
Dynamic Vocabulary Pruning in Early-Exit LLMs

Jort Vincenti1,∗ Karim Abdel Sadek1,3,∗ Joan Velja1,∗ Matteo Nulli1,∗
Metod Jazbec1,2

1University of Amsterdam 2UvA-Bosch Delta Lab 3Krueger AI Safety Lab (KASL)

Abstract

Increasing the size of large language models (LLMs) has been shown to lead to
better performance. However, this comes at the cost of slower and more expensive
inference. Early-exiting is a promising approach for improving the efficiency of
LLM inference by enabling next token prediction at intermediate layers. Yet, the
large vocabulary size in modern LLMs makes the confidence estimation required
for exit decisions computationally expensive, diminishing the efficiency gains.
To address this, we propose dynamically pruning the vocabulary at test time for
each token. Specifically, the vocabulary is pruned at one of the initial layers, and
the smaller vocabulary is then used throughout the rest of the forward pass. Our
experiments demonstrate that such post-hoc dynamic vocabulary pruning improves
the efficiency of confidence estimation in early-exit LLMs while maintaining
competitive performance.

1 Introduction

Large language models (LLMs) are increasingly being adopted due to their impressive performance
and their few-shot ability to adapt to new tasks [3]. However, their growing size results in slow and
costly inference. This is particularly limiting in environments with constrained resources or low-
latency requirements (e.g., on-device). The push for more efficient LLM implementations is further
motivated by growing concerns over their carbon footprint [10]. As a result, making LLMs more
efficient at test time has recently received a lot of attention [2, 21, 20, 9]. One promising paradigm
for more efficient inference is early-exiting [16]. In this case, the forward pass is accelerated by
enabling the model to yield a prediction (token) at intermediate layers, rather than passing through all
the layers as is traditionally done.

A key component of early-exit models is the confidence score, computed at every candidate exit,
which determines whether the current prediction is of sufficient quality to terminate the forward pass
and return the prediction. While various confidence measures have been proposed, most are derived
from the predictive distribution at the given exit (e.g., maximum softmax probability). However,
this poses a problem when applying early-exiting to LLMs [4, 14, 1, 17], where obtaining the
predictive distribution requires mapping the current hidden representation to the vector of logits over
all possible tokens. Given the large vocabulary sizes used in modern LLMs (≈ 30-256K) [19, 15],
such confidence estimation introduces significant computational overhead. This is one of the main
reasons behind the previously observed paradox, where early-exiting in LLMs resulted in less efficient
inference compared to standard, non-accelerated models (both in terms of FLOPs [14] and latency
[1]), thereby defeating its original purpose.

In this work, we improve the efficiency of confidence estimation in early-exit LLMs. Specifically, we
propose to map the hidden representation of the model to the full vocabulary only at the first couple
of initial candidate exits, and use the resulting predictive distribution to identify the top K most
likely tokens. We then prune the weight matrix (which maps hidden representations to logits over

∗Equal contributions. Corresponding author: <m.jazbec@uva.nl>

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

tokens) based on the most likely tokens found and use the pruned weights at all subsequent candidate
exits (Figure 1). Our design is motivated by the empirical observation that the token predicted at
the final layer is among the top tokens already in the early layers of the forward pass (Figure 2). In
our experiments, we demonstrate that dynamic vocabulary pruning improves the FLOPs and time
efficiency of confidence estimation in early-exit LLMs while preserving competitive performance.
Importantly, our design is lightweight, as it is entirely post-hoc and requires no finetuning or the
introduction of new model parameters

2 Preliminaries

Let Y denote the vocabulary (or token) space, with size |Y| = dvocab. Further, for xi ∈ Y , let
(x1, . . . , xt) represent the input sequence, comprising both the tokens in the prompt and those
generated upon time t by the model.

Autoregressive Decoding in LLMs To predict the next token in the sequence, most modern
language models employ the transformer architecture [18]. In a transformer model, the input
sequence is passed through L layers, each consisting of a multi-head attention and a feed-forward
block, yielding a sequence of hidden representations {hℓ

t}Lℓ=1,h
ℓ
t ∈ Rdmodel . After processing through

all layers, the final next token distribution is obtained via

p
(
xt+1|hL

t

)
= softmax(WhL

t) .

W ∈ Rdvocab×dmodel is a weight matrix, also referred to as the unembedding matrix, that projects the
final hidden state hL

t back to the token space Y . The newly predicted token xt+1 is then added to the
input sequence, and the (autoregressive) generation process is repeated until termination.

Early-Exiting in LLMs Observe how decoding in LLMs, as introduced above, requires passing
through all L layers for every token in the generated sequence, resulting in a slow inference process.
To mitigate this, early-exiting (EE) mechanisms have been proposed [4, 14], allowing the model
to predict tokens at intermediate layers if sufficiently confident. Specifically, for each layer ℓ, a
confidence score cℓt ∈ [0, 1] and an exiting threshold λℓ

t ∈ [0, 1] are defined. The early prediction is
returned as soon as the confidence at the current layer exceeds the threshold:

xt+1 :=


argmax p

(
xt+1|h1

t

)
if c1t ≥ λ1

t ,

argmax p
(
xt+1|h2

t

)
if c2t ≥ λ2

t ,
...

...
argmax p

(
xt+1|hL

t

)
otherwise.

(1)

Note that it is common to reuse the final weight matrix W at earlier exits [14, 5], i.e., p
(
xt+1|hℓ

t

)
=

softmax(Whℓ
t),∀ℓ = 1, . . . , L, which avoids instantiating a separate unembedding matrix at each

exit and prevents introducing a significant number of additional model parameters. Moreover, for
simplicity, it is common to assume a fixed and shared threshold λ across all exits and tokens [8].

3 Dynamic Vocabulary Pruning

Softmax Based Confidence Measures As introduced in Section 2, a confidence measure is
necessary to determine whether the model’s current prediction is of sufficient quality to terminate the
forward pass and return an early prediction. Most commonly, the so-called softmax based measures
are used, e.g. the maximum softmax probability cℓt = max p(xt+1|hℓ

t). However, this requires
computations involving the full unembedding matrix W at every exit, which is expensive due to the
large dmodel and dvocab used in modern LLMs.2 While this may be less concerning for latency—since
the execution of the next transformer block can proceed in parallel with the confidence estimation—it
still reduces the overall efficiency of the forward pass. For example, in CALM [14], the authors
report that their early-exit model with softmax confidence is approximately twice as expensive in

2Confidence measures based directly on the hidden states hℓ
t have also been explored, but they have been

shown to result in slower exiting compared to softmax-based scores [14].

2

Figure 1: Left: Illustration of our vocabulary pruning setup in Transformer models during inference.
The model evaluates the input question with an Early Exiting objective where the vocabulary is
reduced at a fixed layer p = 2 in the reference figure. At each layer ℓ, the model computes a
confidence estimation cℓt and compares it against a threshold λℓ

t . When the model achieves sufficient
confidence about the token to predict at layer ℓ+ 1, the token is returned. Right: Visualization of our
proposed pruning mechanism. At exit p, we first identify the top K most likely tokens, which are
used to subsample the rows of the unembedding matrix W. The resulting pruned matrix Wt is then
used for confidence estimation at all subsequent exits.

terms of FLOPs compared to a static model (i.e., without early exiting), despite requiring around
50% fewer layers per token on average (see Table 2 in [14]). This can make early-exiting impractical,
especially in scenarios where FLOPs are a critical constraint (e.g., on device).

Dynamic Vocabulary Pruning To reduce the overhead of confidence estimation in early-exit
LLMs, we investigate whether the full computation with W is indeed necessary at every candidate
exit. In particular, we study how quickly the token predicted after passing through all the layers
appears among the most likely tokens at earlier layers. As depicted in Figure 2 , we note that this
occurs quite early in the forward pass. For example, in the case of the CALM model [14] on the
SQuAD dataset, we observe that the token predicted at the last layer appears among the top 10
most likely tokens already at the 2nd layer in 95% of cases.3 This suggests that mapping to the full
vocabulary becomes redundant after a certain (early) layer.

We make use of this empirical observation in the design of our pruning solution. Specifically, we
propose to map the hidden states to the full vocabulary only up to and including exit p (e.g., p = 1 or
p = 2). Then, we use the logits vector lpt = Whp

t ∈ Rdvocab to identify the top K most likely tokens
and use those to prune the embedding matrix W (by selecting the rows associated with the indices of
the most likely tokens, see Figure 1). We denote the pruned matrix as Wt ∈ RK×dmodel and use it to
compute the confidence at all subsequent layers. The index t in Wt highlights the dynamic nature
of our pruning, i.e., it is performed independently for each token in the generated sequence. Since
K ≪ dvocab, the cost of confidence estimation is significantly reduced.

To determine the optimal pruning hyperparameters (p and K), we suggest using a small calibration
dataset and finding the smallest values for which the performance drop remains negligible. We leave
the incorporation of more principled selection mechanisms [8] for future work.

3We find that early-exit finetuning (see Eq. (6) in [14]) is important for ensuring faster token convergence.
See Appendix B for more details.

3

4 Experiments

Figure 2: Rank (log-scale) of the final predicted
token across model exits/layers on SQuAD [13]
and SamSum [6] using the early-exit version of
the T5-large model [1]. We observe a clear trend
of very early layers showing a low average rank
for the final predicted tokens, which motivates our
dynamic vocabulary pruning approach.

We closely follow the experimental setup of
Schuster et al. [14]. Specifically, we use the
T5-large model [12] and consider the tasks
of question answering (SQuAD [13]) and text
summarization (SamSum [6]). As a baseline,
we use the CALM model [14] with (full) soft-
max confidence estimation. Our code is publicly
available4 and we provide further implementa-
tion details in Appendix A.

The results are presented in Table 1. First, we ob-
serve that for both tasks, our proposed Dynamic
Vocabulary Pruning (DVP) either matches the
baseline or incurs only a negligible performance
drop. Under the same conditions, it outperforms
the softmax implementation in CALM [14], in
terms of FLOPs and time required for exit de-
cisions. For instance, on the SQuAD dataset,
using a conservative exit threshold (λ = 0.99),
our DVP achieves the same F1 score (90.6)
while requiring ∼ 7x fewer FLOPs than the
full softmax baseline. Importantly, unlike other
FLOP-efficient confidence measures (e.g., hid-
den state saturation from [14]), our DVP does
not require evaluating additional blocks/layers,
as evidenced by the similar average exit block
indices compared to the baseline. This observa-
tion confirms that the pruned vocabulary terms
are indeed the ones not usually predicted by the
model. Moreover, while not the primary focus of our work, it is encouraging that DVP also results
in reduced latency (i.e., shorter time required to compute exit confidence). Overall, these results
suggest that our dynamic vocabulary pruning method effectively addresses the high cost of confidence
estimation in early-exit LLMs with little to no impact on overall performance.

Dataset Conf. λ Method Score (↑) FLOPs/Token (↓) Avg. Exit (↓) Conf. Time (s) (↓)

SQuAD [13]
0.6

CALM 87.5 2.21 × 108 2.4 44.5
+ DVP (ours) 87.4 1.97 × 108 2.4 40.8

≈ 0.99
CALM 90.6 13.91 × 108 20.9 499.9

+ DVP (ours) 90.6 1.99 × 108 20.8 413.1

SamSum [6]
0.6

CALM 33.8 4.21 × 108 5.5 90.0
+ DVP (ours) 33.7 2.01 × 108 5.4 81.0

≈ 0.99
CALM 43.1 11.13 × 108 16.5 162.0

+ DVP (ours) 43.1 2.12 × 108 16.4 136.0

Table 1: Summary of efficiency gains for our dynamic vocabulary pruning (DVP) compared to CALM
[14] for two different exiting thresholds λ (0.6 and ≈ 0.99). To measure the performance quality, we
report F1 score for SQuAD [13] and Rouge-L metric for SamSum [6]. Additionally, we outline the
amount of FLOPs per generated token and average early-exit layer across generated tokens (note that
the full T5-large model has 24 layers). We also report the total time spent on confidence estimation
for the entire test set.

5 Conclusion & Future Work

Our work tackles the high cost of confidence estimation in early-exit LLMs, which arises from large
vocabulary sizes. By dynamically pruning the vocabulary for every generated token, we demonstrate

4https://github.com/MatteoNulli/Vocabulary_pruning/tree/main

4

https://github.com/MatteoNulli/Vocabulary_pruning/tree/main

that efficient confidence computation is achievable without compromising performance. Our proposed
vocabulary pruning is completely post-hoc, making it nicely compatible with existing pretrained
early-exit LLMs. We hope our findings encourage a reconsideration of the trend towards sacrificing
model adaptivity (i.e., reducing the number of possible exits [1]) due to the growing computational
cost of exiting decisions. In future work, it would be valuable to validate our approach on other
early-exit LLMs [17] and explore more advanced pruning mechanisms (e.g., using product-of-experts
ensembles across exits [7]) beyond the simple top-K strategy used here. Future work could also
investigate the impact of dynamic vocabulary pruning on confidence calibration [11].

References
[1] S. Bae, J. Ko, H. Song, and S.-Y. Yun. Fast and robust early-exiting framework for autoregressive

language models with synchronized parallel decoding, 2023.

[2] G. Bai, Z. Chai, C. Ling, S. Wang, J. Lu, N. Zhang, T. Shi, Z. Yu, M. Zhu, Y. Zhang, et al.
Beyond efficiency: A systematic survey of resource-efficient large language models. arXiv
preprint arXiv:2401.00625, 2024.

[3] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child,
A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei.
Language models are few-shot learners, 2020.

[4] M. Elbayad, J. Gu, E. Grave, and M. Auli. Depth-adaptive transformer. arXiv preprint
arXiv:1910.10073, 2019.

[5] M. Elhoushi, A. Shrivastava, D. Liskovich, B. Hosmer, B. Wasti, L. Lai, A. Mahmoud, B. Acun,
S. Agarwal, A. Roman, et al. Layer skip: Enabling early exit inference and self-speculative
decoding. arXiv preprint arXiv:2404.16710, 2024.

[6] B. Gliwa, I. Mochol, M. Biesek, and A. Wawer. Samsum corpus: A human-annotated dialogue
dataset for abstractive summarization. arXiv preprint arXiv:1911.12237, 2019.

[7] M. Jazbec, J. Allingham, D. Zhang, and E. Nalisnick. Towards anytime classification in early-
exit architectures by enforcing conditional monotonicity. Advances in Neural Information
Processing Systems, 36, 2024.

[8] M. Jazbec, A. Timans, T. H. Veljković, K. Sakmann, D. Zhang, C. A. Naesseth, and E. Nalisnick.
Fast yet safe: Early-exiting with risk control. arXiv preprint arXiv:2405.20915, 2024.

[9] S. Kim, C. Hooper, T. Wattanawong, M. Kang, R. Yan, H. Genc, G. Dinh, Q. Huang, K. Keutzer,
M. W. Mahoney, et al. Full stack optimization of transformer inference: a survey. arXiv preprint
arXiv:2302.14017, 2023.

[10] L. Lannelongue, J. Grealey, and M. Inouye. Green algorithms: quantifying the carbon footprint
of computation. Advanced science, 8(12):2100707, 2021.

[11] L. Meronen, M. Trapp, A. Pilzer, L. Yang, and A. Solin. Fixing overconfidence in dynamic
neural networks. In Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pages 2680–2690, 2024.

[12] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J.
Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal
of Machine Learning Research, 21(140):1–67, 2020. URL http://jmlr.org/papers/v21/
20-074.html.

[13] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. Squad: 100,000+ questions for machine
comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

[14] T. Schuster, A. Fisch, J. Gupta, M. Dehghani, D. Bahri, V. Q. Tran, Y. Tay, and D. Metzler.
Confident adaptive language modeling, 2022.

5

http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html

[15] C. Tao, Q. Liu, L. Dou, N. Muennighoff, Z. Wan, P. Luo, M. Lin, and N. Wong. Scaling laws
with vocabulary: Larger models deserve larger vocabularies. arXiv preprint arXiv:2407.13623,
2024.

[16] S. Teerapittayanon, B. McDanel, and H.-T. Kung. Branchynet: Fast inference via early exiting
from deep neural networks. In 2016 23rd international conference on pattern recognition
(ICPR), pages 2464–2469. IEEE, 2016.

[17] N. Varshney, A. Chatterjee, M. Parmar, and C. Baral. Accelerating llm inference by enabling
intermediate layer decoding. arXiv preprint arXiv:2310.18581, 2023.

[18] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[19] P. Villalobos, A. Ho, J. Sevilla, T. Besiroglu, L. Heim, and M. Hobbhahn. Will we run out of
data? limits of llm scaling based on human-generated data, 2024.

[20] M. Xu, W. Yin, D. Cai, R. Yi, D. Xu, Q. Wang, B. Wu, Y. Zhao, C. Yang, S. Wang, et al. A survey
of resource-efficient llm and multimodal foundation models. arXiv preprint arXiv:2401.08092,
2024.

[21] Z. Zhou, X. Ning, K. Hong, T. Fu, J. Xu, S. Li, Y. Lou, L. Wang, Z. Yuan, X. Li, et al. A survey
on efficient inference for large language models. arXiv preprint arXiv:2404.14294, 2024.

6

Appendix

A Implementation Details

We ran our experiments on 1x Nvidia A100 80GB - SMX4 GPU. Our code is available at https:
//github.com/MatteoNulli/Vocabulary_pruning/tree/main.

We report all the relevant early-exiting hyperparameters for our experiments in Table 2. Our DVP
approach introduces p and K which represent the pruning exit index and the pruned vocabulary
size, respectively. The top-2 diff strategy indicates that the exit confidence cℓt is computed as the
difference between the probabilities of the top two tokens. The decaying threshold λt means that
the exit threshold decreases for later tokens in the generated response (see Eq. (5) in [14]).

SQuAD SamSum
CALM DVP CALM DVP

p - 2 - 2
K - 64 - 512
cℓt top-2 diff top-2 diff top-2 diff top-2 diff
λt static static decaying (τ = 4) decaying (τ = 4)

Table 2: Main early-exit hyperparameters used in our experiments.

B Additional Experiments

In Section 3, we reported that, for an early-exit LLM like CALM [14], the token predicted at the
final layer is often among the top-K predicted tokens quite early in the process. Here, we investigate
the effect of adapting the unembedding matrix W to intermediate representations hℓ

t through early-
exit finetuning (see Eq. (6) in [14]). The results, displayed in Figure 3, show that the T5 model
[12] without early-exit finetuning exhibits slower convergence compared to the T5 model that has
undergone early-exit finetuning (which corresponds to the CALM model). This finding is important
for our dynamic vocabulary pruning proposal, as faster convergence enables the selection of lower
values for pruning parameters (p and K), resulting in larger efficiency savings.

Figure 3: Rank (log-scale) of the final predicted token across model exits/layers on SQuAD [13] and
SamSum [6]. Left: Results based on CALM [14], the early-exit version of the T5-large model [1].
These are the same results as those shown in Figure 2, included here for easier comparison. Right:
Results based on the T5-large model [12], where the non-adapted original unembedding matrix is
used at intermediate layers to facilitate early-exiting.

7

https://github.com/MatteoNulli/Vocabulary_pruning/tree/main
https://github.com/MatteoNulli/Vocabulary_pruning/tree/main

	Introduction
	Preliminaries
	Dynamic Vocabulary Pruning
	Experiments
	Conclusion & Future Work
	Implementation Details
	Additional Experiments

