
FastDraft: How to Train Your Draft

Ofir Zafrir∗ Igor Margulis∗ Dorin Shteyman∗ Guy Boudoukh
Intel Labs

{ofir.zafrir, igor.margulis, dorin.shteyman, guy.boudoukh}@intel.com

Abstract

Speculative Decoding has gained popularity as an effective technique for accel-
erating the auto-regressive inference process of Large Language Models (LLMs).
However, Speculative Decoding entirely relies on the availability of efficient draft
models, which are often lacking for many existing language models due to a strin-
gent constraint of vocabulary incompatibility. In this work we introduce FastDraft,
a novel and efficient approach for pre-training and aligning a draft model to any
large language model by incorporating efficient pre-training, followed by fine-
tuning over synthetic datasets generated by the target model. We demonstrate
FastDraft by training two highly parameter efficient drafts for the popular Phi-3-
mini and Llama-3.1-8B models. Using FastDraft, we were able to produce a draft
with approximately 10 billion tokens on a single server with 8 accelerators in under
24 hours. Our results show that the draft model achieves impressive results in key
metrics of acceptance rate, block efficiency and up to 3x memory bound speed up
when evaluated on code completion and up to 2x in summarization, text completion
and instruction tasks. Due to its high quality, FastDraft unlocks large language
models inference on AI-PC and other edge-devices.

1 Introduction

The advent of Transformer architectures has fundamentally reshaped the field of natural language
processing (NLP). In recent years, Transformer-based models have achieved remarkable success
across a broad spectrum of natural language understanding and generation tasks [Achiam et al., 2023,
Team et al., 2023, Abdin et al., 2024]. Their exceptional performance, particularly in large language
models (LLMs), has made them highly desirable for deployment in numerous applications, ranging
from conversational systems to content generation and beyond. Despite their outstanding performance,
LLMs suffer from slow inference speeds due to substantial memory bandwidth requirements and the
sequential nature of auto-regressive generation (ARG). The introduction of Speculative Decoding
(SD) [Leviathan et al., 2023] offers a promising solution for accelerating ARG without sacrificing
generation quality, making it a compelling approach for improving LLM inference efficiency. SD
utilizes a draft language model (LM) to generate a sequence of tokens auto-regressively, while the
target model validates the batched tokens in parallel. In certain applications, SD can achieve a
2-3x speedup in LLM inference without compromising the generation quality of the target model.
Achieving significant speedup with SD requires a high-quality draft model that is both efficient
and well-aligned with the target. To date, such draft models remain scarce, even for widely used
open-source LLMs [Dubey et al., 2024, Abdin et al., 2024] due to vocabulary incompatibility. To
address this limitation, we propose FastDraft, a method for producing hardware-efficient draft models
that are orders of magnitude smaller than their corresponding target models.

While extensive research has focused on training and data generation for high-quality LLMs [Kaplan
et al., 2020, Longpre et al., 2023], these frameworks are not necessarily applicable to training draft
models for SD. LLMs are typically trained to generate helpful, high-quality responses, whereas

*Equal contribution

4th NeurIPS Efficient Natural Language and Speech Processing Workshop (ENLSP-IV 2024).

draft models should be trained to generate sequences that are likely to be accepted by the target
model. We explore previously unexamined aspects of draft model training for SD. Our contributions
include: (1) introducing a method for producing quality and highly efficient draft models with low
resource requirements for any given target LLM and demonstrate it by training and benchmarking a
draft for Phi-3-mini, (2) conducting extensive ablation studies on pre-training data size, pre-training
for both code and natural language and target-draft alignment via knowledge distillation (KD) and
(3) demonstrating the scalability of FastDraft by training a draft model for Llama-3.1-8B-Instruct,
achieving performance improvements comparable to those attained for Phi-3-mini. We demonstrate
significant improvements in key metrics using FastDraft, leading to theoretical speedups of up to
3x as measured by the Memory Bound Speedup (MBSU) metric. According to our findings, the
small size of the draft model and the limited amount of data required to produce a high-quality draft
enabled us to successfully train and align a draft model to Phi-3-mini, end-to-end, in under 24 hours
using a single node with 8 accelerators.

2 Related work

The widespread adoption of LLMs in cloud and edge devices has driven a significant body of research
focused on developing alternative strategies for ARG to address the slow performance of LLM
inference [Santilli et al., 2023, Ghazvininejad et al., 2019, Stern et al., 2018]. However, many of
these approaches compromise generation quality or require additional training data and architectural
modifications. The introduction of speculative decoding as a lossless solution for accelerating LLM
inference [Leviathan et al., 2023] has inspired a new wave of follow-up research. Some studies
propose using plug-in prediction heads as a drafting mechanism [Zhang et al., 2024, Cai et al., 2024],
while others focus on improving the serving latency of stand-alone draft models [Sun et al., 2024,
Chen et al., 2023, Miao et al., 2023]. In contrast, our work focuses on directly enhancing stand-alone
draft model’s capabilities through pre-training and fine-tuning. Other works apply KD to draft models
to improve alignment with the target model. These studies explore various divergence functions for the
KD algorithm, rather than relying solely on the commonly used Kullback–Leibler Divergence (KLD).
For instance, Zhou et al. [2023] proposed Total Variation Distance (TVD) based on Corollary 3.6 in
[Leviathan et al., 2023], which posits that minimizing TVD maximizes the token-level acceptance rate.
Goel et al. [2024] further developed this approach with TVD++, fine-tuning their model, pre-trained
on 600 billion tokens. Another study, Yan et al. [2024], focuses on enhancing the hardware efficiency
of draft models by extensively analyzing the trade-off between time latency and acceptance rates,
rather than relying solely on the latter. While their work emphasizes optimizing the draft architecture,
our approach fixes the architecture and introduces efficient approach for pre-training and aligning
a draft model. Li et al. [2024] proposes training a compact draft model based on the target model,
using a relatively limited dataset. The primary aim of the paper is to develop a draft architecture
that effectively utilizes the target model’s hidden representations and weights. In contrast, our paper
centers on training and aligning any draft architecture that shares only the vocabulary with the target
model.

3 Speculative decoding

SD is a lossless decoding paradigm introduced by Leviathan et al. [2023] for accelerating ARG
with LLMs. It is inspired by speculative execution [Hennessy and Patterson, 2017] and aims to
mitigate the inherent latency bottleneck caused by the sequential nature of ARG [Pope et al., 2023].
SD employs a draft LM to generate a block of γ candidate tokens. The LLM, referred to as the
target model, then processes these candidate tokens in parallel. The algorithm examines each token’s
probability distribution, calculated by both the target and draft models, to determine whether the
token should be accepted or rejected. As a result, any LM can function as a draft model, provided it
shares the same vocabulary as the target model. However, since an LM’s vocabulary is fixed during
pre-training, leveraging existing models as draft models is only feasible if they were pre-trained on
the same vocabulary. A key metric for benchmarking ARG inference performance is time per output
token (TPOT), which represents the expected latency for generating a single output token, excluding
pre-filling latency.1 In SD, TPOT is a function of the draft model latency lD, the speculation block

1 Pre-filling refers to the action of populating the key-value cache with the input tokens’ information.

2

size γ, the corresponding expected block efficiency τγ2 , and the target model latency lγT . The
equation is expressed as:

TPOTSD =
lD × γ + lγT

τγ
(1)

In comparison, for traditional ARG, TPOT is simply TPOTAR = l1T . The expected speedup is
calculated as follows:

TPOTAR

TPOTSD
=

(
lD
l1T

× γ +
lγT
l1T

)−1

× τγ (2)

From Equation 2, two key requirements emerge for SD to yield meaningful speedups. First, the
latency for generating the speculated tokens block must be negligible compared to the target model’s
latency. Second, the increase in target model latency for block size γ should be insignificant compared
to the latency for block size 1. The latter condition generally holds for most popular LLMs with
sufficiently small γ, while the former depends on the availability of draft models that meet the
vocabulary constraint.

4 FastDraft: Build your own draft model

4.1 Draft architecture & pre-training

The draft architecture imposes only one strict requirement, it must produce a probability distribution
over the target’s vocabulary. Beyond this, the design is flexible. Nevertheless, certain factors should
be considered when selecting the draft’s architecture, with latency being the primary concern, as
discussed in Section 3. Then, the chosen draft is trained over a pre-training dataset of natural language
for language modeling with the objective of predicting the next token. A common application of
LLMs is code completion. While the pre-training dataset may include some code, unless the dataset
is specifically focused on code, the draft’s performance on tasks requiring an understanding of code
is often suboptimal. To address this, Aryabumi et al. [2024] proposed continued pre-training (CP),
where training begins with a pre-trained model and is extended using a combination of code and
natural language data. FastDraft adopts this approach for producing drafts for code completion tasks.

4.2 Target-draft alignment

One of the primary objectives when designing a draft model is to maximize the acceptance rate with
the target model, as a higher acceptance rate directly leads to greater speedup in SD. To closely
mimic the target model’s behavior in real-world scenarios, we investigate two knowledge distillation
strategies that expose the draft model to data samples that closely reflect those generated by the target
model.

Strategy 1: sequence-level knowledge distillation Kim and Rush [2016] proposed performing
knowledge distillation (KD) by training the student model on sequences generated by the teacher
model. This approach is widely used in large language model (LLM) training to improve model
quality [Taori et al., 2023, Abdin et al., 2024]. To align the pre-trained draft model with the teacher
model, we employ sequence-level KD by fine-tuning the draft model on a synthetic dataset generated
by the target. In contrast to the sequence-level KD approach proposed by Kim and Rush [2016],
we differentiate between training on teacher-generated data and training with knowledge distillation
using the teacher’s logits. Accordingly, in this work, sequence-level KD refers specifically to training
on generated tokens with cross-entropy loss, without incorporating the teacher’s soft targets (logits).

Strategy 2: token-level knowledge distillation This strategy aligns with the traditional KD method
presented in [Hinton, 2015], which involves calculating the divergence of the token level probability
distribution over the vocabulary between the teacher and the draft. Since computing the KD loss
depends on the teacher’s logits, the teacher is required to perform inference at every training step of

2 The expected number of tokens accepted within a speculation block.

3

the draft, making this process both computationally intensive and time-consuming. An alternative
approach is to precompute the teacher’s logits beforehand and embed them into the dataset. However,
the memory demands of such a dataset can quickly exceed several terabytes, as the number of logits
per token equals the vocabulary size3 posing a substantial memory overhead. To mitigate this issue,
only a small subset of the most significant logits per token is extracted, significantly reducing the
memory requirements. This optimization results in a 6x-9x reduction in fine-tuning time without
noticeable degradation in model quality.

4.3 Draft evaluation

To scale both our experiments and evaluations, we created the FastDraft evaluation framework,
specifically designed for assessing draft models. The metrics and benchmarks we implemented in
FastDraft evaluation are detailed in Sections 4.3.1 and 4.3.2. Optimizing these key metrics on the
proposed benchmarks is our key objective in this work.

4.3.1 Metrics

Acceptance rate A key metric which reflects the rate at which the target model accepts the draft
model’s speculated tokens. In this work, we calculate the acceptance rate (AR) αγ by determining
the expected number of tokens accepted per block normalized by the block’s size. The formula is
expressed as:

αγ =
1

N

N∑
n=0

#(accepted tokens)

γ
(3)

where N is the number of blocks speculated by the draft model during evaluation, and γ is the block
size.

Block efficiency The common use of SD with fixed-size blocks motivates the introduction of a
more relevant efficiency metric: block efficiency, τγ . This is defined as the expected number of
accepted tokens per block. For a given block size γ, block efficiency τγ serves as a more accurate
measure of performance, reflecting the average rate at which tokens are accepted within each block.

τγ = 1 + αγ × γ (4)

Wall-clock time and Memory-Bound Speedup Given the block efficiency τγ , the expected
speedup achieved by applying Speculative Decoding (SD) is expressed as τγ

cγ+1 , where c represents
the ratio of latencies between the draft and target models (see Equation 2 or [Leviathan et al.,
2023]). Since this metric is hardware-dependent, it is preferable to use a hardware-agnostic measure.
Considering that the expected speedup occurs in a memory-bound regime, we utilize the Memory-
Bound Speedup (MBSU). We define ĉ as the ratio of parameter counts between the draft and target
models.

MBSU =
τγ

ĉγ + 1
(5)

4.3.2 Benchmarks

The most commonly used benchmarks for assessing the quality of draft models, typically open-ended
generation and summarization tasks, include the XSum [Narayan et al., 2018], CNN/DailyMail [Her-
mann et al., 2015], and HumanEval [Chen et al., 2021] datasets. In addition to CNN/DailyMail and
HumanEval, we include in our evaluation the TinyStories [Eldan et al., 2023] and Dolly [Conover
et al., 2023] datasets, providing a more comprehensive assessment of model performance across
diverse tasks. When utilizing the TinyStories dataset, we generate text by starting from a random
position within each sample, using the preceding tokens as the input context.

3 The vocabulary size usually exceeds 30,000 tokens

4

Table 1: Pre-training data size effect on acceptance rate and perplexity. Results for block size γ = 3
and multinomial sampling with temperature T = 0.6

Draft size Data size Perplexity CNN-DailyMail TinyStories Dolly

50M
2BT 297.4 0.323 0.264 0.241
5BT 256.6 0.311 0.277 0.245
10BT 240.9 0.312 0.283 0.234

120M
2BT 199.6 0.362 0.297 0.284
5BT 167.7 0.366 0.327 0.281
10BT 147.4 0.351 0.331 0.251

5 Experiments

In this section we report descriptions, setup and results of our experiments. In the following
experiments, we report acceptance rate (Section 4.3.1) results using two sampling methods, greedy
and multinomial sampling decoding with temperature T = 0.6 with block sizes γ = 3 and γ = 5
unless stated otherwise. The hyper-parameters used in our draft pre-training experiments are detailed
Appendix A.3 unless stated otherwise.

5.1 Experimental setup

We demonstrate FastDraft by training a draft model for Phi-3-mini-4k-Instruct Abdin et al. [2024]
target model. Phi-3-mini, a 3.8 billion parameters LLM, was selected as our case study due to its
outstanding performance across multiple open-source LLM benchmarks, while also being capable of
running locally on edge devices, such as personal computers and smartphones.

Draft architecture Exploring different architectures for draft models lies beyond the scope of this
paper. Therefore, our experiments focus on drafts with the Phi-3 architecture, modified to smaller
dimensions. Specifically, we reduced the dimensions of Phi-3 to create drafts in the size of 50M
and 120M parameters which are approximately 76x and 32x smaller than Phi-3-mini. Full details of
drafts configurations can be found in Table 5 in the Appendix.

Pre-training datasets For our natural language dataset, we use a 10 billion tokens (BT) sample
from the FineWeb dataset [Penedo et al., 2024]. FineWeb is a widely used open-source, de-duplicated,
and quality-filtered dataset, comprising 15 trillion tokens derived from 96 Common Crawl snapshots
[Crawl]. It has been demonstrated to yield better-performing LLMs compared to other open-source
pre-training datasets such as C4, RedPajama, and The Pile (Section 3.7 in Penedo et al. [2024]). For
our code dataset, we use a 10BT sample from The Stack v2 smol dataset [Lozhkov et al., 2024].
This variant of The Stack v2 consists of 17 commonly used programming languages, as well as a
substantial collection of documentation languages, configuration languages, and configuration files.
An overview of the 10BT dataset composition is provided in Appendix A.2.

Synthetic alignment dataset To perform sequence-level KD as discussed in Section 4.2, we
produce an instruction fine-tuning collection using the seed instructions from several open instruction
datasets: Alpaca [Taori et al., 2023], OIG-small-chip2 [Huu et al., 2023] and Evol-Instruct [Luo et al.,
2023]. We collect response sequences generated by Phi-3-mini with greedy sampling along with
multinomial sampling with temperature in {0.6, 0.8, 1.0} to improve the diversity of the generated
sequences. Additionally, we adopt the approach proposed by Xu et al. [2024], directly soliciting
instructions from the target model. These instructions are then used to generate the corresponding
responses in the same manner as previously described.

5.2 Pre-training dataset size

We study the impact of the pre-training dataset size on the performance of the draft model, aiming to
optimize runtime and resource usage and prevent dimishing returns. Consequently, we uniformly
sample subsets of sizes {0.1, 0.5, 1, 2, 5, 10}BT and pre-train the 50M and 120M draft configurations
on these subsets. We report the AR results for the {2, 5, 10}BT subsets with block size γ = 3 and

5

0

0.5

1

1.5

2

2.5

CNN-DailyMail TinyStories Dolly

M
BS

U 50M

120M

Figure 1: MBSU of 50M and 120M pre-trained drafts on 5BT FineWeb sample.

Figure 2: Block efficiency results for continued pre-training with code on tasks: CNN-DailyMail,
TinyStories, Dolly and HumanEval using greedy decoding with block size γ = 3

multinomial sampling in addition to perplexity results measured on Wikitext2 [Salesforce] in Table 1.
The full results are reported in Table 7 in the Appendix.

As anticipated, perplexity values decrease as the models are exposed to more training data, though
the rate of improvement slows down. However, when looking at the AR results, it is not the case.
In CNN-DailyMail and Dolly AR either plateaus or decreases as the data size grows. In the case
of TinyStories, AR increases with the amount of data which can be expected due to the nature of
the benchmark of text completion versus instruction following and summarization. Overall, we
obtain strong results across all dataset sizes, with the models trained on the 5BT dataset emerging
as a promising middle-ground option. When comparing the 50M draft to the 120M draft, the 120M
draft demonstrates superior performance in terms of AR. Additionally, while the 120M draft also
outperforms the 50M model in MBSU, the margin of improvement is relatively small, see Figure 1.
However, it is important to note that training the 120M draft requires twice the time compared to the
50M draft.

For the subsequent experiments, we selected the 50M draft model trained on 5BT tokens as our
pre-trained draft. Unless otherwise specified, references to a pre-trained draft in this section pertain
to this model.

5.3 Continued pre-training for code

We investigate the continued pre-training (CP) method introduced by [Aryabumi et al., 2024] to refine
our draft model on code-related tasks. In this approach, we extend the training of our pre-trained draft
model using three distinct combinations of code and natural language datasets. Each combination
incorporates 5BT of code data, along with varying amounts of natural language data: specifically,
0, 1, 2.5BT. We then evaluate the resulting models on our benchmarks, including the HumanEval
benchmark, and present the block efficiency results, τγ , in Figure 2. Our findings indicate that mixed
CP datasets lead to significantly higher block efficiency in natural language tasks compared to using
CP with code alone. Additionally, block efficiency improves across natural language benchmarks,
surpassing the performance of the base draft model that was trained solely on natural language, with

6

Table 2: AR results for fine-tuning with original data vs synthetic data

Sampling method Data source CNN-DailyMail TinyStories Dolly
γ = 3 γ = 5 γ = 3 γ = 5 γ = 3 γ = 5

Greedy
None 0.350 0.246 0.295 0.196 0.259 0.174
Original 0.357 0.251 0.282 0.189 0.328 0.228
Target 0.378 0.270 0.296 0.201 0.370 0.262

Multinomial sampling
None 0.311 0.221 0.227 0.184 0.245 0.163
Original 0.328 0.227 0.268 0.181 0.311 0.215
Target 0.339 0.242 0.286 0.193 0.352 0.234

Table 3: Knowledge distillation with KL-Divergence and TVD

Sampling method Loss CNN-DailyMail TinyStories Dolly
γ = 3 γ = 5 γ = 3 γ = 5 γ = 3 γ = 5

Greedy

LCE 0.378 0.270 0.296 0.201 0.370 0.262
0.5LCE + 0.5LKL 0.376 0.269 0.295 0.199 0.368 0.261
0.5LCE + 0.5LTV D 0.377 0.270 0.297 0.202 0.370 0.263
LKL 0.374 0.266 0.294 0.198 0.371 0.261
LTV D 0.384 0.274 0.301 0.204 0.362 0.254

Multinomial sampling

LCE 0.339 0.242 0.286 0.193 0.352 0.234
0.5LCE + 0.5LKL 0.350 0.248 0.289 0.190 0.346 0.235
0.5LCE + 0.5LTV D 0.356 0.243 0.297 0.194 0.347 0.244
LKL 0.355 0.235 0.280 0.188 0.343 0.237
LTV D 0.347 0.250 0.297 0.197 0.344 0.237

only a slight decline observed in the Dolly benchmark. Notably, the base draft shows a substantial
improvement on the HumanEval benchmark. The enhancement in the draft’s performance on natural
language tasks with CP was anticipated, based on the findings of [Aryabumi et al., 2024]. However,
unlike the conclusions presented in that study, which advocate for a balanced dataset of natural
language and code, our results suggest that CP is the preferred approach for integrating code and
natural language datasets when training a draft model.

Given the structured nature of code, it serves as a highly suitable domain for generation with SD.
To investigate how to optimize pre-training for code drafts, we conducted a comprehensive ablation
study. This study involved pre-training from scratch on a mixture of code and pre-training with CP
approach, where the base draft model was pre-trained on code, and CP was applied to adapt the
model for natural language instead of code. Detailed results and analysis of this ablation study are
provided in Appendix A.5. Overall, our findings indicate that initializing continued pre-training from
a text-based model using a mixed CP dataset offers the most effective pre-training strategy for draft
models, compared to other configurations tested.

5.4 Fine tuning with synthetic data vs original data

Since our objective is to achieve the best draft alignment with the target model rather than the best
answers, we investigate the impact of using the target’s responses instead of the original dataset
responses, as described in Section 4.2. We measure the draft’s performance across several tasks.
In this experiment, we utilize the OIG-small-chip dataset for fine-tuning.We generate the target’s
responses with multinomial sampling at temperature of 0.6. Token-level KD was applied in this
experiment. The results are presented in Table 2. An analysis of the data reveals that using the target’s
answers leads to better draft alignment compared to using the original dataset answers across all
tasks, with one exception. The draft’s quality decreases on the TinyStories task, which is expected,
as text completion quality commonly declines following instruction fine-tuning. Nevertheless, it is
noteworthy that the draft fine-tuned on the target’s answers maintained higher quality than the draft
fine-tuned on the original answers.

7

Table 4: AR results for FastDraft stages, performed in subsequent order: Pre-training (PT), Continued
Pre-training (CP) and Fine-tuning (FT) using multinomial sampling with temperature T = 0.6

Model Type CNN-DailyMail TinyStories Dolly HumanEval
γ = 3 γ = 5 γ = 3 γ = 5 γ = 3 γ = 5 γ = 3 γ = 5

Phi3-mini 50M
PT 0.311 0.221 0.277 0.184 0.245 0.163 0.229 0.151
PT → CP 0.304 0.211 0.287 0.192 0.226 0.149 0.561 0.450
PT → CP → FT 0.369 0.267 0.306 0.208 0.370 0.265 0.562 0.472

Llama3.1 150M
PT 0.280 0.186 0.227 0.147 0.247 0.158 0.248 0.168
PT → CP 0.280 0.192 0.235 0.155 0.273 0.176 0.606 0.480
PT → CP → FT 0.307 0.214 0.266 0.178 0.334 0.239 0.649 0.525

5.5 Fine tuning with knowledge distillation

To further enhance the alignment of our base draft model, we incorporate knowledge distillation
alongside training on target-generated data, as discussed in Section 4.2. We experimented with
various combinations of Cross Entropy (CE) loss, denoted as LCE , applied to the ground truth labels,
and knowledge distillation losses, using the sparse logits collected from the target model: LKL and
LTV D. We utilize the same dataset we generated in Section 5.4 for this experiment. The results
of these experiments are presented in Table 3. Our findings indicate that knowledge distillation
in this setup does not provide a significant advantage over CE loss on the target-generated data.
Although Total Variation Distance (TVD) has been shown to be negatively correlated with acceptance
rates, in our results, it offers only slight benefit on some benchmarks over CE and Kullback–Leibler
Divergence (KLD).

6 Results & reproducibility

Combining the findings from the ablation studies presented in section 5, we outline our comprehensive
pipeline for draft pre-training and fine-tuning to optimize performance on key metrics for speculative
decoding and demonstrate it by producing a draft for Phi-3-mini. To further illustrate reproducibility,
we employ the same pipeline to produce a draft for Llama-3.1-8B-Instruct Dubey et al. [2024]. We
exhibit a 50M draft for the Phi-3-mini and a 150M draft for Llama-3.1-8B. Drafts’ architecture
details are presented in Appendix A.1. Considering both performance and resource efficiency, our
findings from sections 5.2, 5.3 suggest pre-training over 5BT of FineWeb text data and continued
pre-training on a mixture of 5BT code data from The Stack v2 and 2.5BT FineWeb text data as a
best practice. For fine-tuning, we conclude from sections 5.4, 5.5 that sequence-level KD yields
significant improvements while token-level KD benefits are not definitive, therefore, for FastDraft
we only utilize sequence-level KD. We construct an alignment dataset for both Phi-3 and Llama-3.1
drafts by combining a number of synthetic datasets we generated with the appropriate target model
as described in Section 5.1. Table 4 presents the AR improvements achieved through each stage
of FastDraft generated with multinomial sampling. Results for greedy sampling are presented in
Table 14 in the appendix. Using both sampling methods, we observe for datasets CNN-DailyMail,
TinyStories, and Dolly, a substantial AR increase following fine tuning, with instruction-following
dataset Dolly exhibiting a ~10% AR increase. For HumanEval the primary performance gains stem
from pre-training on code domain knowledge during continued pre-training. These models achieve a
MBSU of ~2x for natural language tasks and ~3x for code completion tasks.

7 Conclusion & future work

In this paper, we introduced FastDraft, a novel approach for training and evaluating draft models for
speculative decoding. Our results demonstrate that FastDraft facilitates the rapid training of high-
quality, efficient draft models that are well-aligned with target models. We conducted a comprehensive
ablation study, addressing various aspects of draft training, including pre-training data composition
and draft-target alignment. Using our method, we successfully trained a highly efficient 50M-
parameter draft model for Phi-3-mini, achieving up to a 67% acceptance rate and up to a 3x memory-
bound speedup. We successfully demonstrated the scalability of FastDraft by training a draft for
Llama-3.1-8B-Instruct, showing its effectiveness for this model as well. We hope that the findings

8

of this work will inspire further research into efficient draft training, particularly focusing on the
development of resource-efficient draft architectures and hardware-aware designs.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,

Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical report:
A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219, 2024.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pages 19274–19286. PMLR, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Shayne Longpre, Gregory Yauney, Emily Reif, Katherine Lee, Adam Roberts, Barret Zoph, Denny
Zhou, Jason Wei, Kevin Robinson, David Mimno, et al. A pretrainer’s guide to training
data: Measuring the effects of data age, domain coverage, quality, & toxicity. arXiv preprint
arXiv:2305.13169, 2023.

Andrea Santilli, Silvio Severino, Emilian Postolache, Valentino Maiorca, Michele Mancusi, Riccardo
Marin, and Emanuele Rodolà. Accelerating transformer inference for translation via parallel
decoding. arXiv preprint arXiv:2305.10427, 2023.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-predict: Parallel
decoding of conditional masked language models. arXiv preprint arXiv:1904.09324, 2019.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep autore-
gressive models. Advances in Neural Information Processing Systems, 31, 2018.

Aonan Zhang, Chong Wang, Yi Wang, Xuanyu Zhang, and Yunfei Cheng. Recurrent drafter for fast
speculative decoding in large language models. arXiv preprint arXiv:2403.09919, 2024.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri Dao.
Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024.

Hanshi Sun, Zhuoming Chen, Xinyu Yang, Yuandong Tian, and Beidi Chen. Triforce: Lossless
acceleration of long sequence generation with hierarchical speculative decoding. arXiv preprint
arXiv:2404.11912, 2024.

Ziyi Chen, Xiaocong Yang, Jiacheng Lin, Chenkai Sun, Jie Huang, and Kevin Chen-Chuan Chang.
Cascade speculative drafting for even faster llm inference. arXiv preprint arXiv:2312.11462, 2023.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating generative
large language model serving with tree-based speculative inference and verification. arXiv preprint
arXiv:2305.09781, 2023.

9

Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat, Aditya Krishna Menon, Afshin Rostamizadeh,
Sanjiv Kumar, Jean-François Kagy, and Rishabh Agarwal. Distillspec: Improving speculative
decoding via knowledge distillation. arXiv preprint arXiv:2310.08461, 2023.

Raghavv Goel, Mukul Gagrani, Wonseok Jeon, Junyoung Park, Mingu Lee, and Christopher Lott.
Direct alignment of draft model for speculative decoding with chat-fine-tuned llms. arXiv preprint
arXiv:2403.00858, 2024.

Minghao Yan, Saurabh Agarwal, and Shivaram Venkataraman. Decoding speculative decoding. arXiv
preprint arXiv:2402.01528, 2024.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
rethinking feature uncertainty. arXiv preprint arXiv:2401.15077, 2024.

John L Hennessy and David A Patterson. Computer architecture: a quantitative approach. Morgan
kaufmann, 2017.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Jonathan
Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling transformer inference.
Proceedings of Machine Learning and Systems, 5, 2023.

Viraat Aryabumi, Yixuan Su, Raymond Ma, Adrien Morisot, Ivan Zhang, Acyr Locatelli, Marzieh
Fadaee, Ahmet Üstün, and Sara Hooker. To code, or not to code? exploring impact of code in
pre-training. arXiv preprint arXiv:2408.10914, 2024.

Yoon Kim and Alexander M Rush. Sequence-level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing, pages 1317–1327, 2016.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Geoffrey Hinton. Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531,
2015.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Xsum: A new dataset for abstractive sum-
marization of news articles. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 701–711, 2018. doi: 10.18653/v1/D18-1050. URL
https://aclanthology.org/D18-1050.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa
Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. In Advances in Neural
Information Processing Systems (NeurIPS), pages 1693–1701, 2015. URL https://arxiv.org/
abs/1506.03340.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Ronen Eldan, Elad Liebman, Colin Cherry, and Yinhan Liu. Tinystories: How small can language
models be and still speak coherent english? arXiv preprint arXiv:2305.07759, 2023. URL
https://arxiv.org/abs/2305.07759.

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, Jun Wan, Sam Shah, Ali Ghodsi, Patrick
Wendell, Matei Zaharia, and Reynold Xin. Free dolly: Introducing the world’s first truly
open instruction-tuned llm, 2023. URL https://www.databricks.com/blog/2023/04/12/
dolly-first-open-commercially-viable-instruction-tuned-llm.

Guilherme Penedo, Hynek Kydlíček, Anton Lozhkov, Margaret Mitchell, Colin Raffel, Leandro
Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data at
scale. arXiv preprint arXiv:2406.17557, 2024.

Common Crawl. Common crawl. https://commoncrawl.org/.

10

https://github.com/tatsu-lab/stanford_alpaca
https://aclanthology.org/D18-1050
https://arxiv.org/abs/1506.03340
https://arxiv.org/abs/1506.03340
https://arxiv.org/abs/2305.07759
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://commoncrawl.org/

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
next generation. arXiv preprint arXiv:2402.19173, 2024.

Nguyen Huu, Suri Sameer, Ken Tsui, Shahules786, Together.xyz team, and Christoph Schuhmann.
Oig-small-chip2. https://huggingface.co/datasets/0-hero/OIG-small-chip2, 2023.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. arXiv preprint arXiv:2306.08568, 2023.

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yuntian Deng, Radha Poovendran, Yejin Choi, and
Bill Yuchen Lin. Magpie: Alignment data synthesis from scratch by prompting aligned llms with
nothing. arXiv preprint arXiv:2406.08464, 2024.

Salesforce. Salesforce wikitext dataset. https://huggingface.co/datasets/Salesforce/
wikitext.

11

https://huggingface.co/datasets/0-hero/OIG-small-chip2
https://huggingface.co/datasets/Salesforce/wikitext
https://huggingface.co/datasets/Salesforce/wikitext

A Pre-training details and results

A.1 Draft model architecture

We work with drafts built on the architecture of "Phi-3-mini-4k-instruct" and "Llama-3.1-8B-Instruct".
We use float16 precision for model pre-training. Table 5 below provides a detailed view of the
structures of the drafts.

Table 5: Phi-3-mini and Llama-3.1-8B-Instruct drafts configurations

Draft name Phi3-mini 50M Phi3-mini 120M Llama3.1 150M

Hidden size 512 768 512
Intermediate size 1408 2048 1792
Layers 6 12 6
#Attention heads 8 12 8
Key-value heads 8 12 8
Vocabulary size 32064 32064 128256

A.2 Details of pre-training code dataset

In Table 6, we summarize the data composition of the code dataset we employ for pre-training.

A.3 Hyper-parameter configuration for datasets size in pre-training experiments

We train all draft variants, for both pre-training and continued pre-training (CP) in float16 precision
for 1 epoch with a batch size of 128. We use Adam with learning rate of 1 × 10−4, β1 = 0.9,
β2 = 0.999, L2 weight decay of 0.01, learning rate warmup over 5% of the total training steps, and
linear decay of the learning rate.

A.4 Pre-training model size ablation

We provide the full results of Table 1, pre-training on varying model sizes of 50 and 120 million
parameters in Table 7. For a detailed view of the drafts’ structure, see Table 5

A.5 Pre-training on code ablation

Pre-training on a mixed dataset Consistent with current best practices for pre-training large
language models Dubey et al. [2024], Abdin et al. [2024], we experiment with pre-training the draft
model on a mixture of code and natural language datasets with varying ratios of the domains. Similar
to Aryabumi et al. [2024], we evaluate a balanced mixture of 5 billion token code and 5 billion token
text datasets. Since our datasets are relatively small to begin with, emphasizing on text data can be
beneficial for general language understanding across tasks. Accordingly, we also experiment with
mixed datasets featuring 4 billion tokens of text and 6 billion tokens of code, as well as 7 billion
tokens of text and 3 billion tokens of code.

Our experimental results suggest the following conclusions:

Continued pre-training is better than pre-training on a mixed dataset: Continued pre-training
variants with CP mixed dataset of code and text were able to obtain 1-4% higher acceptance rate on
CNNT-DailyMail, Tinystories and Dolly datasets, over greedy and multinomial sampling methods
(see Table 9, 11) compared to CP datasets of only code or only text. These models have been
trained on 1-2.5 billion more tokens compared to pre-trained models on mixed data, but as section
5.2 suggests, the performance gain likely stems from the choice of pre-training strategy rather than
additional data. Surprisingly, mixed datasets with higher proportion of text yield better results on
HumanEval, a code evaluation dataset, with little to no improvement on natural language tasks 12,
13. This strengths our findings in section 5.2 that additional text data doesn’t contribute to our draft
performance beyond a certain point.

12

Table 6: Overview of the data composition of the 10BT sample of the-stack-v2-train-smol

Language Token count (B) Sample Count Avg. sample length (tokens)

Python 1.18 963923 1227
C 0.83 309496 2679
C# 0.78 783399 994
C++ 1.35 676943 1994
Go 0.18 140831 1285
Java 1.02 1003702 1015
JavaScript 1.27 1109269 1145
Kotlin 0.09 142275 601
Lua 0.1 32335 3212
PHP 1.07 731103 1462
R 0.13 79108 1704
Ruby 0.13 285785 469
Rust 0.07 36811 1926
SQL 0.26 70937 3633
Shell 0.11 175985 613
Swift 0.1 118558 877
TypeScript 0.26 386644 674
Documentation languages 0.96 807360 1194
Configuration languages 0.09 140370 652
Configuration files 0.02 43507 554
Total 10.0 8038341

Table 7: Pre-training data size effect on acceptance rate of natural language tasks. Results for block
size γ = 3 on both greedy and multinomial sampling temperature T = 0.6

Draft size Data size Perplexity CNN-DailyMail TinyStories Dolly
Greedy Multinomial Greedy Multinomial Greedy Multinomial

50M

0.1BT 1594.5 0.168 0.152 0.158 0.143 0.173 0.151
0.5BT 476.3 0.304 0.280 0.245 0.226 0.253 0.233
1BT 379.0 0.315 0.295 0.267 0.247 0.255 0.236
2BT 297.4 0.347 0.323 0.267 0.247 0.255 0.236
5BT 256.6 0.350 0.311 0.295 0.277 0.258 0.245
10BT 240.9 0.325 0.312 0.300 0.283 0.242 0.234

120M

0.1BT 1241.0 0.194 0.180 0.183 0.171 0.199 0.173
0.5BT 343.2 0.322 0.302 0.279 0.260 0.286 0.266
1BT 253.8 0.376 0.348 0.302 0.272 0.314 0.294
2BT 199.6 0.391 0.362 0.321 0.297 0.295 0.284
5BT 167.7 0.393 0.366 0.343 0.327 0.293 0.281
10BT 147.4 0.381 0.351 0.357 0.331 0.272 0.251

Text Base dataset is better than code Base dataset for continued pre-training Variants of
continued pre-training settings with Base dataset of Fineweb 5 billion token sample achieve higher
acceptance rate on HumanEval (Table 8) compared to their code Base dataset counterparts of
TheStack-v2 5 billion token sample. This is likely because these models acquire the majority of their
code domain knowledge during the initial pre-training stage, and the later introduction of text domain
knowledge can cause gradient shifts that are sub-optimal for code. While including portions of code
in the CP dataset helps mitigate this issue, the performance degrades significantly by up to 50% when
the CP dataset lacks code.

13

Table 8: Continued pre-training effect on acceptance rate of code using greedy decoding

Base dataset
CP mix dataset CP mix dataset HumanEval

code natural lang. γ = 3 γ = 5

Fineweb
5BT sample

5B - 0.688 0.578
5B 1B 0.678 0.560
5B 2.5B 0.672 0.561

The stack-v2
5BT sample

- 5B 0.320 0.238
1B 5B 0.628 0.519

2.5B 5B 0.667 0.553

Table 9: Continued pre-training effect on acceptance rate of natural language tasks using greedy
decoding

CP Base dataset
CP dataset CP dataset CNN-DailyMail Tinystories Dolly

code natural lang. γ = 3 γ = 5 γ = 3 γ = 5 γ = 3 γ = 5

Fineweb
5BT sample

5B - 0.314 0.216 0.249 0.164 0.210 0.139
5B 1B 0.343 0.241 0.297 0.200 0.245 0.163
5B 2.5B 0.349 0.244 0.304 0.204 0.244 0.163

The stack-v2
5BT sample

- 5B 0.340 0.238 0.276 0.182 0.220 0.144
1B 5B 0.339 0.239 0.283 0.190 0.222 0.148

2.5B 5B 0.344 0.243 0.285 0.191 0.227 0.151

B FastDraft additional results

Table 4 summerizes results of each stage of the FastDraft scheme using greedy sampling.

Table 10: Continued pre-training effect on acceptance rate of code using multinomial sampling with
temperature T = 0.6

Base dataset
CP mix dataset CP mix dataset HumanEval

code natural lang. γ = 3 γ = 5

Fineweb
5BT sample

5B - 0.578 0.462
5B 1B 0.560 0.451
5B 2.5B 0.561 0.450

The stack-v2
5BT sample

- 5B 0.238 0.161
1B 5B 0.519 0.400

2.5B 5B 0.553 0.416

14

Table 11: Continued pre-training effect on acceptance rate of natural language tasks using multinomial
sampling with temperature T = 0.6

CP Base dataset
CP mix dataset CP mix dataset CNN-DailyMail Tinystories Dolly

code natural lang. γ = 3 γ = 5 γ = 3 γ = 5 γ = 3 γ = 5

Fineweb
5BT sample

5B - 0.271 0.170 0.232 0.153 0.191 0.126
5B 1B 0.296 0.210 0.279 0.187 0.233 0.148
5B 2.5B 0.304 0.211 0.287 0.192 0.226 0.149

The stack-v2
5BT sample

- 5B 0.297 0.205 0.254 0.173 0.201 0.135
1B 5B 0.307 0.201 0.268 0.172 0.205 0.141

2.5B 5B 0.312 0.213 0.264 0.176 0.215 0.143

Table 12: Impact of pre-training on mixed datasets on acceptance rate of natural language and code
tasks. Evaluated across window sizes 3 and 5 using greedy decoding

Mix dataset Mix dataset CNN-DailyMail Tinystories Dolly HumanEval
natural lang. code γ = 3 γ = 5 γ = 3 γ = 5 γ = 3 γ = 5 γ = 3 γ = 5

5B 5B 0.354 0.249 0.284 0.189 0.205 0.136 0.639 0.532
6B 4B 0.355 0.248 0.284 0.190 0.220 0.144 0.656 0.551
7B 3B 0.354 0.248 0.285 0.191 0.216 0.144 0.657 0.550

Table 13: Impact of pre-training on mixed datasets on acceptance rate of natural language and code
tasks. Evaluated across window sizes 3 and 5 using multinomial sampling with temperature T = 0.6

Mix data Mix data CNN-DailyMail Tinystories Dolly HumanEval
natural lang. code γ = 3 γ = 5 γ = 3 γ = 5 γ = 3 γ = 5 γ = 3 γ = 5

5B 5B 0.311 0.206 0.265 0.175 0.194 0.124 0.506 0.389
6B 4B 0.317 0.218 0.261 0.178 0.201 0.137 0.530 0.411
7B 3B 0.326 0.211 0.258 0.176 0.205 0.137 0.533 0.424

Table 14: AR results for FastDraft stages, performed in subsequent order: Pre-training (PT), Contin-
ued Pre-training (CP) and Fine-tuning (FT) using greedy decoding

Model Type CNN-DailyMail TinyStories Dolly HumanEval
γ = 3 γ = 5 γ = 3 γ = 5 γ = 3 γ = 5 γ = 3 γ = 5

Phi3-mini 50M
PT 0.350 0.246 0.295 0.196 0.258 0.174 0.312 0.221
PT → CP 0.349 0.244 0.304 0.204 0.244 0.163 0.672 0.563
PT → CP → FT 0.399 0.289 0.321 0.217 0.390 0.279 0.663 0.553

Llama3.1 150M
PT 0.298 0.204 0.243 0.162 0.257 0.171 0.282 0.198
PT → CP 0.300 0.203 0.250 0.166 0.284 0.193 0.658 0.546
PT → CP → FT 0.327 0.228 0.271 0.181 0.350 0.247 0.700 0.593

15

	Introduction
	Related work
	Speculative decoding
	FastDraft: Build your own draft model
	Draft architecture & pre-training
	Target-draft alignment
	Draft evaluation
	Metrics
	Benchmarks

	Experiments
	Experimental setup
	Pre-training dataset size
	Continued pre-training for code
	Fine tuning with synthetic data vs original data
	Fine tuning with knowledge distillation

	Results & reproducibility
	Conclusion & future work
	Pre-training details and results
	Draft model architecture
	Details of pre-training code dataset
	Hyper-parameter configuration for datasets size in pre-training experiments
	Pre-training model size ablation
	Pre-training on code ablation

	FastDraft additional results

