelik et al. (2024). Additionally, we propose a
new and more challenging task: b) conditional generation with ICL, in which we generate new
compounds conditional based on provided in-context compounds.

E.1 Unconditional Molecule Generation

Unconditional molecule generation is the task of generating valid small molecules without imposing
constraints on their characteristics or properties. Generative models aim to learn a general distribution
by processing many examples of desirable results. To this end, models are trained on large training
sets of arbitrary small molecules without particular conditions or constraints (Segler et al., 2018;
Gómez-Bombarelli et al., 2018; Özçelik et al., 2024). Following this approach, we compared the
ability of xLSTM and several other models to generate valid and diverse molecules.

Experimental setup. For comparability, we aligned our experiments with the setting and dataset
of Özçelik et al. (2024). This means that all models are trained to generate molecules as SMILES
strings (Weininger, 1988) using a CLM paradigm. The dataset used in (Özçelik et al., 2024) is derived
from ChEMBL with a random split in 1.9M training, 100k validation, and 23k test molecules, which
have been encoded as SMILES. Before training, all SMILES strings were tokenized using a regular
expression, containing all elements. This results in atoms being represented as one token as well as
additional SMILES symbols.

Methods and hyperparameters. We compared xLSTM with several other model classes. The
first baseline is the default LSTM (Hochreiter & Schmidhuber, 1997) in PyTorch, which includes
a forget gate (Gers et al., 1999). This can be considered the direct predecessor of the xLSTM
architecture. We also included a variant GPT-2 (Radford et al., 2019) model based on the Transformer
architecture (Vaswani et al., 2017) with causal masking. Finally, we included two SSMs in our
comparison. On one side, we considered an S4 model with the implementation from Gu et al. (2022),
following (Özçelik et al., 2024). On the other side, we incorporated a Mamba model, using the
official repository provided with (Gu & Dao, 2023). For our Chem-xLSTM, we used an xLSTM
using only mLSTM blocks (Beck et al., 2024). The 15M-parameter model consists of 9 layers with a
hidden dimension of 512 and 8 heads. We trained the model for up to 100 epochs with a batch size
of 1,024, a context length of 100, a dropout rate of 0.25, and a learning rate of 0.005. All models
were trained using the Adam optimizer (Kingma & Ba, 2015) using β = (0.9, 0.999), ϵ = 1e−8, and
a learning-rate schedule with warm-up and cosine decay. We selected the best model based on the
minimum validation loss observed at the end of each epoch. The hyperparameters were manually
tuned to match the model parameter count for a fair comparison.

Metrics. We evaluated each model with respect to the perplexity on the next token, and the FCD
(Preuer et al., 2018). The FCD has been introduced as an alternative to the FID, which is used to
evaluate image generation, for molecule generation. Additionally, we evaluate auxiliary metrics that
measure the syntactic correctness, novelty, diversity, or synthetic accessibility.

Results. Our proposed Chem-xLSTM model achieved the best results, with the lowest FCD (0.13)
and a perplexity (1.68) that is competitive with that of GPT-based models. This indicates that
Chem-XLSTM is able to generate realistic chemical structures that match the target distribution well.

All models in our comparison were able to produce valid, unique, and novel molecules. Even though
these models have not been optimized for these properties. This is evidenced by the auxiliary metrics
surpassing practical thresholds (see Table A13).

E.2 Conditional Molecule Generation with In-Context Learning

Conditional molecule generation with in-context learning (ICL) leverages contextual information to
guide the design of novel molecules tailored for specific domains. By incorporating a sequence of
molecules as the input, models can conditionally generate new compounds of the same distribution,
without the need for fine-tuning.

Experimental setup. Similar to the unconditional setup, the input consists of SMILES strings. In
the conditional setup, we additionally model sets of molecules from the same molecular domain as a
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Table A12: Hyperparameter space considered for the Chem-xLSTM at different
sizes. The selected values are marked in bold.

Hyperparameter Chem-xLSTM-15Mn Chem-xLSTM-15M-icl

Number of layers 9 9
Number of heads 8 8
Embedding dimension 512 512
Hidden dimension 512 512
Batch size 16, 32, 64, 128 16, 32
Proj. factor 1.3 1.3
Learning rate 1e-4, 2e-4, 3e-4, 5e-4 16, 1e-4, 2e-4, 3e-4, 5e-4
Optimizer Adam, AdamW Adam

sequence. Molecules from one molecular domain are serialized and concatenated, separated with
the "." token. During training, the order of the molecules is permuted to improve generalization and
robustness. We construct a novel dataset derived from a variety of molecular domains:

• We consider natural-products as domain and utilize the Coconut (Nainala et al., 2024)
as source dataset.

• Kinase inhibitors, withdrawn, malaria, tool compounds, pathogen, NIH
mechanistic, lopac, natural product-based probes and drugs, zinc tool,
axon medchem, adooq bioactive, novartis chemogenetic, drug matrix,
PROTACs, covalentIn db, DrugBank compounds, reframe, cayman bioactive all
from the Probes & Drugs portal (Skuta et al., 2017),

• product molecules from the reaction dataset USPTO-50k (Lowe, 2012) split into 10
reaction classes.

• The domains bio, diversity, green, yellow, orange, and red, from ZINClick (Levré
et al., 2018).

• Active molecules from the domains BACE, BBBP, Clintox, HIV, SIDER, Tox21, Tox21-10k,
and Toxcast from MoleculeNet (Wu et al., 2018).

• Active molecules from 95 bioassays from FS-MOL (Stanley et al., 2021) considered each as
separate domain.

• Active molecules from 109 bioassays from PubChem (Kim et al., 2023) considered each as
separate domain.

• A subset of active molecules from the BELKA challenge (Quigley et al., 2024) is modeled
as a domain.

For the domains that are defined by the active molecules from a particular bioassay, we selected
assays with at least 300 active molecules and only use the active compounds. For the dataset each of
the total 249 domains is limited to 100,000 compounds, where compounds are selected at random.
The final dataset is split at 8:1:1 into train-, validation- and test-domains, sorted by their character
length in descending order.

Methods and hyperparameters. We benchmark and orient our choices for the model classes as well
as hyperparameters based on the unconditional molecule generation results, We consider a context
length of 4,096 and adjust batch sizes as well as accumulation steps to accommodate GPU memory
constraints. For the S4 model, we were only able to fit a context length of 2,048.

Metrics. To evaluate conditional molecule generation we evaluate NTP loss. This metric quantifies
how well the model predicts the next token in a sequence, thus assessing whether a model is able to
generate molecules from an unseen, and potentially very special, molecular domain given only a few
molecules from that domain.

E.3 Architecture and Hyperparameter Selection

Considered and selected hyperparameters for Chem-xLSTM are given in A12.
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Table A13: Diversity and correctness metrics for the 15M parameter models for small molecules
(SMILES). The table reports the percentage of valid, unique, and novel molecules, the synthetic
accessibility (SA), and the diversity metric by the percentage of unique Murcko scaffolds divided by
the total number of generated molecules.

Model valid % unique % novel % SA ↓ diverse %

SMILES-LSTM (Segler et al., 2018) 90.11±10.7 56.72±3.4 56.66±3.6 2.85±0.0 44.71±1.1

SMILES-GPT (Adilov, 2021) 99.05±0.5 62.09±12.1 61.81±12.0 2.90±0.0 48.82±9.7

SMILES-S4 (Özçelik et al., 2024) 97.48±0.0 61.47±0.0 61.34±0.0 2.86±0.0 48.49±0.0

Chem-Mambaa 91.41±8.9 57.75±3.2 57.63±3.8 2.84±0.0 45.65±7.2

Chem-xLSTM (ours) 97.08±0.7 61.09±8.9 60.84±9.6 2.83±0.0 45.97±5.5

a adapted to SMILES in this work

E.4 Implementation Details

Unlike Özçelik et al. (2024), we do not backpropagate the loss for [PAD] tokens, nor do we interpret
them for decoding. We observed that not ignoring [EOS] and [PAD] token leads to more diversity
but is not the standard way of decoding in e.g. NLP. Padding tokens are not typically generated
during decoding. They are primarily a pre-processing step to handle batches of data efficiently. In
our implementation, we end decoding the SMILES string with the [EOS] token. Further, we do not
use SMILES augmentation, which could further improve the performance of all architectures.

E.5 Additional Results

Practical thresholds are defined based on several key metrics. First, a high percentage of generated
SMILES strings must correspond to chemically valid molecules, with a threshold typically set above
90% to ensure reliability. Additionally, a practical threshold for uniqueness might require that over
80% of the generated molecules are unique, ensuring diversity in the explored chemical space. For
novelty, at least 50-70% of the generated molecules should be novel compared to known chemical
databases, indicating the model’s ability to explore new regions of chemical space. Finally, all models
exhibit favorable synthetic accessibility (SA) scores, typically ranging between 2.5 and 5, ensuring
that the generated molecules are feasible for synthesis. Further metrics and details are provided in the
appendix.
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F Limitations

While Bio-xLSTM shows strong performance across DNA, protein, and chemical sequence modeling,
it has several limitations. The manual hyperparameter selection, which was due to limited compu-
tational resources, may prevent optimal model configurations. We will explore the hyperparameter
spaces in the future, which might yield even better models. For DNA, the reliance on character-level
tokenization might also restrict the performance and scaling to larger context sizes. The models
DNA-xLSTM, Prot-xLSTM, and Chem-xLSTM are currently constrained by the training dataset
and their generalizability across organisms and chemical domains needs further exploration. Across
all three domains, the datasets used for training contain biases – whether it’s population biases in
the genomic data, sequence distribution biases in protein datasets, or chemical exploration biases in
molecular datasets. These biases could influence the model’s predictions and limit its generalizability
in real-world applications. In line with many works, we consider the perplexity metric, for example,
next token perplexity, or the related cross-entropy losses as a proxy for performance on downstream
tasks. However, this metric might not capture the capacities of biological and chemical language
models appropriately. Future work could address these limitations by expanding the training datasets
and exploring more efficient architectures tailored to the specific challenges of each domain.

G Conclusions

In this work, we introduced the Bio-xLSTM architecture and demonstrated its effectiveness across
three key domains: DNA, protein, and small molecule modeling. In DNA sequence modeling, Bio-
xLSTM showed strong performance in both masked and causal language modeling tasks. For protein
sequences, Bio-xLSTM clearly outperformed the state-of-the-art Mamba model in benchmarks and
large-scale settings, establishing itself as the leading approach for generating homologous proteins.
In the domain of small molecule generation, Bio-xLSTM achieved the best Fréchet ChemNet
Distance (FCD) in unconditional molecule generation and demonstrated some capacity for in-context
learning, showcasing its potential for future developments in conditional molecular design. Overall,
Bio-xLSTM offers a versatile and competitive approach to sequence modeling across biological
domains. In this work, we brought some clarity to both a) how to tailor xLSTM for biological and
chemical sequences and b) how xLSTM-based models compare against other domain-specific LLMs,
demonstrating their strong performance across DNA, protein, and chemical sequence tasks.
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