
LORC: Low-Rank Compression for LLMs KV Cache
with a Progressive Compression Strategy

Rongzhi Zhang1, Kuang Wang1, Liyuan Liu2, Shuohang Wang2

Hao Cheng1, Chao Zhang1, Yelong Shen2

{rongzhi.zhang, kuanwang, chaozhang}@gatech.edu
{lucliu, shuowa, chehao, yeshe}@microsoft.com

1Georgia Tech, 2Microsoft

Abstract

The Key-Value (KV) cache is a crucial component in serving transformer-based
autoregressive large language models (LLMs), enabling faster inference by storing
previously computed KV vectors. However, its memory consumption scales lin-
early with sequence length and batch size, posing a significant bottleneck in LLM
deployment. Existing approaches to mitigate this issue include: (1) efficient atten-
tion variants integrated in upcycling stages, which requires extensive parameter
tuning thus unsuitable for pre-trained LLMs; (2) KV cache compression at test
time, primarily through token eviction policies, which often overlook inter-layer
dependencies and can be task-specific.
This paper introduces an orthogonal approach to KV cache compression. We
propose a low-rank approximation of KV weight matrices, allowing for plug-
in integration with existing transformer-based LLMs without model retraining.
To effectively compress KV cache at the weight level, we adjust for layerwise
sensitivity and introduce a progressive compression strategy, which is supported by
our theoretical analysis on how compression errors accumulate in deep networks.
Our method is designed to function without model tuning in upcycling stages or
task-specific profiling in test stages. Extensive experiments with LLaMA models
ranging from 8B to 70B parameters across various tasks show that our approach
significantly reduces the GPU memory footprint while maintaining performance.

1 Introduction

Autoregressive large language models (LLMs) such as GPT (Achiam et al., 2023), PaLM (Chowdhery
et al., 2023), and LLaMA (Touvron et al., 2023), built upon transformer architectures (Vaswani
et al., 2017), have shown remarkable capabilities across a wide range of tasks. However, the
attention mechanism underpinning those models poses significant challenges to the efficiency of
their deployment, particularly the management of the Key-Value (KV) cache. The KV cache is
originally designed to accelerate the generation process by storing intermediate attention KV vectors,
thus avoiding recomputation of shared prefixes for each autoregressively generated token. Despite
reducing computational overhead, the KV cache significantly increases memory footprints, as its
size scales linearly with both sequence length and batch size. This drives the need for KV cache
compression to enable cost-effective deployment of LLMs across various devices and platforms.

To address the overhead of the original attention mechanism, one prominent line of work aims
to design more efficient attention variants, such as multi-query attention (MQA) (Shazeer, 2019)
and group-query attention (GQA) (Ainslie et al., 2023), which inherently reduce the corresponding
KV cache. Nevertheless, those techniques typically require upcycling existing models. Without
proper training, their direct application often results in degraded performance (Ribar et al., 2023;

4th NeurIPS Efficient Natural Language and Speech Processing Workshop (ENLSP-IV 2024).

Ainslie et al., 2023; Liu et al., 2024b), thereby making them unsuitable for deployment in resource-
constrained environments. Recently, Liu et al. (2024a) design a multi-head latent attention (MLA) for
efficient inference, utilizing low-rank key-value union compression to reduce KV cache. However,
similar to MQA and GQA, MLA is also integrated during the model’s training cycle, thus not directly
applicable to pre-trained LLMs.

In contrast, another line of work focuses on KV cache compression at test time, primarily achieved
by dropping tokens while leaving the backbone model intact. Several works design the token eviction
policy based on accumulated attention scores (Sheng et al., 2023; Zhang et al., 2024b; Liu et al.,
2024b), or heuristics such as special tokens or and relative distance between tokens (Ge et al., 2023)
However, these methods either ignore inter-layer dependencies or require attention pattern analysis,
and the resulting eviction policy can be task-specific.

In this paper, we propose to compress KV cache from an orthogonal perspective, i.e., the KV weight
matrices. As the KV weight matrices are typically characterized by low-rank properties, we perform
a low-rank approximation to reduce their dimension and thus compress the resulting KV cache.
Recognizing that compressed KV caches inevitably introduce information loss to subsequent layers,
and that sensitivity to input changes varies across layers, we introduce a progressive compression
strategy. This approach is grounded in the calculation of cumulative condition numbers for KV weight
matrices across different layers, reflecting their sensitivity and guiding the compression strategy.
Theoretically, we derive error bounds for both individual layer compression and error propagation
through the network. These theoretical results reveal that errors introduced in earlier (shallower)
layers are amplified more significantly than those in deeper layers, and informs our progressive
compression strategy.

Our method is designed for straightforward implementation, requiring neither model profiling nor
detailed inspection of the attention structure. It can be directly applied to pre-trained LLMs by
extracting weight matrices and leveraging their inherent properties to swiftly determine optimal
layer-wise compression. This approach offers a practical and efficient solution for enhancing LLM
inference performance in memory-constrained deployment scenarios, without the need for model
retraining or complex eviction strategy composition.

We evaluate our method on 8B, 13B, and 70B LLaMA models that built upon multi-query attention
or group-query attention. Experiments across tasks such as commonsense reasoning, reading compre-
hension, text summarization, and mathematical reasoning, demonstrate that our approach can reduce
substantial GPU memory footprint while maintaining minimal impact on performance.

2 Preliminary: Attention Mechanism and KV Cache

Transformer-based language models use self-attention to weigh the importance of different tokens,
thus allowing for the model to focus on different parts of the input sequence. Given an input
X ∈ RN×D, where N is the sequence length and D is the dimensionality of each token’s embedding,
we compute the Query (Q), Key (K), and Value (V) matrices by multiplying X with their respective
weight matrices: Q = XWq,K = XWk, V = XWv .

Then the attention mechanism is as follows:

Attention(Q,K, V) = softmax
(
QK⊤
√
dk

)
V. (1)

Multi-head attention allows the model to jointly attend to information from different representation
subspaces at different positions

MultiHead(Q,K, V) = Concat(head1, . . . , headh)Wo, (2)

where
headi = Attention(X(W i

q)
T , X(W i

k)
T , X(W i

v)
T).1 (3)

Here, W i
q , W i

k, and W i
v are the weight matrices for the i-th attention head, and Wo is the weight

matrix for the output linear transformation.
1This formulation with transposed weight matrices aligns with the implementation found in the models

examined in our study. Mathematically, this is equivalent to the standard formulation without transpose. The
choice of which form to use depends on implementation details and computational optimizations.

2

Figure 1: LORC compresses KV-cache by decomposing the KV weight matrices in attention heads.
The progressive compression strategy retains more dimension for KV weights in shallow layers and
compresses the KV weights in deep layers more aggressively.

In autoregressive transformers, attention computation scales quadratically (i.e., O(N2)) with the
sequence length N , as each token interacts with all others. Such scaling is impractical for very large
inputs or real-time applications, where speed and efficiency are crucial.

To address this computational bottleneck, KV caches store the results of previous computations of
the KV matrices. When processing subsequent tokens, the model can retrieve keys and values from
the cache rather than recomputing them, thereby reducing the number of operations to a linear scale
with respect to the sequence length. This method trades off increased memory usage for a reduction
in computational overhead. The size of KV cache per layer is defined as below:

Ck,v = b×N × h× d, (4)

where b is the batch size, N is the max sequence length in the batch, h is the number of K/V head
and d is the head dimension. This linear relationship between cache size and sequence length, as well
as batch size, underscores the critical need for efficient compression methods. As described, existing
works that can reduce KV cache consumption either require expensive model training in upcycling
stages or empirical token eviction policy design at test time. In the following section, we present a
novel method for KV cache compression from the perspective of low-rank weight approximation.

3 Method

We structure this section as follows. In Section 3.1, we detail the process of compressing the KV
cache for a single layer using Singular Value Decomposition (SVD) on weight matrices. Section 3.2
introduces our progressive compression strategy, which determines adaptive compression dimensions
for each layer. Finally, Appendix D covers additional considerations for handling various attention
mechanisms, and Appendix E addresses the implementation details specific to the rotary position
embedding. Figure 1 presents an overview of our method, illustrating the low-rank approximation of
the weight matrix and the progressive compression strategy across layers.

3.1 KV Cache Compression via Low-rank Approximation of Weight Matrices

Unlike previous approaches that focus on token-level eviction strategies or require model retraining,
we propose a novel method that operates at the weight matrix level in the attention mechanism. This
approach leverages the inherent low-rank properties of these matrices (as shown in Appendix C),
allowing for significant compression without the need for complex token selection algorithms or
time-consuming model tuning. By applying a low-rank approximation to the weight matrices, we
effectively reduce the dimensionality of the KV cache while preserving the essential information flow
through the network.

Key Matrix Compression: Figure 1 presents how we implement SVD on the key weight matrices.
Specifically, for the i-th head in the MHA attention, we decompose its key matrix W i

k ∈ RD×d to:

SVD(W i
k)D×d = UD×dc

Σdc×dc
V T
dc×d = UD×dc

(ΣV T)dc×d. (5)

For MHA, there are h attention heads, then the decomposition becomes:

3

SVD(WH
k)D×hd = UD×dc

(ΣV T)dc×hd = UD×dc

[
(A1)dc×d (A2)dc×d · · · (Ah)dc×d

]
,

(6)
where (Ai)dc×d is the i-th block in the matrix (ΣV T)dc×hd.

We have now decomposed the key matrix W i
k to the multiplication of UD×dc

and (ΣV T)dc×hd. We
will multiply X with (ΣV T)Thd×dc

as the compressed key, which is stored in the KV cache. Through
this implementation, we effectively update the size of key cache from hd to dc, where dc is smaller
than hd, reducing the memory footprint while keeping the essential information intact.

For UD×dc
, we incorporate it to the query calculation by updating the original query matrix WH

q ∈
RD×hd as follows:

WH
q′ = (WH

q)D×hdUD×dc
. (7)

Note that the embedding dimension D is equal to the product of the number of attention heads h and
the dimension per head d, i.e., D = hd. Consequently, the updated query matrix WH

q′ ∈ RD×dc .

Value Matrix Compression: The decomposition for the value matrix follows a similar structure
to that of the key matrix, with the difference that we integrate its left singular vectors to the output
matrix Wo. Specifically, the value matrix is decomposed as:

SVD(WH
v)D×hd = UD×dc(ΣV

T)dc×hd = UD×dc

[
(B1)dc×d (B2)dc×d · · · (Bh)dc×d

]
(8)

where (Bi)dc×d is the i-th block in the matrix (ΣV T)dc×hd. After multiplication with X , the
dimension of the value cache shrinks from hd to dc, thus reducing memory consumption.

In contrast to the key matrix operation, we incorporate UD×dc to the output matrix. To achieve this,
we update the output matrix Wo ∈ RD×D as follows:

Wo′ = (U⊤)dc×D(Wo)D×D, (9)

resulting in an updated output matrix Wo′ ∈ Rdc×D.

Compression Ratio: The compression strategy effectively reduces the dimensions from N × d× h
for both keys and values to N × dc, ensuring data integrity and minimizing overhead. This results in
a layer compression ratio ρ = dc

h×d , which quantifies the extent of the reduction.

3.2 Progressive Compression Strategy

Algorithm 1 LORC Algorithm
Require: Pre-trained LLM with L layers

1: Initialize cumulative condition numbers κ̃l

2: for l = L to 1 do
3: Compute κ(W l

k) and κ(W l
v)

4: κ̃l ←
∏L

j=l κ(W
j
k) · κ(W

j
v)

5: end for
6: for l = 1 to L do
7: dlc ← Calculate by Eq. 13
8: if κ̃l > threshold then
9: Skip compression for layer l

10: continue
11: end if
12: Key Matrix Compression:
13: Perform SVD: W l

k = UkΣk(V
T
k)

14: W̃ l
k ← Uk[:, : d

l
c](ΣkV

T
k)[: dlc, :]

15: W l
q′ ←W l

qUk[:, : d
l
c]

16: Value Matrix Compression:
17: Perform SVD: W l

v = UvΣv(V
T
v)

18: W̃ l
v ← Uv[:, : d

l
c](ΣvV

T
v)[: dlc, :]

19: W l
o′ ← Uv[:, : d

l
c]

TW l
o

20: Update KV cache size for layer l
21: end for

Having established low-rank approximation for
compressing weight matrices, we now address its
dynamic application across network layers. This ap-
proach is necessary due to the varying sensitivity of
different layers, which significantly affects overall
model efficacy and efficiency.
To tackle this challenge, we propose a progressive
compression strategy for our low-rank approxima-
tion of KV weight matrices. Our intuition is that the
compressed shallow layers could lead to cascading
errors that propagate and amplify through the net-
work. Therefore, we measure the layer sensitivity
by the condition numbers of KV matrices to de-
termine layer-wise compression dimensions. This
approach accounts for each layer’s sensitivity to per-
turbations caused by previously compressed layers,
ensuring output variations remain within acceptable
ranges. This progressive nature allows for more
conservative compression in shallow layers and
more aggressive compression in deeper layers, min-
imizing the risk of error accumulation throughout
the network. By carefully balancing compression
across layers, we maintain model integrity while
achieving significant memory savings.

4

Condition Number and Sensitivity Analysis To ensure that the change in the output bl = Alxl

remains within a specified range when the input xl changes due to compression in previous layers, we
need to consider the sensitivity of the output to such changes. Given a weight matrix Al, its condition
number plays a crucial role in determining the allowable change in xl. The condition number κ(Al)
is defined as:

κ(Al) = |Al|2 · |A−1
l |2 =

σmax(Al)

σmin(Al)
, (10)

where σmax(Al) and σmin(Al) are the largest and smallest singular values of Al, respectively. To
keep the relative change in the output bl within a tolerance ϵ, we utilize the standard definition of the
condition number to relate it to the allowable relative change in the input xl:

|∆bl|2
|bl|2

≤ κ(Al) ·
|∆xl|2
|xl|2

≤ ϵ. (11)

Solving for the allowable relative change in xl, we obtain: |∆xl|2
|xl|2 ≤ ϵ

κ(Al)
. This inequality indicates

that the acceptable change in the input xl is inversely proportional to the condition number κ(Al)
of the layer’s weight matrix. Layers with higher condition numbers are more sensitive to input
perturbations, requiring smaller changes in xl to maintain the output within the desired range. Given
the multi-layer structure of transformers, it is essential to consider not just the condition number of a
single layer but the cumulative effect of condition numbers from all preceding layers. This cumulative
measure gives a more holistic view of how perturbations might propagate and amplify as data passes
through successive layers.

Cumulative Condition Number: To effectively manage this across the network, we calculate the
cumulative condition number as an estimated layer sensitivity, which we then use to derive the
compression dimension. For a model with L layers, we calculate the cumulative condition number
for each layer l by multiplying the condition numbers of the current layer and all subsequent layers:

κ̃l =

L∏
j=l

κ(W j
k) · κ(W

j
v), (12)

where W j
k and W j

v denote the key and value weight matrices of the j-th layer, respectively. This
cumulative condition number κ̃l reflects the total amplification of input perturbations from current
layer to the final output layer, encompassing the effects of layers from l to L.

Compression Dimension: Based on the cumulative condition number, we then adjust the compression
dimensions for each layer to balance the fidelity and compression rate. More sensitive layers
(those with higher cumulative condition numbers) will have less aggressive compression to preserve
information, whereas layers with lower sensitivity can be compressed more substantially without
significantly affecting the overall network performance. We compute the compressed dimension dlc
for each layer by scaling κ̃l using the following function:

dlc = dmax ×
[
1−

(
maxi∈[1:L] log(κ̃i)− log(κ̃l)

maxi∈[1:L] log(κ̃i)−mini∈[1:L] log(κ̃i)

)
×

(
1− dmin

dmax

)]
, (13)

where dmax is the maximum allowable compressed dimension, and dmin is the minimum one.
The logarithmic scale mitigates the effect of large variations in the cumulative condition numbers,
providing a more balanced sensitivity metric across layers. This equation ensures that layers with
higher sensitivity (larger κ̃l) retain more dimensions (larger dl), while less sensitive layers can be
compressed more aggressively.

4 Error Bounds for KV Cache Compression

In this section, we derive error bounds for our KV cache compression method, considering both
individual layer errors and their propagation through a deep network. These theoretical results provide
insights into how the matrix decomposition-based compression affects the network’s performance
and guide the progressive compression strategy to balance model efficiency and performance.

4.1 Error Bound for Key/Value Matrix Approximation

Theorem 1 Let W ∈ Rm×n be a weight matrix (either key or value), and let W̃ ∈ Rm×n be its
rank-k approximation obtained via truncated singular value decomposition (SVD). For any input

5

vector x ∈ Rn, the error introduced by the approximation is bounded by:
∥Wx− W̃x∥2 ≤ σk+1∥x∥2, (14)

where σk+1 is the (k + 1)-th singular value of W .

The proof is provided in Appendix B.1.

4.2 Single Layer Error Bound Including Nonlinearities

We now extend the analysis to include the effect of nonlinearities within a single layer. We derive an
error bound that accounts for both the approximation of the weight matrix and the layer’s nonlinear
activation function. For simplicity, we analyze the error introduced by compressing each weight
matrix (key or value) individually.

Theorem 2 Consider a single layer applying a linear transformation W followed by a nonlinearity
ϕ with Lipschitz constant Lϕ. Let W̃ be the compressed version of W obtained via truncated SVD
with rank k. For any input vector x ∈ Rn, the error at the output of the layer is bounded by:∣∣∣ϕ(Wx)− ϕ(W̃x)

∣∣∣ ≤ Lϕσk+1∥x∥2. (15)

The proof is straightforward by using Theorem 1 and the Lipschitz property of ϕ, we present it as the
base case in the proof of Theorem 3, which is detailed in Appendix B.2.

4.3 Error Propagation Bound

Theorem 3 Consider an L-layer network where each layer i applies a linear transformation Wi

followed by a nonlinearity ϕ with Lipschitz constant Lϕ. Let W̃i be the compressed version of Wi

obtained via truncated SVD with rank ki. The error at the output of the network is bounded by:

∥xL − x̃L∥2 ≤
L∑

i=1

(
σ
(i)
ki+1L

L−i
ϕ

L∏
j=i+1

∥Wj∥2

)
, (16)

where xL and x̃L are the outputs of the original and compressed networks, respectively; σ(i)
ki+1 is the

(ki + 1)-th singular value of Wi; ∥Wj∥2 denotes the spectral norm of Wj; and Lϕ is the Lipschitz
constant of the activation function ϕ.

We detail the proof in Appendix B.2. Until now, we have established an upper bound on the cumulative
error at the network’s output due to compression of weight matrices across multiple layers. It reveals
that errors introduced in earlier (shallower) layers are amplified more significantly than those in
deeper layers because they pass through more subsequent transformations and nonlinearities.

This understanding supports our design of a progressive compression strategy, where we compress
shallow layers less aggressively than deeper ones. By preserving more information in the early
layers (i.e., retaining more singular values), we minimize the errors that could be significantly
amplified throughout the network. This approach helps maintain overall model performance while
still achieving substantial compression in deeper layers, where the impact on the final output is less
pronounced due to reduced error amplification.

5 Experiment

5.1 Models

We conduct experiments using two attention mechanisms, Multi-Head Attention (MHA) (Vaswani
et al., 2017) and Graph Query Attention (GQA) (Ainslie et al., 2023), across three models: LLaMA-
2-13B, LLaMA-3-Instruct-8B, and LLaMA-3-Instruct-70B. The LLaMA-2 family incorporates the
MHA mechanism, while the LLaMA-3 family is based on GQA. We list the model specifications in
Table 3. Note that for the models based on MHA, the number of KV heads is equal to the number of
attention heads, so the weight matrices of KV are square matrices. The models based on GQA use an
intermediate number of key-value heads to group the query heads, with an adjustment on the shape of
KV weight matrices. We introduce datasets and implementation details in Appendix F.

6

5.2 Main Results

55 70 85 100
KV Cache Budget (%)

76

78

80

82
Ac

cu
ra

cy
 (%

)

8B on BoolQ

55 70 85 100
KV Cache Budget (%)

8

9

10

11

12

13

Ro
ug

e-
LS

um

8B on XSum

55 70 85 100
KV Cache Budget (%)

70.0

72.5

75.0

77.5

80.0

Ac
cu

ra
cy

 (%
)

8B on OpenBook QA

55 70 85 100
KV Cache Budget (%)

0

10

20

30

40

50

Ac
cu

ra
cy

 (%
)

8B on GSM8K
Baseline Progressive Compression

55 70 85 100
KV Cache Budget (%)

35

40

45

50

Ac
cu

ra
cy

 (%
)

13B on BoolQ

55 70 85 100
KV Cache Budget (%)

8.5

9.0

9.5

10.0

10.5

11.0

Ro
ug

e-
LS

um

13B on XSum

55 70 85 100
KV Cache Budget (%)

87

88

89

90

91

92

93

Ac
cu

ra
cy

 (%
)

70B on OpenBook QA

55 70 85 100
KV Cache Budget (%)

0

10

20

30

40

50

Ac
cu

ra
cy

 (%
)

70B on GSM8K

Figure 2: Performance of KV cache compression on LLaMA models. LORC compresses the KV
weights with a progressive strategy, while the baselines compress with a same ratio. The horizontal
dashed line indicates the performance with a full-cache model.

Figure 2 presents our main results on four datasets with different KV cache budgets. Compared to
the full-cache model, LORC achieves on-par performance with a significant compression ratio, and
the performance degradation is still nearly negligible with a 60% compression ratio on most datasets.
When slightly compressed, LORC could even enhance model performance in some cases. Note that
our method requires no model training or model profiling, the only efforts are SVD on weight matrices
which requires minimal computational cost compared to the LLM inference. Such plug-and-play
merits make our method easily integrable in resource-constrained environments, enabling efficient
model deployment with limited KV cache budgets.

In Figure 2, one interesting observation is that in some cases the model with a compressed KV cache
leads to better performance. Particularly, on the GSM8K dataset, performing KV cache compression
leads to more than 10% performance improvement. This phenomenon aligns with findings reported
in the literature (Ge et al., 2023). Also, similar effects have been documented in the context of
improving reasoning by applying low-rank decomposition on the MLP layers (Sharma et al., 2023).
We believe this phenomenon demonstrates the feasibility of conducting task-specific profiling for
better performance, or adapting our proposed method in model finetuning.

5.3 Single Layer Profiling

0 5 10 15 20 25 30
Layer ID

60

65

70

75
78

Ac
cu

ra
cy

Performance w/ Single Layer Compression

dim = 256
dim = 384
dim = 512
Mean
Full KV Cache

Figure 3: Single-layer compression results. This experiment
uses LLaMA-3-Instruct-8B on the OpenBookQA dataset.

To investigate the impact of compres-
sion at different layers, we conduct
experiments on single-layer compres-
sion as shown in Fig. 3. We use
LLaMA-3-Instruct-8B on OpenBook
QA for this experiment. The original
dimension of the KV head is 1024,
and we select compression dimen-
sions from [256, 384, 512] to com-
press each single layer while keeping
all other layers untouched.

Figure 3 shows clear layer-specific variability, indicating that some layers are more susceptible to
compression than others, particularly in the shallow layers. It is observed that the deep layers (i.e.,
layers 15–31 of the 32-layer LLaMA-3-Instruct 8B model), despite the reduction in dimensions,
maintain performance closely approaching the full KV Cache baseline. This suggests that these layers
can sustain robust performance even when subjected to significant parameter reduction. This finding
supports our progressive compression strategy for optimizing model efficiency without significantly
compromising the model’s effectiveness.

7

5.4 Curse of shallow layers

Table 1: Performance comparison between compression on shallow layers and deep layers on
OpenBookQA. For our progressive compression strategy, we report the performance at the 60%
overall compression ratio. For layer-0 compression and shallow blocks compression, we use a 50%
layer compression ratio within the chosen strategy. Hence, the overall compression ratio is 98.44%
for the layer-0 compression, and 93.75% for the shallow blocks compression.

Model Baseline Ours Layer 0 Shallow Blocks (1/8)

LLaMA-2-13b 76.6 77.4 (↑ 0.8) 77.2 (↑ 0.6) 74.8 (↓ 1.8)
LLaMA-3-Instruct-8b 78.0 77.4 (↓ 0.6) 67.2 (↓ 10.8) 61.4 (↓ 16.6)
LLaMA-3-Instruct-70b 91.2 91.2 (↑ 0.0) 84.2 (↓ 7.0) 23.2 (↓ 68.0)

To validate the intuition of the progressive compression strategy that the noise caused by shallow
compressed layers will be amplified more after propagation, we compare it to compressing the first
layer and the shallow blocks (i.e., the first 1/8 layers in a model) on 3 LLaMA models.

Table 1 shows how the compressed shallow layers impact the model performance, taking the baseline
full-cache model and our method as reference. The results indicate that compressing only the first
layer can lead to a performance decline, with reductions ranging from minimal to moderate. For
instance, the LLaMA-3-70B gives a 7.0% decrease, while the LLaMA-3-Instruct-8b shows a more
substantial drop of 10.8%. When compressing the shallow blocks, the impact is more pronounced.
The LLaMA-3-Instruct-8B suffers a 16.6% reduction. Notably, the LLaMA-3-Instruct-70b model
shows a drastic 68.0% decline, highlighting a significant sensitivity to shallow layer compression.

These findings underscore the importance of careful layer selection in compression strategies and
validate the effectiveness of our progressive compression method, as the choice of layer to compress
can have a substantial impact on model performance, particularly in larger or more complex models.

5.5 Memory footprint reduction analysis

Table 2: Summary of Model Sizes, KV cache usage and performance drop. Experiments were
conducted with a batch size of 64 and a sequence length of 2048 for all models.

Model KV Cache Average Performance Drop

Full dim dim_c Ours Compression Ratio

LLaMA-2-13B 50G 5120 2048 27.5G 55% 0.47%
LLaMA-3-8B 8G 1024 512 4.8G 60% 0.92%

LLaMA-3-70B 20G 1024 512 11G 55% 0.22%

We report the memory footprint reduction in Table 2. By controlling the performance drop averaged
on the four tasks less than 1%, we can achieve a considerable compression ratio from 55%-60%.
For the LLaMA-3 models in which the GQA has already been employed to save the KV cache, we
further achieve a significant compression ratio. Note that we have excluded the GSM8k results for
the performance drop calculation for a fair comparison.

6 Conclusions

In conclusion, we proposed LORC, a novel approach to KV cache compression that capitalizes
on the inherent low-rank properties of weight matrices. Our method employs a progressive layer-
wise compression strategy, implementing a post-hoc low-rank approximation to circumvent the
complexities and limitations associated with token-level eviction strategies and model retraining.
Moreover, we provide theoretical analysis, deriving error bounds for layer compression and error
propagation in deep networks, supporting our design of progressive compression strategy. This
theoretically grounded and universally applicable approach preserves model integrity and performance
across diverse tasks, attention mechanisms, and model scales. Our comprehensive experimental
results demonstrate that LORC significantly reduces GPU memory requirements while minimally
impacting performance. This approach offers a robust and efficient solution of KV cache compression,
without requiring attention pattern analysis or model tuning.

8

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., Almeida, D., Altenschmidt,

J., Altman, S., Anadkat, S., et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Ainslie, J., Lee-Thorp, J., de Jong, M., Zemlyanskiy, Y., Lebrón, F., and Sanghai, S. Gqa: Train-
ing generalized multi-query transformer models from multi-head checkpoints. arXiv preprint
arXiv:2305.13245, 2023.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P., Chung,
H. W., Sutton, C., Gehrmann, S., et al. Palm: Scaling language modeling with pathways. Journal
of Machine Learning Research, 24(240):1–113, 2023.

Clark, C., Lee, K., Chang, M.-W., Kwiatkowski, T., Collins, M., and Toutanova, K. Boolq: Exploring
the surprising difficulty of natural yes/no questions. arXiv preprint arXiv:1905.10044, 2019.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, L., Plappert, M., Tworek, J.,
Hilton, J., Nakano, R., et al. Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021.

de Jong, M., Zemlyanskiy, Y., Ainslie, J., FitzGerald, N., Sanghai, S., Sha, F., and Cohen, W.
Fido: Fusion-in-decoder optimized for stronger performance and faster inference. arXiv preprint
arXiv:2212.08153, 2022.

Ge, S., Zhang, Y., Liu, L., Zhang, M., Han, J., and Gao, J. Model tells you what to discard: Adaptive
kv cache compression for llms. arXiv preprint arXiv:2310.01801, 2023.

Guan, Y., Li, Z., Leng, J., Lin, Z., and Guo, M. Transkimmer: Transformer learns to layer-wise skim.
arXiv preprint arXiv:2205.07324, 2022.

Holmes, C., Tanaka, M., Wyatt, M., Awan, A. A., Rasley, J., Rajbhandari, S., Aminabadi, R. Y., Qin,
H., Bakhtiari, A., Kurilenko, L., et al. Deepspeed-fastgen: High-throughput text generation for
llms via mii and deepspeed-inference. arXiv preprint arXiv:2401.08671, 2024.

Izacard, G. and Grave, E. Leveraging passage retrieval with generative models for open domain
question answering. arXiv preprint arXiv:2007.01282, 2020.

Lin, C.-Y. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguistics.
URL https://www.aclweb.org/anthology/W04-1013.

Liu, A., Feng, B., Wang, B., Wang, B., Liu, B., Zhao, C., Dengr, C., Ruan, C., Dai, D., Guo, D.,
et al. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model. arXiv
preprint arXiv:2405.04434, 2024a.

Liu, Z., Desai, A., Liao, F., Wang, W., Xie, V., Xu, Z., Kyrillidis, A., and Shrivastava, A. Scissorhands:
Exploiting the persistence of importance hypothesis for llm kv cache compression at test time.
Advances in Neural Information Processing Systems, 36, 2024b.

Mihaylov, T., Clark, P., Khot, T., and Sabharwal, A. Can a suit of armor conduct electricity? a new
dataset for open book question answering. arXiv preprint arXiv:1809.02789, 2018.

Mu, J., Li, X., and Goodman, N. Learning to compress prompts with gist tokens. Advances in Neural
Information Processing Systems, 36, 2024.

Narayan, S., Cohen, S. B., and Lapata, M. Don’t give me the details, just the summary! topic-aware
convolutional neural networks for extreme summarization. ArXiv, abs/1808.08745, 2018.

Pope, R., Douglas, S., Chowdhery, A., Devlin, J., Bradbury, J., Heek, J., Xiao, K., Agrawal, S., and
Dean, J. Efficiently scaling transformer inference. Proceedings of Machine Learning and Systems,
5, 2023.

Ribar, L., Chelombiev, I., Hudlass-Galley, L., Blake, C., Luschi, C., and Orr, D. Sparq attention:
Bandwidth-efficient llm inference. arXiv preprint arXiv:2312.04985, 2023.

9

https://www.aclweb.org/anthology/W04-1013

Sharma, P., Ash, J. T., and Misra, D. The truth is in there: Improving reasoning in language models
with layer-selective rank reduction. ArXiv, abs/2312.13558, 2023.

Shazeer, N. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

Sheng, Y., Zheng, L., Yuan, B., Li, Z., Ryabinin, M., Chen, B., Liang, P., Ré, C., Stoica, I., and
Zhang, C. Flexgen: High-throughput generative inference of large language models with a single
gpu. In International Conference on Machine Learning, pp. 31094–31116. PMLR, 2023.

Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W., and Liu, Y. Roformer: Enhanced transformer with rotary
position embedding. Neurocomputing, 568:127063, 2024.

Sun, T., Liu, X., Zhu, W., Geng, Z., Wu, L., He, Y., Ni, Y., Xie, G., Huang, X., and Qiu, X. A simple
hash-based early exiting approach for language understanding and generation. arXiv preprint
arXiv:2203.01670, 2022.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S.,
Bhargava, P., Bhosale, S., et al. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and
Polosukhin, I. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Yu, H., Yang, Z., Li, S., Li, Y., and Wu, J. Effectively compress kv heads for llm. arXiv preprint
arXiv:2406.07056, 2024.

Zhang, Y., Gao, B., Liu, T., Lu, K., Xiong, W., Dong, Y., Chang, B., Hu, J., Xiao, W., et al.
Pyramidkv: Dynamic kv cache compression based on pyramidal information funneling. arXiv
preprint arXiv:2406.02069, 2024a.

Zhang, Z., Sheng, Y., Zhou, T., Chen, T., Zheng, L., Cai, R., Song, Z., Tian, Y., Ré, C., Barrett,
C., et al. H2o: Heavy-hitter oracle for efficient generative inference of large language models.
Advances in Neural Information Processing Systems, 36, 2024b.

Zhou, W., Xu, C., Ge, T., McAuley, J., Xu, K., and Wei, F. Bert loses patience: Fast and robust
inference with early exit. Advances in Neural Information Processing Systems, 33:18330–18341,
2020.

10

A Related Works

A.1 Attention Mechanism

Attention mechanisms in Transformer models have evolved to enhance efficiency and effectiveness
(Vaswani et al., 2017). Multi-Query Attention (MQA) (Shazeer, 2019) reduces memory requirements
during decoding, while Grouped-Query Attention (GQA) (Ainslie et al., 2023) balances efficiency
and performance by sharing key and value heads among query groups. Recently, Liu et al. (2024a)
introduced Multi-head Latent Attention (MLA), using low-rank key-value union compression to
optimize inference. However, these approaches are typically integrated during model training, limiting
their applicability to pre-trained LLMs. Parallel research efforts have targeted inference efficiency
improvements. For example, Pope et al. (2023) developed multi-dimensional partitioning techniques,
and de Jong et al. (2022) optimized the Fusion-in-Decoder (FiD) approach (Izacard & Grave, 2020)
for more efficient inference. Holmes et al. (2024) introduces SplitFuse which leverages dynamic
prompt and generation decomposition and unification to further improve continuous batching and
system throughput. In this paper, we contribute to this line of research by improving inference
efficiency through the compression of KV cache. Our approach leverages the low-rank property of
the attention weight matrices, offering a plug-and-play method to reduce the memory footprint of
LLMs during inference without requiring model retraining.

A.2 KV Cache Compression

As Large Language Models (LLMs) continue to grow in size and complexity, efficient management
of their memory usage during inference has become a critical challenge. Early efforts to compress
token hidden states (Guan et al., 2022; Sun et al., 2022; Zhou et al., 2020) are limited to non-
autoregressive models and require retraining, thus motivating research into pruning tokens in the
KV cache of auto-regressive LLMs. For instance, Mu et al. (2024) learns to compress prompts into
a few special tokens to reduce memory pressure during caching, but this token prediction requires
model retraining and could be an expensive overhead during inference. Several methods design token
eviction policies based on accumulated attention scores (Sheng et al., 2023; Zhang et al., 2024b; Liu
et al., 2024b), or heuristics such as special tokens and relative distance between tokens (Ge et al.,
2023). However, these approaches often overlook inter-layer dependencies, potentially resulting in
task-specific eviction policies that may not generalize well across different applications. In contrast
to token-dropping methods, our study takes a different tack. We focus on compressing the KV cache
from the perspective of weight matrix dimension reduction. Importantly, our progressive compression
strategy carefully addresses the issue of error propagation across compressed layers, a consideration
often ignored in previous methods.

A few studies have explored customized cache budgets across different layers in the context of token
dropping, yet no definitive consensus has been reached on the most effective strategies. Zhang
et al. (2024a) suggest increasing compression intensity in higher layers based on the assumption that
these layers contain less critical information. Conversely, Liu et al. (2024b) argue that significant
tokens exhibit greater variability at higher layers, thus larger caches are required to reduce cache
misses. While these approaches demonstrate understanding of layer-specific requirements, they
depend heavily on task-specific attention patterns. Our approach diverges fundamentally by adopting
an orthogonal perspective to compression, focusing on weight matrix dimension reduction rather than
token eviction. This approach enables us to establish error propagation bounds across the network and
to guide our progressive compression strategy effectively. It eliminates the need to analyze attention
patterns for eviction policy design, simplifying implementation and enhancing general applicability
across different LLMs.

Concurrently, Liu et al. (2024a) and Yu et al. (2024) modify attention mechanisms to manage KV
caches more efficiently during inference. While these methods align with our philosophy of altering
attention dynamics, they require either pretraining adjustments or extensive model finetuning to
accommodate the modified attention schemas, limiting their practicality in deployed systems. In
contrast, our method requires no such training or fine-tuning, offering a plug-and-play solution that
seamlessly integrates with pre-trained models to deliver efficient compression without compromising
the model’s integrity or performance.

11

B Detailed Proofs

B.1 Proof of Theorem 1

Proof.

Let W = UΣV ⊤ be the full SVD of W , where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices,
and Σ = diag(σ1, . . . , σn) with singular values σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

The rank-k approximation W̃ is given by:

W̃ = UkΣkV
⊤
k ,

where Uk, Σk, and Vk are truncated versions of U , Σ, and V , respectively, keeping only the first k
singular values and corresponding vectors.

We have:

∥Wx− W̃x∥2 = ∥(W − W̃)x∥2
= ∥U(Σ− Σk)V

⊤x∥2
= ∥(Σ− Σk)V

⊤x∥2, since U is orthogonal

= ∥ diag(0, . . . , 0, σk+1, . . . , σn)V
⊤x∥2

≤ σk+1∥V ⊤x∥2
= σk+1∥x∥2, since V is orthogonal.

□
This theorem quantifies the error introduced at a single layer due to compressing the weight matrix.
The bound indicates that the error is directly proportional to the (k + 1)-th singular value of W and
the norm of the input vector x. Larger singular values correspond to directions of significant variance
in the data, so truncating smaller singular values (which represent less significant features) minimizes
the error introduced by compression.

B.2 Proof of Theorem 2 and 3

Proof.

Let xi and x̃i denote the outputs of the i-th layer in the original and compressed networks, respectively.
We prove by induction that:

∥xi − x̃i∥2 ≤
i∑

s=1

σ
(s)
ks+1L

i−s
ϕ

i∏
j=s+1

∥Wj∥2

 . (17)

Base Case (i = 1).

Using Theorem 1 and the Lipschitz property of ϕ:

∥x1 − x̃1∥2 = ∥ϕ(W1x0)− ϕ(W̃1x0)∥2
≤ Lϕ∥W1x0 − W̃1x0∥2
≤ Lϕσ

(1)
k1+1∥x0∥2.

Inductive Step.

Assume the inductive bound holds for layer i− 1. For layer i:

12

∥xi − x̃i∥2 = ∥ϕ(Wixi−1)− ϕ(W̃ix̃i−1)∥2
≤ Lϕ∥Wixi−1 − W̃ix̃i−1∥2

≤ Lϕ

(
∥Wi(xi−1 − x̃i−1)∥2 + ∥(Wi − W̃i)x̃i−1∥2

)
≤ Lϕ

(
∥Wi∥2∥xi−1 − x̃i−1∥2 + σ

(i)
ki+1∥x̃i−1∥2

)
.

We can bound ∥x̃i−1∥2 using the triangle inequality:

∥x̃i−1∥2 ≤ ∥xi−1∥2 + ∥xi−1 − x̃i−1∥2.

Assuming that ∥xi−1∥2 is bounded (which is reasonable in practice due to normalization techniques),
and applying the inductive hypothesis, we can express ∥xi − x̃i∥2 in terms of the accumulated errors
up to layer i.

By recursively applying this inequality and summing over all layers, we obtain the bound stated in
Theorem 3.

□
The theorem 2 proved in the base case above shows that the error introduced by the compressed
weight matrix propagates through the nonlinearity, scaled by the Lipschitz constant of the activation
function. While considering both matrices simultaneously complicates the bounds due to their
interactions within the attention mechanism, it is still feasible to derive combined error bounds
because the attention mechanism allows us to mathematically bound these interactions. The total
error due to simultaneous compression can be bounded by the sum of their individual approximation
errors, scaled by a constant. However, for simplicity and clarity in the following derivation, we use
the simplified version that considers each matrix individually.

The theorem 3 shows that errors introduced in earlier (shallower) layers are amplified more compared
to those in deeper layers, as they propagate through more subsequent transformations and nonlinear
functions. It is important to note that the nonlinearities characterized by the Lipschitz constant
Lϕ represent a simplification. In practice, transformer models like LLaMA incorporate complex
nonlinear components, so the exact error propagation may deviate from this simplified bound due
to intricate nonlinearities. Despite these complexities, the theorem still offers insights into how
compression errors may accumulate in deep networks and supports our design of the progressive
compression strategy.

B.3 Note on Activation Functions and the Lipschitz Constant

It is important to note that Theorem 3 assumes the activation function ϕ has a Lipschitz constant Lϕ,
which reflects how much the function can amplify differences in its input. For activation functions like
ReLU, which are 1-Lipschitz, the error bound simplifies and indicates minimal error amplification
through the activation layers.

However, the LLaMA model family uses activation functions such as SwiGLU and GELU, whose
derivatives can exceed 1, making them not 1-Lipschitz. For networks employing such activation
functions, the error propagation bound in Theorem 2 is adjusted by incorporating a Lipschitz constant
Lϕ, which may be greater than 1. This adjustment accounts for the potential additional error
amplification introduced by the activation functions.

C Reconstruction Error of Matrix SVD

In our approach, we conduct layer-wise weight matrix decomposition and reconstruction. In this
section, we show that these matrices are low-rank and therefore can be reconstructed with low-
dimension matrices, resulting in negligible reconstruction error. This suggests that instead of
designing complex eviction policies at the token level, we can focus on the weight matrix level
to develop a KV cache compression method. This approach eliminates the need to scrutinize attention
patterns to determine which tokens should be dropped.

13

0 5 10 15 20 25 30
Layer Index

0.0

0.1

0.2

0.3

0.4

0.5

Re
la

tiv
e

Re
co

ns
tru

ct
io

n
Er

ro
r

wkerr | r=0.5 wverr | r=0.5 wkerr | r=0.75 wverr | r=0.75

Figure 4: Layerwise relative reconstruction errors. wkerr and wverr denote the relative difference
between the original key/value matrices and their corresponding low-rank approximations measured
using the Frobinus norm. The compression ratio is computed as r = dc

Nh×dh
, where Nh is the number

of attention heads and dh, dc is the original and compressed hidden dimensions respectively.

We present the relative reconstruction error in Figure 4, which is computed using the Frobenius norm.
For a matrix M , the Frobenius norm is defined as:

∥M∥F =

√√√√ m∑
i=1

n∑
j=1

|mij |2. (18)

The relative reconstruction error ε is calculated as:

ε =
∥M − M̂∥F

∥M∥F
(19)

where M is the original matrix and M̂ is the reconstructed matrix obtained through truncated SVD.

This approach enables us to quantify the accuracy of our low-rank approximation for each matrix.
It is important to note that although Figure 4 demonstrates that reconstruction errors are similar
across all layers, with shallow layers exhibiting even lower errors, this does not imply that we can
directly compress shallow layers aggressively or compress all layers uniformly. In fact, compression
errors propagate and amplify throughout the network as we illustrated in Section 3.2. To this end,
we propose the progressive compression strategy and it is theoretically and empirically effective in
minimizing the overall error accumulation.

D Multi-head Attention and Group-query Attention

The above derivation in Section 3.1 holds for standard MHA, where the model dimension D equals
to the multiplication of number of head and head dimension h × d. For GQA, the number of KV
heads is reduced as shown in Table 3. To adapt such implementation, we can still follow the above
procedure for cache compression. After fetching the key and value from cache, we just need to repeat
them according to the number of the total attention heads.

E Adjusted Position Embedding

Su et al. (2024) propose a rotary position embedding (RoPE) and it has been used in most recent
LLMs. Applying RoPE to self-attention gives

qTmkn = (Rd
Θ,mWT

q xm)T (Rd
Θ,nW

T
k xn) = xTWqR

d
Θ,n−mWT

k xn, (20)

where Θ is a pre-defined rotary matrix, m and n denotes the token position. In practice, the rotation
matrix Rd

Θ,n−m is decomposed as (Rd
Θ,m)T and Rd

Θ,n to rotate the query and key separately, and
the KV cache stores the rotated keys. To ensure that our compressed keys are compatible with the

14

rotary operation, we adjust the position embedding pipeline. Specifically, we store the compressed
keys X(ΣV ⊤)⊤D×dc

in cache, while incorporating the rotation and key projection into the query
computation to streamline the process.

F Experiment Settings

F.1 Implementation Details

In practice, we set thresholds to exclude compression on layers with high cumulative condition
numbers: 30 for LLaMA-3-Instruct-8B, and 90 for LLaMA-2-13B and LLaMA-3-Instruct-70B. The
dmax equals to the original head dimension, while dmin varies based on the target compression ratio.
For baseline methods, we have the same refrained layers while applying the uniform compression
ratios across compressed layers instead of using a progressive compression strategy.

F.2 Dataset

We follow Touvron et al. (2023) to evaluate our methods on the following tasks: BoolQ (Clark et al.,
2019) for reading comprehension, XSum (Narayan et al., 2018) for text summarization. Openbook
QA (Mihaylov et al., 2018) for commonsense reasoning, and GSM8K (Cobbe et al., 2021) for
mathematical reasoning. We use ROUGE score (Lin, 2004) as the evaluation metric for XSum and
accuracy for the other tasks. We report 2-shot results for LLaMA-2 models on BoolQ, and 0-shot
results for other settings.

G Computational details

For all experiments except those involving the LLaMA-3-70B model, we utilize a single node
equipped with 4 A100 GPUs. For the LLaMA-3-70B model, we employ a node with 8 V100 GPUs.

The calculation of SVD is efficient based on the Numpy library. For LLaMA-3-Instruct-70B, the
largest model used in our experiments, the all-layer (80 layers in total) SVD takes only 40 seconds.

Table 3: Model Architectures.
Model Attention Layers Heads KV Heads Head Dimension Model Dimension Weight Shape

LLaMA-2-13B MHA 40 40 40 128 5120 5120 × 5120
LLaMA-3-Instruct-8B GQA 32 32 8 128 4096 4096 × 1024

LLaMA-3-Instruct-70B GQA 80 64 8 128 8192 8192 × 1024

15

	Introduction
	Preliminary: Attention Mechanism and KV Cache
	Method
	KV Cache Compression via Low-rank Approximation of Weight Matrices
	Progressive Compression Strategy

	Error Bounds for KV Cache Compression
	Error Bound for Key/Value Matrix Approximation
	Single Layer Error Bound Including Nonlinearities
	Error Propagation Bound

	Experiment
	Models
	Main Results
	Single Layer Profiling
	Curse of shallow layers
	Memory footprint reduction analysis

	Conclusions
	Related Works
	Attention Mechanism
	KV Cache Compression

	Detailed Proofs
	Proof of Theorem 1
	Proof of Theorem 2 and 3
	Note on Activation Functions and the Lipschitz Constant

	Reconstruction Error of Matrix SVD
	Multi-head Attention and Group-query Attention
	Adjusted Position Embedding
	Experiment Settings
	Implementation Details
	Dataset

	Computational details

